JPH07176317A - Manufacture of electrode/ion exchange thin membrane connection body and electrode/ion exchange thin membrane/electrode connection body - Google Patents

Manufacture of electrode/ion exchange thin membrane connection body and electrode/ion exchange thin membrane/electrode connection body

Info

Publication number
JPH07176317A
JPH07176317A JP5320268A JP32026893A JPH07176317A JP H07176317 A JPH07176317 A JP H07176317A JP 5320268 A JP5320268 A JP 5320268A JP 32026893 A JP32026893 A JP 32026893A JP H07176317 A JPH07176317 A JP H07176317A
Authority
JP
Japan
Prior art keywords
electrode
ion exchange
thin film
ion
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5320268A
Other languages
Japanese (ja)
Inventor
Minoru Kaneko
実 金子
Toshihiko Saito
俊彦 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP5320268A priority Critical patent/JPH07176317A/en
Publication of JPH07176317A publication Critical patent/JPH07176317A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To easily form a thin membrane of an ion exchanger on the surface of an electrode by connecting the electrode to an ion exchange membrane on a base board, then peeling the substrate. CONSTITUTION:An ion exchanger is dripped on a base board 9 to form an ion thin membrane exchanger 1a. An electrode 2a made of an electrode catalyst layer is connected to the exchanger 1a by hot pressing, and a base board/ion exchange membrane/electrode connection body is formed. The base board 9 is peeled from this connection body. The exchange membrane 1a is sandwiched by the electrode 2 and the base board 9 and is not exposed to the outside directly at the time of connection, the ion exchanger thin membrane can be easily formed on the surface of the electrode 2a without reduction of the mechanical strength, and the ion conduction resistance and contact resistance can be reduced. The battery voltage reduction can be suppressed, the electrode size is reduced by the thinning of the film, and moisture can be stably fed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、種々の電極反応に使用
できる電極/イオン交換薄膜接合体の製造方法、及び電
極/イオン交換薄膜/電極接合体の製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an electrode / ion exchange thin film assembly which can be used in various electrode reactions, and a method for producing an electrode / ion exchange thin film / electrode assembly.

【0002】[0002]

【従来の技術】固体高分子型燃料電池は高分子電解質膜
(即ち、イオン交換膜)の両面に正極と負極とが配され
た構造である。従来、イオン交換膜上への電極(電極触
媒層)の形成方法としては以下の2つの方法が知られて
いる。 電極触媒粒子(白金や白金合金等の活性触媒金属粒
子、或いはカーボンブラック等の触媒担体に前記活性触
媒金属粒子を担持させたもの)と,PTFE(ポリテト
ラフルオロエチレン)粒子と,イオン交換体とを混合
し、この混合物をイオン交換膜上に塗布又は吹き付けた
後、100〜200kg/cm2 の圧力でホットプレスを行
なう方法。 前記電極触媒粒子とPTFE粒子とイオン交換体と
の混合物を圧延ローラ等によってシート化し、この電極
触媒層シートをイオン交換膜上に100〜200kg/cm
2 の圧力でホットプレスを行ない接合する方法。
2. Description of the Related Art A polymer electrolyte fuel cell has a structure in which a positive electrode and a negative electrode are arranged on both sides of a polymer electrolyte membrane (that is, an ion exchange membrane). Conventionally, the following two methods are known as methods for forming an electrode (electrode catalyst layer) on an ion exchange membrane. Electrode catalyst particles (active catalyst metal particles such as platinum or platinum alloy, or catalyst carrier such as carbon black supporting the above active catalyst metal particles), PTFE (polytetrafluoroethylene) particles, and an ion exchanger Are mixed, and the mixture is applied or sprayed onto the ion exchange membrane, and then hot pressed at a pressure of 100 to 200 kg / cm 2 . The mixture of the electrode catalyst particles, the PTFE particles, and the ion exchanger is formed into a sheet by a rolling roller or the like, and the electrode catalyst layer sheet is placed on the ion exchange membrane at 100 to 200 kg / cm.
Method of joining by hot pressing with pressure of 2 .

【0003】[0003]

【発明が解決しようとする課題】ところが、上記のよ
うに電極触媒粒子の混合物をイオン交換膜上に直接塗布
した後ホットプレスを行なったり,或いは上記のよう
に電極触媒層シートとイオン交換膜とをホットプレスす
る場合には、イオン交換膜の機械的強度の制約により通
常120μmから300μm程度の膜厚の厚いイオン交
換膜を使用せざるを得なかった。その結果、イオン伝導
度が大きくなるため、内部抵抗が増大するという問題が
あった。特に高電流密度型の固体高分子型燃料電池の場
合、イオン伝導度の増大に起因するIR損失(電池電圧
の低下)が大きな問題であった。また、イオン交換膜と
電極との界面の接触抵抗もその低減が困難であった。
However, hot pressing may be performed after the mixture of the electrode catalyst particles is directly applied onto the ion exchange membrane as described above, or the electrode catalyst layer sheet and the ion exchange membrane may be combined with each other as described above. In the case of hot-pressing, the ion-exchange membrane was forced to use a thick ion-exchange membrane having a thickness of about 120 μm to 300 μm due to the restriction of the mechanical strength of the ion-exchange membrane. As a result, the ionic conductivity increases, and there is a problem that the internal resistance increases. Particularly in the case of a high current density type polymer electrolyte fuel cell, IR loss (reduction in cell voltage) due to an increase in ionic conductivity has been a serious problem. It was also difficult to reduce the contact resistance at the interface between the ion exchange membrane and the electrode.

【0004】加えて、イオン交換膜は含水量の増加に伴
って膨潤するので、イオン交換膜の膜厚が厚くなるとそ
の分寸法変化が大きくなるので、電極の寸法安定性が低
下すると共に、イオン交換膜への水分の安定供給が困難
になる等の問題もあった。本発明はかかる現状に鑑みて
なされたものであり、イオン伝導抵抗及び接触抵抗の低
減を図り電池電圧の低下を抑制すると共に、電極の寸法
変化が少なく水分の安定供給が可能な電極/イオン交換
薄膜接合体の製造方法、及び電極/イオン交換薄膜/電
極接合体の製造方法を提供することを目的としている。
In addition, since the ion exchange membrane swells with an increase in the water content, the larger the thickness of the ion exchange membrane, the larger the dimensional change. There is also a problem that it is difficult to stably supply water to the exchange membrane. The present invention has been made in view of the above circumstances, and is intended to reduce ion conduction resistance and contact resistance, suppress a decrease in battery voltage, and reduce electrode dimensional changes to enable stable supply of water / ion exchange. An object of the present invention is to provide a method for manufacturing a thin film assembly and a method for manufacturing an electrode / ion exchange thin film / electrode assembly.

【0005】[0005]

【課題を解決するための手段】上記課題を目的を達成す
るため、本発明の電極/イオン交換薄膜接合体の製造方
法は、少なくとも電極触媒層から成る電極を作成する第
1ステップと、基板上にイオン交換体を滴下してイオン
交換体の薄膜を形成する第2ステップと、前記基板上に
形成したイオン交換体の薄膜と前記電極とを接合して基
板/イオン交換薄膜/電極接合体を作成する第3ステッ
プと、前記基板/イオン交換薄膜/電極接合体から基板
を剥離する第4ステップとを有することを特徴とする。
In order to achieve the above object, the method for producing an electrode / ion exchange thin film assembly according to the present invention comprises a first step of forming an electrode comprising at least an electrode catalyst layer, and a substrate. A second step of dropping an ion exchanger onto the substrate to form a thin film of the ion exchanger, and joining the thin film of the ion exchanger formed on the substrate and the electrode to form a substrate / ion exchange thin film / electrode assembly. It is characterized by including a third step of forming and a fourth step of peeling the substrate from the substrate / ion exchange thin film / electrode assembly.

【0006】また、基板上にイオン交換体を滴下してイ
オン交換体の薄膜を形成する第1ステップと、前記基板
上に形成したイオン交換体の薄膜上に、電極触媒を塗布
して基板/イオン交換薄膜/電極接合体を作成する第2
ステップと、前記基板/イオン交換薄膜/電極接合体か
ら基板を剥離する第3ステップとを有することを特徴と
する。
In addition, a first step of dropping an ion exchanger on a substrate to form a thin film of the ion exchanger, and applying an electrode catalyst on the thin film of the ion exchanger formed on the substrate The second to make ion exchange thin film / electrode assembly
And a third step of peeling the substrate from the substrate / ion exchange thin film / electrode assembly.

【0007】更に、本発明の電極/イオン交換薄膜/電
極接合体の製造方法は、前記いずれかの方法にて製造し
た電極/イオン交換薄膜接合体を一対用意し、各接合体
のイオン交換薄膜どうしを互いに重ね合わせて接合する
ことを特徴とする。
Furthermore, the method of manufacturing the electrode / ion-exchange thin film / electrode assembly of the present invention comprises preparing a pair of electrode / ion-exchange thin film bonded bodies manufactured by any one of the above-mentioned methods, The feature is that they are overlapped with each other and joined.

【0008】[0008]

【作用】上記方法の如く、基板上にイオン交換体を滴下
してイオン交換体の薄膜を予め電極とは別体として形成
した後、この基板上に形成された薄膜と電極とを接合す
れば、接合の際にイオン交換膜は電極と基板との間に介
在され直接外側に露出することがないので、従来のよう
に、機械的強度の節約を受けることがなく、電極表面上
にイオン交換体の薄膜を非常に容易に形成することがで
きる。その結果、イオン伝導抵抗及び接触抵抗の低減を
図ることができるので、電池電圧の低下を抑制できると
共に、薄膜化により電極の寸法変化が少なくなるので、
水分を安定して供給することもできる。
When the ion exchanger is dropped onto the substrate to form a thin film of the ion exchanger as a separate body from the electrode in advance as in the above method, the thin film formed on the substrate and the electrode are joined together. During bonding, the ion exchange membrane is interposed between the electrode and the substrate and is not directly exposed to the outside, so there is no saving of mechanical strength as in the conventional case, and the ion exchange membrane is not exchanged on the electrode surface. Body thin films can be formed very easily. As a result, since it is possible to reduce the ionic conduction resistance and the contact resistance, it is possible to suppress the decrease in the battery voltage and reduce the dimensional change of the electrode due to the thinning,
It is also possible to stably supply water.

【0009】[0009]

【実施例】【Example】

〔実施例〕図1は本発明方法にて製造した固体高分子型
燃料電池の概略断面図であり、イオン交換膜1を介して
アノード2とカソード3とを配したセル4を、アノード
ガス通路5を形成したセパレータ7及びカソードガス通
路6を形成したセパレータ8で挟持した構造であり、前
記イオン交換膜1(膜厚:20μm程度)はアノード2
側のイオン交換薄膜1a(膜厚:10μm程度)と,カ
ソード3側のイオン交換薄膜1b(膜厚:10μm程
度)との一体成型体で構成されている。前記アノード2
は電極触媒層2aと電極基材2bとから構成され、前記
カソード3は電極触媒層3aと電極基材3bとから構成
されている。
[Example] FIG. 1 is a schematic cross-sectional view of a polymer electrolyte fuel cell manufactured by the method of the present invention, in which a cell 4 in which an anode 2 and a cathode 3 are arranged via an ion exchange membrane 1 is used as an anode gas passage. 5 has a structure in which it is sandwiched by a separator 7 having a cathode gas passage 6 and a separator 8 having a cathode gas passage 6, and the ion exchange membrane 1 (thickness: about 20 μm) is an anode 2
Side ion exchange thin film 1a (film thickness: about 10 μm) and the cathode 3 side ion exchange thin film 1b (film thickness: about 10 μm) are integrally formed. The anode 2
Is composed of an electrode catalyst layer 2a and an electrode base material 2b, and the cathode 3 is composed of an electrode catalyst layer 3a and an electrode base material 3b.

【0010】以下、上記構成の固体高分子型燃料電池の
製造方法について、図2及び図3の工程図を用いて具体
的に説明する。 (製造例1)先ず、製造例1について図2を用いて説明
する。 第1工程(電極触媒層シートの製造) 触媒担体としてのカーボンブラックに、活性触媒金属粒
子としての20wt%白金を担持させて成る電極触媒粒
子と,結着剤としてのPTFE粒子とを混合し、前記P
TFE粒子の含有量が20wt%となるように調整し
た。次に、この混合物に造孔剤としての炭酸水素アンモ
ニウム(NH4 HCO3 )を混合し、前記混合物に対し
て炭酸水素アンモニウムの含有量が80wt%となるよ
うに調整した。その後、前記混合物と分散媒(有機系溶
媒)としてのケロシンとを混合した後、0.5mg/cm2
Ptとなるように圧延ローラを用いてシート化し、10
0℃で24時間乾燥させることにより炭酸水素アンモニ
ウムを完全に除去した。続いて、このシートをイオン交
換体としての5wt%ナフィオン溶液(アルドリッチケ
ミカル社製)中に浸積してシート中に3mg/cm2 のイオ
ン交換体を含浸させた後、真空乾燥することにより電極
触媒層シート2aを製造した。 第2工程(基板上へのイオン交換薄膜の形成) 先ず、テフロンシート基板9を用意し、該基板9上に5
wt%ナフィオン溶液を滴下して薄く広げた後、80℃
で乾燥させることによりイオン交換体の薄膜(膜厚:1
0μm程度)1aを作成した。尚、イオン交換薄膜1a
の膜厚は、滴下するナフィオン溶液の量をコントロール
することにより所望の膜厚に容易に調製することが可能
である。 第3工程(基板/イオン交換薄膜/電極触媒層シー
ト接合体の製造) 前記第2工程で製造したイオン交換薄膜1a上に前記第
1工程で製造した電極触媒層シート2aを載せ、200
kg/cm2 ,180℃でホットプレスを行い、基板/イオ
ン交換薄膜/電極触媒層シート接合体を製造した。 第4工程(イオン交換薄膜/電極触媒層シート接合
体の製造) 前記第3工程で作成した基板/イオン交換薄膜/電極触
媒層シート接合体からテフロンシート基板9を剥離し
て、イオン交換薄膜/電極触媒層シート接合体を製造し
た。 第5工程(電極触媒層シート/イオン交換薄膜/電
極触媒層シート接合体の製造) 先ず、前記第1〜第4工程に準じて対極側の電極触媒層
シート3aとイオン交換薄膜1bとの接合体を製造し、
一対の電極触媒層シート/イオン交換薄膜接合体を用意
する。次に、各接合体のイオン交換薄膜1a・1b同士
が互いに接触するように重ね合わせた後、200kg/cm
2 ,200℃でホットプレスを行い、電極触媒層シート
/イオン交換薄膜/電極触媒層シート接合体を製造し
た。この場合、一体化されたイオン交換膜1の膜厚は2
0μm程度である。
The method of manufacturing the polymer electrolyte fuel cell having the above structure will be specifically described below with reference to the process diagrams of FIGS. 2 and 3. (Manufacturing Example 1) First, Manufacturing Example 1 will be described with reference to FIG. First Step (Production of Electrode Catalyst Layer Sheet) Electrocatalyst particles obtained by supporting 20 wt% platinum as active catalyst metal particles on carbon black as a catalyst carrier and PTFE particles as a binder are mixed, The P
The content of TFE particles was adjusted to 20 wt%. Next, ammonium hydrogen carbonate (NH 4 HCO 3 ) as a pore-forming agent was mixed with this mixture, and the content of ammonium hydrogen carbonate was adjusted to 80 wt% with respect to the mixture. Then, the mixture was mixed with kerosene as a dispersion medium (organic solvent), and then 0.5 mg / cm 2
Sheeted using a rolling roller to obtain Pt 10
Ammonium hydrogen carbonate was completely removed by drying at 0 ° C. for 24 hours. Subsequently, the sheet was immersed in a 5 wt% Nafion solution (made by Aldrich Chemical Co.) as an ion exchanger to impregnate the sheet with 3 mg / cm 2 of the ion exchanger, and then vacuum dried to form an electrode. The catalyst layer sheet 2a was manufactured. Second Step (Formation of Ion Exchange Thin Film on Substrate) First, a Teflon sheet substrate 9 is prepared, and 5 is formed on the substrate 9.
After dropping a wt% Nafion solution and spreading it thinly, 80 ℃
Ion exchanger thin film (film thickness: 1
1a was prepared. The ion exchange thin film 1a
The film thickness of can be easily adjusted to a desired film thickness by controlling the amount of Nafion solution to be dropped. Third Step (Production of Substrate / Ion Exchange Thin Film / Electrode Catalyst Layer Sheet Assembly) The electrode catalyst layer sheet 2a produced in the first step is placed on the ion exchange thin film 1a produced in the second step, and 200
Hot pressing was performed at 180 ° C. at kg / cm 2 to produce a substrate / ion exchange thin film / electrode catalyst layer sheet assembly. Fourth step (manufacture of ion exchange thin film / electrode catalyst layer sheet assembly) The Teflon sheet substrate 9 is peeled off from the substrate / ion exchange thin film / electrode catalyst layer sheet assembly produced in the third step, and the ion exchange thin film / An electrode catalyst layer sheet assembly was manufactured. Fifth Step (Production of Electrode Catalyst Layer Sheet / Ion Exchange Thin Film / Electrode Catalyst Layer Sheet Assembly) First, according to the first to fourth steps, joining of the counter electrode side electrode catalyst layer sheet 3a and the ion exchange thin film 1b Manufacturing the body,
A pair of electrode catalyst layer sheet / ion exchange thin film bonded body is prepared. Next, after superimposing the ion-exchange thin films 1a and 1b of each bonded body so that they are in contact with each other, 200 kg / cm
2. Hot pressing was performed at 200 ° C. to produce an electrode catalyst layer sheet / ion exchange thin film / electrode catalyst layer sheet assembly. In this case, the thickness of the integrated ion exchange membrane 1 is 2
It is about 0 μm.

【0011】このようにして製造した固体高分子型燃料
電池を以下、(A)電池と称する。 (製造例2)製造例2について図3を用いて説明する。 第1工程(基板上へのイオン交換薄膜の形成) 前記製造例1の第2工程に準じてテフロンシート基板9
上にイオン交換薄膜(膜厚:10μm程度)1aを形成
した。 第2工程(イオン交換薄膜上への電極触媒層の形
成) 先ず、触媒担体としてのカーボンブラックに、活性触媒
金属粒子としての20wt%白金を担持させて成る電極
触媒粒子と,結着剤としてのPTFE粒子とを混合し、
前記PTFE粒子の含有量が20wt%となるように調
整した。続いて、この混合物にイオン交換体としての5
wt%ナフィオン溶液(アルドリッチケミカル社製)の
量が10wt%となるように添加した。その後、この混
合物を前記イオン交換薄膜上に0.5mg/cm2 −Ptとな
るように塗布し、80℃で乾燥させ、イオン交換薄膜1
b上に電極触媒層2aを形成した。 第3工程(イオン交換薄膜/電極触媒層接合体の製
造) 前記製造例1の第4工程に準じて基板/イオン交換薄膜
/電極触媒層接合体からテフロンシート基板9を剥離し
て、イオン交換薄膜/電極触媒層接合体を製造した。 第4工程(電極触媒層/イオン交換薄膜/電極触媒
層接合体の製造) 先ず、前記第1〜第3工程に準じて対極側の電極触媒層
/イオン交換薄膜接合体を製造し、一対の電極触媒層3
aとイオン交換薄膜1bとの接合体を用意し、以下前記
製造例1の第5工程に準じて各接合体のイオン交換薄膜
1a・1b同士が互いに接触するように重ね合わせた
後、200kg/cm2 ,200℃でホットプレスを行い、
電極触媒層/イオン交換薄膜/電極触媒層接合体を製造
した。この場合、一体化されたイオン交換膜1の膜厚は
20μm程度である。
The polymer electrolyte fuel cell thus manufactured is hereinafter referred to as (A) cell. (Manufacturing Example 2) Manufacturing Example 2 will be described with reference to FIG. First Step (Formation of Ion Exchange Thin Film on Substrate) Teflon sheet substrate 9 according to the second step of Production Example 1
An ion exchange thin film (film thickness: about 10 μm) 1a was formed on top. Second Step (Formation of Electrode Catalyst Layer on Ion Exchange Thin Film) First, electrode catalyst particles formed by supporting 20 wt% platinum as active catalyst metal particles on carbon black as a catalyst carrier, and as a binder Mixing with PTFE particles,
The content of the PTFE particles was adjusted to 20 wt%. Then, the mixture was mixed with 5 as an ion exchanger.
A wt% Nafion solution (manufactured by Aldrich Chemical Co.) was added so that the amount was 10 wt%. Then, this mixture was applied on the ion exchange thin film so as to be 0.5 mg / cm 2 -Pt and dried at 80 ° C. to obtain the ion exchange thin film 1.
The electrode catalyst layer 2a was formed on b. Third Step (Production of Ion Exchange Thin Film / Electrode Catalyst Layer Assembly) In accordance with the fourth step of Production Example 1, the Teflon sheet substrate 9 is peeled from the substrate / ion exchange thin film / electrode catalyst layer assembly to perform ion exchange. A thin film / electrode catalyst layer assembly was produced. Fourth Step (Production of Electrode Catalyst Layer / Ion Exchange Thin Film / Electrode Catalyst Layer Assembly) First, an electrode catalyst layer / ion exchange thin film assembly on the counter electrode side is produced according to the first to third steps, and a pair of Electrode catalyst layer 3
After preparing a joined body of a and the ion-exchange thin film 1b and superposing them so that the ion-exchange thin films 1a and 1b of each joined body are in contact with each other according to the fifth step of the above Production Example 1, 200 kg / hot press at 200 ℃, cm 2 ,
An electrode catalyst layer / ion exchange thin film / electrode catalyst layer assembly was produced. In this case, the integrated ion exchange membrane 1 has a thickness of about 20 μm.

【0012】このようにして製造した固体高分子型燃料
電池を以下、(B)電池と称する。 (製造例3)先ず、前記製造例1の第2工程に準じてテ
フロンシート基板上にイオン交換薄膜(膜厚:20μm
程度)を形成した。次に、触媒担体としてのカーボンブ
ラックに、活性触媒金属粒子としての20wt%白金を
担持させて成る電極触媒粒子と,結着剤としてのPTF
E粒子とを混合し、前記PTFE粒子の含有量が20w
t%となるように調整した。続いて、この混合物に10
wt%イソプロピルアルコールを混合し、防水加工を施
した電極基材としてのカーボンペーパー上に0.5mg/cm
2 −Ptとなるように塗布し、350℃、30分間アル
ゴン雰囲気中で焼成して、電極基材と電極触媒層とが接
合されて成る電極を製造した。
The polymer electrolyte fuel cell manufactured in this manner is hereinafter referred to as (B) cell. (Manufacturing Example 3) First, an ion exchange thin film (film thickness: 20 μm) was formed on a Teflon sheet substrate according to the second step of Manufacturing Example 1 above.
Formed). Next, electrode catalyst particles formed by supporting 20 wt% platinum as active catalyst metal particles on carbon black as a catalyst carrier, and PTF as a binder.
E particles are mixed, and the content of the PTFE particles is 20w
It was adjusted to be t%. Then 10 to this mixture.
0.5 mg / cm on carbon paper as an electrode base material that is waterproofed by mixing wt% isopropyl alcohol
2- Pt was applied and baked at 350 ° C. for 30 minutes in an argon atmosphere to manufacture an electrode in which an electrode base material and an electrode catalyst layer were joined.

【0013】その後、前記イオン交換薄膜と,前記電極
との接合面に5wt%ナフィオン溶液を塗布し、イオン
交換薄膜と電極とが接触するように重ね合わせ、30kg
/cm 2 、180℃で低圧ホットプレスを行ないイオン交
換薄膜の片面に電極を接合した。次に、テフロンシート
基板を前記接合体から剥離した後、イオン交換薄膜の片
方の面にも同様の方法で電極を接合して電池を作成し
た。 (製造例4)先ず、前記製造例1の第2工程に準じてテ
フロンシート基板上にイオン交換薄膜(膜厚:20μm
程度)を形成した。
Thereafter, the ion exchange thin film and the electrode
Apply 5 wt% Nafion solution to the joint surface with
Put the exchange thin film and the electrode so that they are in contact with each other, and 30 kg
/cm 2, Low pressure hot press at 180 ℃, ion exchange
An electrode was bonded to one surface of the replacement thin film. Next, Teflon sheet
After peeling the substrate from the bonded body, a piece of ion exchange thin film
On the other side, connect the electrodes in the same way to make a battery.
It was (Manufacturing Example 4) First, in accordance with the second step of Manufacturing Example 1,
Ion-exchange thin film (film thickness: 20 μm) on CFC sheet substrate
Formed).

【0014】次に、触媒担体としてのカーボンブラック
に、活性触媒金属粒子としての20wt%白金を担持さ
せて成る電極触媒粒子と,結着剤としてのPTFE粒子
とを混合し、前記PTFE粒子の含有量が20wt%と
なるように調整した。続いて、この混合物に10wt%
イソプロピルアルコールを混合し、0.5mg/cm2 −Pt
となるように圧延ローラによりシート化した。その後、
該シートと,防水加工を施した電極基材としてのカーボ
ンペーパーとをプレスした後、350℃、30分間アル
ゴン雰囲気中で焼成して、電極基材と電極触媒層とが接
合されて成る電極を製造した。以下、製造例3の方法に
準じて電池を作成した。 〔比較例〕先ず、触媒担体としてのカーボンブラック
に、活性触媒金属粒子としての20wt%白金を担持さ
せて成る電極触媒粒子と,PTFE粒子とを混合し、前
記PTFE粒子の含有量が20wt%となるように調整
した。次に、この混合物に造孔剤としての炭酸水素アン
モニウムを混合し、前記混合物に対して炭酸水素アンモ
ニウムの含有量が80wt%となるように調整した。続
いて、圧延ローラによりシート化した後、イオン交換体
としての5wt%ナフィオン溶液(アルドリッチケミカ
ル社製)を混合することにより、3mg/cm2 のイオン交
換体を添加した。しかる後、前記混合物と分散媒(有機
系溶媒)としてのケロシンとを混合した後、0.5mg/cm
2 −Ptとなるように圧延ローラを用いてシート化し
た。続いて、これを100℃で24時間乾燥させて造孔
剤としての炭酸水素アンモニウムを完全に除去すること
により、電極触媒層シートを製造した。
Next, the electrode catalyst particles obtained by supporting 20 wt% platinum as the active catalyst metal particles on carbon black as the catalyst carrier and the PTFE particles as the binder are mixed to contain the PTFE particles. The amount was adjusted to be 20 wt%. Subsequently, 10 wt% was added to this mixture.
Mixing with isopropyl alcohol, 0.5mg / cm 2 -Pt
It was made into a sheet by a rolling roller so that afterwards,
After pressing the sheet and a waterproof carbon paper as an electrode base material as an electrode base material, the electrode base material and the electrode catalyst layer are bonded to each other by firing at 350 ° C. for 30 minutes in an argon atmosphere to form an electrode. Manufactured. Hereinafter, a battery was prepared according to the method of Production Example 3. [Comparative Example] First, PTFE particles were mixed with electrode catalyst particles obtained by supporting 20 wt% platinum as active catalyst metal particles on carbon black as a catalyst carrier, and the content of the PTFE particles was set to 20 wt%. I adjusted it so that. Next, ammonium hydrogen carbonate as a pore-forming agent was mixed with this mixture, and the content of ammonium hydrogen carbonate was adjusted to 80 wt% with respect to the mixture. Subsequently, after being formed into a sheet by a rolling roller, a 5 wt% Nafion solution (manufactured by Aldrich Chemical Co.) as an ion exchanger was mixed to add 3 mg / cm 2 of the ion exchanger. Then, after mixing the mixture with kerosene as a dispersion medium (organic solvent), 0.5 mg / cm
A sheet was formed using a rolling roller so as to be 2- Pt. Then, this was dried at 100 degreeC for 24 hours, and ammonium hydrogencarbonate as a pore forming agent was completely removed, and the electrode catalyst layer sheet was manufactured.

【0015】次に、上記方法にて製造した電極触媒層シ
ートを、イオン交換膜としてのナフィオン(デュポン社
製,膜厚:160μm程度)の両面に200kg/cm2
125℃でポットプレスを行うことにより接合して電池
を作成した。このようにして製造した固体高分子型燃料
電池を以下、(X)電池と称する。 〔実験〕上記本発明の(A)電池と比較例の(X)電池
とを用いて、それぞれの電池特性(電流密度と電池電圧
との関係)について調べたので、その結果を図4に示
す。
Next, the electrode catalyst layer sheet produced by the above method was applied to both sides of Nafion (manufactured by DuPont, film thickness: about 160 μm) as an ion exchange membrane at 200 kg / cm 2 ,
The cells were joined by performing a pot press at 125 ° C. to form a battery. The polymer electrolyte fuel cell manufactured in this manner is hereinafter referred to as (X) cell. [Experiment] Using the battery (A) of the present invention and the battery (X) of the comparative example, the respective battery characteristics (relationship between current density and battery voltage) were examined. The results are shown in FIG. .

【0016】図4から明らかなように、本発明の(A)
電池は比較例の(X)電池に比べて、電池特性がはるか
に向上していることが認められる。これは、本発明の
(A)電池ではイオン交換膜の膜厚が20μm程度であ
るのに対して、比較例の(X)電池のそれは160μm
程度であることから、イオン交換膜の膜厚を1/8程度
に低減することができるため、イオン伝導抵抗及び接触
抵抗が低減し、その結果電圧低下が大幅に低減するため
であると思われる。また、図示しないが、本発明の
(B)電池においても(A)電池と略同等の結果を得る
ことも確認された。 〔その他の事項〕上記実施例におけるイオン交換膜とし
ては、陰イオン交換膜よりも陽イオン交換膜が好まし
く、この陽イオン交換膜は抵抗が小さくイオン導電性が
高く寿命が長い点で陰イオン交換膜よりも優れている。
また、フッ素樹脂系イオン交換体の溶液で形成した膜
は、約1000℃の高温に耐えることができ、強度も強
いので最も好ましい。
As is apparent from FIG. 4, (A) of the present invention.
It is recognized that the battery has much better battery characteristics than the battery (X) of the comparative example. This is because the (A) battery of the present invention has a thickness of the ion exchange membrane of about 20 μm, while the (X) battery of the comparative example has a thickness of 160 μm.
This is because it is possible to reduce the film thickness of the ion exchange membrane to about ⅛, so that the ion conduction resistance and the contact resistance are reduced, and as a result, the voltage drop is significantly reduced. . Further, although not shown, it was also confirmed that the battery (B) of the present invention gave substantially the same results as the battery (A). [Other Matters] As the ion exchange membrane in the above examples, a cation exchange membrane is preferable to an anion exchange membrane, and this cation exchange membrane has a low resistance, a high ionic conductivity, and a long life. Better than a membrane.
Further, the film formed from the solution of the fluororesin ion exchanger is most preferable because it can withstand a high temperature of about 1000 ° C. and has high strength.

【0017】[0017]

【発明の効果】以上の本発明方法の如く、基板上にイオ
ン交換体を滴下してイオン交換体の薄膜を予め電極とは
別体として形成した後、この基板上に形成された薄膜と
電極とを接合すれば、接合の際にイオン交換膜は電極と
基板との間に介在され直接外側に露出することがないの
で、従来のように、機械的強度の節約を受けることがな
く、電極表面上にイオン交換体の薄膜を非常に容易に形
成することができる。その結果、イオン伝導抵抗及び接
触抵抗の低減を図ることができるので、電池電圧の低下
を抑制できると共に、薄膜化により電極の寸法変化が少
なくなるので、水分を安定して供給することもできる。
As in the method of the present invention described above, an ion exchanger is dropped onto a substrate to form a thin film of the ion exchanger separately from the electrode in advance, and then the thin film and the electrode formed on the substrate. When the and are bonded, the ion exchange membrane is interposed between the electrode and the substrate at the time of bonding and is not directly exposed to the outside. Therefore, unlike the conventional case, the mechanical strength is not saved and the electrode is not exposed. A thin film of ion exchanger can be very easily formed on the surface. As a result, it is possible to reduce the ionic conduction resistance and the contact resistance, so that it is possible to suppress the decrease in the battery voltage and to reduce the dimensional change of the electrode due to the thin film, so that it is possible to stably supply water.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る方法にて製造した固体
高分子型燃料電池の概略断面図である。
FIG. 1 is a schematic sectional view of a polymer electrolyte fuel cell manufactured by a method according to an embodiment of the present invention.

【図2】本発明の一実施例に係る電極/イオン交換薄膜
/電極接合体の製造方法を模式的に示す工程図である。
FIG. 2 is a process drawing schematically showing a method for manufacturing an electrode / ion exchange thin film / electrode assembly according to an embodiment of the present invention.

【図3】本発明の一実施例に係る電極/イオン交換薄膜
/電極接合体の製造方法を模式的に示す工程図である。
FIG. 3 is a process drawing schematically showing a method for manufacturing an electrode / ion exchange thin film / electrode assembly according to an embodiment of the present invention.

【図4】本発明の(A)電池と比較例の(X)電池とに
おける、電池特性(電流密度と電池電圧との関係)を示
すグラフである。
FIG. 4 is a graph showing battery characteristics (relationship between current density and battery voltage) of the battery (A) of the present invention and a battery (X) of a comparative example.

【符号の説明】[Explanation of symbols]

1 イオン交換膜 1a・1b イオン交換薄膜 2・3 電極 2a・3a 電極触媒層 4 電極/イオン交換薄膜/電極接合体 1 Ion Exchange Membrane 1a ・ 1b Ion Exchange Thin Film 2.3 Electrode 2a ・ 3a Electrocatalyst Layer 4 Electrode / Ion Exchange Thin Film / Electrode Assembly

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年1月9日[Submission date] January 9, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0016】図4から明らかなように、本発明の(A)
電池は比較例の(X)電池に比べて、電池特性がはるか
に向上していることが認められる。これは、本発明の
(A)電池ではイオン交換膜の膜厚が20μm程度であ
るのに対して、比較例の(X)電池のそれは160μm
程度であることから、イオン交換膜の膜厚を1/8程度
に低減することができるため、イオン伝導抵抗及び接触
抵抗が低減し、その結果電圧低下が大幅に低減するため
であると思われる。また、図示しないが、本発明の
(B)電池においても(A)電池と略同等の結果を得る
ことも確認された。 〔その他の事項〕上記実施例におけるイオン交換膜とし
ては、陰イオン交換膜よりも陽イオン交換膜が好まし
く、この陽イオン交換膜は抵抗が小さくイオン導電性が
高く寿命が長い点で陰イオン交換膜よりも優れている。
また、フッ素樹脂系イオン交換体の溶液で形成した膜
は、約100℃の高温に耐えることができ、強度も強い
ので最も好ましい。
As is apparent from FIG. 4, (A) of the present invention.
It is recognized that the battery has much better battery characteristics than the battery (X) of the comparative example. This is because the (A) battery of the present invention has a thickness of the ion exchange membrane of about 20 μm, while the (X) battery of the comparative example has a thickness of 160 μm.
This is because it is possible to reduce the film thickness of the ion exchange membrane to about ⅛, so that the ion conduction resistance and the contact resistance are reduced, and as a result, the voltage drop is significantly reduced. . Further, although not shown, it was also confirmed that the battery (B) of the present invention gave substantially the same results as the battery (A). [Other Matters] As the ion exchange membrane in the above examples, a cation exchange membrane is preferable to an anion exchange membrane, and this cation exchange membrane has a low resistance, a high ionic conductivity, and a long life. Better than a membrane.
Further, a film formed of a solution of a fluororesin ion exchanger is most preferable because it can withstand a high temperature of about 100 ° C. and has high strength.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも電極触媒層から成る電極を作
成する第1ステップと、 基板上にイオン交換体を滴下してイオン交換体の薄膜を
形成する第2ステップと、 前記基板上に形成したイオン交換体の薄膜と前記電極と
を接合して基板/イオン交換薄膜/電極接合体を作成す
る第3ステップと、 前記基板/イオン交換薄膜/電極接合体から基板を剥離
する第4ステップと、 を有することを特徴とする電極/イオン交換薄膜接合体
の製造方法。
1. A first step of forming an electrode comprising at least an electrode catalyst layer, a second step of dropping an ion exchanger on a substrate to form a thin film of the ion exchanger, and ions formed on the substrate. A third step of bonding the thin film of the exchanger and the electrode to form a substrate / ion exchange thin film / electrode assembly, and a fourth step of peeling the substrate from the substrate / ion exchange thin film / electrode assembly A method for manufacturing an electrode / ion exchange thin film assembly, which comprises:
【請求項2】 基板上にイオン交換体を滴下してイオン
交換体の薄膜を形成する第1ステップと、 前記基板上に形成したイオン交換体の薄膜上に、電極触
媒を塗布して基板/イオン交換薄膜/電極接合体を作成
する第2ステップと、 前記基板/イオン交換薄膜/電極接合体から基板を剥離
する第3ステップと、 を有することを特徴とする電極/イオン交換薄膜接合体
の製造方法。
2. A first step of dropping an ion exchanger on a substrate to form a thin film of the ion exchanger, and applying an electrode catalyst to the thin film of the ion exchanger formed on the substrate to form a substrate / An electrode / ion exchange thin film assembly, comprising: a second step of producing an ion exchange thin film / electrode assembly; and a third step of peeling the substrate from the substrate / ion exchange thin film / electrode assembly. Production method.
【請求項3】 請求項1又は請求項2記載の方法にて製
造した電極/イオン交換薄膜接合体を一対用意し、各接
合体のイオン交換薄膜どうしを互いに重ね合わせて接合
することを特徴とする電極/イオン交換薄膜/電極接合
体の製造方法。
3. A pair of electrode / ion exchange thin film bonded bodies produced by the method according to claim 1 or 2 are prepared, and the ion exchange thin film of each bonded body are superposed and bonded to each other. Method for producing electrode / ion exchange thin film / electrode assembly to be used.
JP5320268A 1993-12-20 1993-12-20 Manufacture of electrode/ion exchange thin membrane connection body and electrode/ion exchange thin membrane/electrode connection body Pending JPH07176317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5320268A JPH07176317A (en) 1993-12-20 1993-12-20 Manufacture of electrode/ion exchange thin membrane connection body and electrode/ion exchange thin membrane/electrode connection body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5320268A JPH07176317A (en) 1993-12-20 1993-12-20 Manufacture of electrode/ion exchange thin membrane connection body and electrode/ion exchange thin membrane/electrode connection body

Publications (1)

Publication Number Publication Date
JPH07176317A true JPH07176317A (en) 1995-07-14

Family

ID=18119612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5320268A Pending JPH07176317A (en) 1993-12-20 1993-12-20 Manufacture of electrode/ion exchange thin membrane connection body and electrode/ion exchange thin membrane/electrode connection body

Country Status (1)

Country Link
JP (1) JPH07176317A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001065623A1 (en) * 2000-03-03 2001-09-07 Commissariat A L'energie Atomique Method for preparing electrode-membrane assemblies, resulting assemblies and fuel cells comprising same
WO2002005371A1 (en) * 2000-07-06 2002-01-17 Matsushita Electric Industrial Co., Ltd. Method for producing film electrode jointed product and method for producing solid polymer type fuel cell
EP1198021A2 (en) * 2000-10-12 2002-04-17 OMG AG & Co. KG Method for manufacturing a membrane electrode unit for fuel cells
WO2002058178A1 (en) * 2001-01-19 2002-07-25 Matsushita Electric Industrial Co., Ltd. Method for manufacturing fuel cell elecrolyte film-electrode bond
EP1341250A1 (en) * 2002-02-28 2003-09-03 OMG AG & Co. KG Process for manufacturing of catalyst coated membranes and membrane electrode units for fuel cells
EP1357620A1 (en) * 2001-03-15 2003-10-29 Matsushita Electric Industrial Co., Ltd. Method of manufacturing electrolytic film electrode connection body for fuel cell
WO2003036748A3 (en) * 2001-10-24 2003-12-18 Du Pont Continuous production of catalyst coated membranes
WO2003073540A3 (en) * 2002-02-26 2005-02-10 Du Pont Production of catalyst coated membranes
WO2005001966A3 (en) * 2003-06-27 2005-03-17 Umicore Ag & Co Kg Process for manufacturing a catalyst-coated polymer electrolyte membrane
WO2006137203A1 (en) * 2005-06-20 2006-12-28 Matsushita Electric Industrial Co., Ltd. Method for manufacturing film-electrode bonded body
JP2007035612A (en) * 2005-06-20 2007-02-08 Matsushita Electric Ind Co Ltd Manufacturing method of membrane-electrode assembly
WO2007089908A1 (en) 2006-01-31 2007-08-09 Bdf Ip Holdings Ltd. Method of forming membrane electrode assemblies for electrochemical devices
JP2009170271A (en) * 2008-01-16 2009-07-30 Toyota Motor Corp Manufacturing method of membrane electrode assembly
JP2010045041A (en) * 2002-08-21 2010-02-25 Three M Innovative Properties Co Adjusting method of multi-layer proton exchanging membrane and membrane electrode assembly
JP2010056004A (en) * 2008-08-29 2010-03-11 Toyota Motor Corp Method for manufacturing membrane-electrode assembly
JP2010086699A (en) * 2008-09-30 2010-04-15 Dainippon Printing Co Ltd Catalyst layer transfer film and catalyst layer-electrolyte film laminate as well as membrane-electrode assembly obtained by using the same
JP2012074285A (en) * 2010-09-29 2012-04-12 Dainippon Printing Co Ltd Membrane-electrode assembly intermediate, solid polymer fuel cell, and method for manufacturing membrane-electrode assembly
JP2012190671A (en) * 2011-03-11 2012-10-04 Toppan Printing Co Ltd Gas diffusion electrode and method for manufacturing the same
US8586265B2 (en) 2006-01-31 2013-11-19 Daimler Ag Method of forming membrane electrode assemblies for electrochemical devices
WO2014087958A1 (en) * 2012-12-03 2014-06-12 Jsr株式会社 Membrane-electrode-assembly manufacturing method, membrane electrode assembly, membrane-electrode-assembly-forming laminates, proton exchange membrane fuel cell, and water-electrolysis device

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2805927A1 (en) * 2000-03-03 2001-09-07 Commissariat Energie Atomique Fuel cell production forms a polymer film on a reinforced carrier to take an electrode on one surface to be separated from the carrier when dry and set for a further electrode to be applied to the other film surface
WO2001065623A1 (en) * 2000-03-03 2001-09-07 Commissariat A L'energie Atomique Method for preparing electrode-membrane assemblies, resulting assemblies and fuel cells comprising same
US6855178B2 (en) 2000-07-06 2005-02-15 Matsushita Electric Industrial Co., Ltd. Method for producing film electrode jointed product and method for producing solid polymer type fuel cell
WO2002005371A1 (en) * 2000-07-06 2002-01-17 Matsushita Electric Industrial Co., Ltd. Method for producing film electrode jointed product and method for producing solid polymer type fuel cell
JP3668478B2 (en) * 2000-07-06 2005-07-06 松下電器産業株式会社 Method for producing membrane electrode assembly and method for producing polymer electrolyte fuel cell
EP1198021A2 (en) * 2000-10-12 2002-04-17 OMG AG & Co. KG Method for manufacturing a membrane electrode unit for fuel cells
EP1198021A3 (en) * 2000-10-12 2006-12-20 Umicore AG & Co. KG Method for manufacturing a membrane electrode unit for fuel cells
EP1278260A1 (en) * 2001-01-19 2003-01-22 Matsushita Electric Industrial Co., Ltd. Method for manufacturing fuel cell elecrolyte film-electrode bond
EP1278260A4 (en) * 2001-01-19 2007-08-01 Matsushita Electric Ind Co Ltd Method for manufacturing fuel cell elecrolyte film-electrode bond
CN100338805C (en) * 2001-01-19 2007-09-19 松下电器产业株式会社 Method for manufacturing fuel cell electrolyte film-electrode bond
US6977234B2 (en) 2001-01-19 2005-12-20 Matsushita Electric Industrial Co., Ltd. Method for manufacturing fuel cell electrolyte film-electrode bond
USRE41651E1 (en) * 2001-01-19 2010-09-07 Panasonic Corporation Method for manufacturing fuel cell electrolyte film-electrode bond
WO2002058178A1 (en) * 2001-01-19 2002-07-25 Matsushita Electric Industrial Co., Ltd. Method for manufacturing fuel cell elecrolyte film-electrode bond
EP1357620A1 (en) * 2001-03-15 2003-10-29 Matsushita Electric Industrial Co., Ltd. Method of manufacturing electrolytic film electrode connection body for fuel cell
EP1357620A4 (en) * 2001-03-15 2007-08-15 Matsushita Electric Ind Co Ltd Method of manufacturing electrolytic film electrode connection body for fuel cell
WO2003036748A3 (en) * 2001-10-24 2003-12-18 Du Pont Continuous production of catalyst coated membranes
WO2003073540A3 (en) * 2002-02-26 2005-02-10 Du Pont Production of catalyst coated membranes
US7285307B2 (en) 2002-02-28 2007-10-23 Umicore Ag & Co Kg Process for producing catalyst-coated membranes and membrane-electrode assemblies for fuel cells
EP1341250A1 (en) * 2002-02-28 2003-09-03 OMG AG & Co. KG Process for manufacturing of catalyst coated membranes and membrane electrode units for fuel cells
JP2010045041A (en) * 2002-08-21 2010-02-25 Three M Innovative Properties Co Adjusting method of multi-layer proton exchanging membrane and membrane electrode assembly
WO2005001966A3 (en) * 2003-06-27 2005-03-17 Umicore Ag & Co Kg Process for manufacturing a catalyst-coated polymer electrolyte membrane
JP2007035612A (en) * 2005-06-20 2007-02-08 Matsushita Electric Ind Co Ltd Manufacturing method of membrane-electrode assembly
WO2006137203A1 (en) * 2005-06-20 2006-12-28 Matsushita Electric Industrial Co., Ltd. Method for manufacturing film-electrode bonded body
US8097112B2 (en) 2005-06-20 2012-01-17 Panasonic Corporation Method for manufacturing membrane-electrode assembly
WO2007089908A1 (en) 2006-01-31 2007-08-09 Bdf Ip Holdings Ltd. Method of forming membrane electrode assemblies for electrochemical devices
US8586265B2 (en) 2006-01-31 2013-11-19 Daimler Ag Method of forming membrane electrode assemblies for electrochemical devices
JP2009170271A (en) * 2008-01-16 2009-07-30 Toyota Motor Corp Manufacturing method of membrane electrode assembly
JP2010056004A (en) * 2008-08-29 2010-03-11 Toyota Motor Corp Method for manufacturing membrane-electrode assembly
JP2010086699A (en) * 2008-09-30 2010-04-15 Dainippon Printing Co Ltd Catalyst layer transfer film and catalyst layer-electrolyte film laminate as well as membrane-electrode assembly obtained by using the same
JP2012074285A (en) * 2010-09-29 2012-04-12 Dainippon Printing Co Ltd Membrane-electrode assembly intermediate, solid polymer fuel cell, and method for manufacturing membrane-electrode assembly
JP2012190671A (en) * 2011-03-11 2012-10-04 Toppan Printing Co Ltd Gas diffusion electrode and method for manufacturing the same
WO2014087958A1 (en) * 2012-12-03 2014-06-12 Jsr株式会社 Membrane-electrode-assembly manufacturing method, membrane electrode assembly, membrane-electrode-assembly-forming laminates, proton exchange membrane fuel cell, and water-electrolysis device

Similar Documents

Publication Publication Date Title
JPH07176317A (en) Manufacture of electrode/ion exchange thin membrane connection body and electrode/ion exchange thin membrane/electrode connection body
EP1229602B1 (en) Method for producing film electrode jointed product and method for producing solid polymer type fuel cell
KR100448168B1 (en) A preparing method of Membrane-Electrode-Gasket Assembly for fuel cell
CA2488908C (en) Method of making membrane electrode assemblies
US6391487B1 (en) Gas diffusion electrode, method for manufacturing the same, and fuel cell with such electrode
JP4738350B2 (en) Method of manufacturing a durable membrane electrode assembly in which the catalyst-coated diffusion medium is not bonded to the membrane
KR100201572B1 (en) Method producing electrode for fuel cell with method mixing coating and rolling
KR20020020883A (en) Electrochemical uses of amorphous fluoropolymers
JP4833860B2 (en) Membrane electrode assembly prepared by spraying catalyst directly onto membrane
JP3504021B2 (en) Electrode for electrochemical device and method for producing the same
JP2000090944A (en) Manufacture of catalyst layer-electrolyte film joint body and solid polymer electrolyte fuel cell using the joint body
WO2007089860A2 (en) Method of making membrane electrode assemblies
JPH0349992B2 (en)
JP2005108770A (en) Manufacturing method of electrolyte membrane electrode joint body
US20040197629A1 (en) Electric power generating element for fuel cell and fuel cell using the same
JP2000299119A (en) Manufacture of catalyst layer
JPH09180740A (en) Solid high-molecular fuel cell and manufacture and device thereof
JP2001006699A (en) Solid polymer electrolyte film and electrode joined element for solid polymer fuel cell and manufacture thereof
US6328862B1 (en) Ozone generating electrolysis cell and method of fabricating the same
JPH07176310A (en) Electrode and junction body between electrode and ion exchange membrane
US20080102341A1 (en) High intensity complex membrane and membrane-electrode assembly including the same
JP3965666B2 (en) Gas diffusion electrode and manufacturing method thereof
JP2006147522A (en) Manufacturing method for membrane electrode assembly, fuel cell and manufacturing method for conductive particle layer
JP2000235859A (en) Gas diffusing electrode and fuel cell provided with the same
JPH06203848A (en) Manufacture of solid high polymer fuel cell