JP2006059540A - Sol state proton conductive electrolyte and fuel cell - Google Patents

Sol state proton conductive electrolyte and fuel cell Download PDF

Info

Publication number
JP2006059540A
JP2006059540A JP2004237048A JP2004237048A JP2006059540A JP 2006059540 A JP2006059540 A JP 2006059540A JP 2004237048 A JP2004237048 A JP 2004237048A JP 2004237048 A JP2004237048 A JP 2004237048A JP 2006059540 A JP2006059540 A JP 2006059540A
Authority
JP
Japan
Prior art keywords
electrolyte
sol
proton conductive
fuel cell
stopper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004237048A
Other languages
Japanese (ja)
Other versions
JP4552183B2 (en
Inventor
Eijiro Toyoda
英司郎 豊田
Masaya Kawakado
昌弥 川角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2004237048A priority Critical patent/JP4552183B2/en
Publication of JP2006059540A publication Critical patent/JP2006059540A/en
Application granted granted Critical
Publication of JP4552183B2 publication Critical patent/JP4552183B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Conductive Materials (AREA)
  • Inert Electrodes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sol state proton conductive electrolyte and a fuel cell using it, which are inexpensive, capable of supplement, has small contact resistance between the electrolyte/catalyst layer, and small possibility of an electronic short circuit between electrodes and outflow of a reactant gas. <P>SOLUTION: The sol state proton conductive electrolyte contains water and a water soluble polymer electrolyte, and its viscosity is 0.1 to 100 Pas. The fuel cell 10 is provided with a frame shaped stopper 12, a porous material 14 retained in the frame of the stopper 12, a pair of diffusion layers 16, 16 joined to both faces of the stopper 12, catalyst layers 18, 18 formed on inner surface sides of the respective diffusion layers 16, 16, and the sol state proton conductive electrolyte 20 filled in a space surrounded by the stopper 12 and the diffusion layers 16, 16. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ゾル状プロトン伝導性電解質及び燃料電池に関し、さらに詳しくは、燃料電池、水電解装置、ハロゲン化水素酸電解装置、食塩電解装置、酸素及び/又は水素濃縮器、湿度センサ、ガスセンサ等の各種電気化学デバイスの電解質として用いられるゾル状プロトン伝導性電解質、並びに、これを用いた燃料電池に関する。   The present invention relates to a sol proton conductive electrolyte and a fuel cell, and more specifically, a fuel cell, a water electrolysis device, a hydrohalic acid electrolysis device, a salt electrolysis device, an oxygen and / or hydrogen concentrator, a humidity sensor, a gas sensor, and the like. The present invention relates to a sol-like proton conductive electrolyte used as an electrolyte of various electrochemical devices, and a fuel cell using the same.

固体高分子型燃料電池は、固体高分子電解質膜の両面に電極が接合された膜電極接合体(MEA)を基本単位とする。また、固体高分子型燃料電池において、電極は、一般に、拡散層と触媒層の二層構造をとる。拡散層は、触媒層に反応ガス及び電子を供給するためのものであり、カーボンペーパー、カーボンクロス等が用いられる。また、触媒層は、電極反応の反応場となる部分であり、一般に、白金等の電極触媒を担持したカーボンと固体高分子電解質との複合体からなる。   A solid polymer fuel cell has a membrane electrode assembly (MEA) in which electrodes are bonded to both surfaces of a solid polymer electrolyte membrane as a basic unit. In the polymer electrolyte fuel cell, the electrode generally has a two-layer structure of a diffusion layer and a catalyst layer. The diffusion layer is for supplying reaction gas and electrons to the catalyst layer, and carbon paper, carbon cloth, or the like is used. The catalyst layer is a part that becomes a reaction field for electrode reaction, and generally comprises a composite of carbon carrying an electrode catalyst such as platinum and a solid polymer electrolyte.

このようなMEAを構成する電解質膜あるいは触媒層内電解質には、耐酸化性に優れた全フッ素系電解質(高分子鎖内にC−H結合を含まない電解質。例えば、ナフィオン(登録商標、デュポン社製)、アシプレックス(登録商標、旭化成(株)製)、フレミオン(登録商標、旭硝子(株)製)等。)を用いるのが一般的である。
また、全フッ素系電解質は、耐酸化性に優れるが、一般に極めて高価である。そのため、固体高分子型燃料電池の低コスト化を図るために、炭化水素系電解質(高分子鎖内にC−H結合を含み、C−F結合を含まない電解質)、又は、部分フッ素系電解質(高分子鎖内にC−H結合とC−F結合の双方を含む電解質)の使用も検討されている。
The electrolyte membrane or the catalyst layer electrolyte that constitutes such an MEA includes a perfluorinated electrolyte excellent in oxidation resistance (an electrolyte that does not contain a C—H bond in the polymer chain. For example, Nafion (registered trademark, DuPont). ), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), etc.) are generally used.
In addition, perfluorinated electrolytes are excellent in oxidation resistance but are generally very expensive. Therefore, in order to reduce the cost of the solid polymer fuel cell, a hydrocarbon electrolyte (an electrolyte that includes a C—H bond and does not include a C—F bond in a polymer chain) or a partial fluorine electrolyte The use of (electrolytes containing both C—H bonds and C—F bonds in the polymer chain) has also been studied.

さらに、従来の固体高分子電解質は、耐熱性が低く、かつ、プロトン伝導性を発現するには水を必要とするので、高温低加湿条件下ではプロトン伝導性が低下する。そのため、高温低加湿条件下でも高いプロトン伝導性を示す電解質に関し、従来から種々の提案がなされている。   Furthermore, since conventional solid polymer electrolytes have low heat resistance and require water to exhibit proton conductivity, proton conductivity decreases under high temperature and low humidification conditions. For this reason, various proposals have conventionally been made regarding electrolytes exhibiting high proton conductivity even under high temperature and low humidification conditions.

例えば、特許文献1〜3には、
(1)リン酸をドープしたシリカゲルと、スチレン−エチレン−ブテン−スチレン共重合体(SEBS)との複合体からなるプロトン伝導体(特許文献1)、
(2)リン酸をドープしたシリカゲルと、スルホン化したポリイソプレンとの複合体からなるプロトン伝導体(特許文献2)、及び、
(3)リン酸をドープしたシリカゲルと、スルホン化したスチレン−イソプレン−スチレンブロック共重合体との複合体からなるプロトン伝導体(特許文献3)
が開示されている。
同文献には、リン酸をドープしたシリカゲルを用いると、酸化ケイ素の表面に結合した−OH基を中心としてプロトン伝導が起こるので、乾燥雰囲気下においてもプロトン伝導度の低下が少ない点、及び、リン酸をドープしたシリカゲルの表面にSEBS、スルホン酸基を持つ重合体等を介在させると、高いプロトン伝導性を示す点が記載されている。
For example, Patent Documents 1 to 3 include:
(1) a proton conductor composed of a composite of silica gel doped with phosphoric acid and a styrene-ethylene-butene-styrene copolymer (SEBS) (Patent Document 1),
(2) a proton conductor composed of a composite of silica gel doped with phosphoric acid and sulfonated polyisoprene (Patent Document 2), and
(3) Proton conductor comprising a composite of phosphoric acid-doped silica gel and a sulfonated styrene-isoprene-styrene block copolymer (Patent Document 3)
Is disclosed.
In the same document, when silica gel doped with phosphoric acid is used, proton conduction occurs around the —OH group bonded to the surface of silicon oxide, so that there is little decrease in proton conductivity even in a dry atmosphere, and It is described that high proton conductivity is exhibited when SEBS, a polymer having a sulfonic acid group, or the like is interposed on the surface of silica gel doped with phosphoric acid.

さらに、特許文献4には、セラミック繊維の不織布からなる多孔性シートに、ケイ酸エチル(Si(OC))及びリン酸トリメチル(PO(OCH))を含むゾル溶液を含浸させ、ゲル化させることにより得られる電解質ゲル膜が開示されている。同文献には、多孔性シートの両面を触媒層及び拡散層からなる接合体で挟み、この状態で多孔性シートにゾル溶液を含浸させ、ゲル化させる方法を用いると、クラックの発生を従来より少なく抑えることができる点が記載されている。 Further, Patent Document 4 impregnates a porous sheet made of a ceramic fiber non-woven fabric with a sol solution containing ethyl silicate (Si (OC 2 H 5 ) 4 ) and trimethyl phosphate (PO (OCH 3 ) 3 ). Electrolyte gel membrane obtained by making it gelate is disclosed. In the same document, when a method of sandwiching both surfaces of a porous sheet with a joined body composed of a catalyst layer and a diffusion layer and impregnating the porous sheet with a sol solution and gelling in this state, the occurrence of cracks is conventionally observed. The point which can be suppressed few is described.

特開平 8−249923号公報JP-A-8-249923 特開平10−069817号公報JP-A-10-069817 特開平11−203936号公報Japanese Patent Laid-Open No. 11-203936 特開2002−075406号公報Japanese Patent Laid-Open No. 2002-075406

炭化水素系の固体高分子電解質は、安価であるので、これを電解質膜として用いると、燃料電池システムを低コスト化することができる。しかしながら、炭化水素系電解質は、過酸化物ラジカルによって容易に劣化し、耐久性が低いという問題がある。固体高分子電解質膜が劣化により薄膜化すると、拡散層又は触媒層が接近することによって電子的短絡が起こり、あるいは、反応ガスが反対極に流出し、発電効率を低下させる原因となる。この点は、リン酸をドープしたシリカゲルのような無機プロトン伝導体と炭化水素系高分子化合物との複合体からなるプロトン伝導体も同様である。   Since the hydrocarbon-based solid polymer electrolyte is inexpensive, using it as an electrolyte membrane can reduce the cost of the fuel cell system. However, hydrocarbon electrolytes have a problem that they are easily deteriorated by peroxide radicals and have low durability. When the solid polymer electrolyte membrane becomes thin due to deterioration, an electronic short circuit occurs due to the proximity of the diffusion layer or the catalyst layer, or the reaction gas flows out to the opposite electrode, which causes a decrease in power generation efficiency. This also applies to a proton conductor made of a composite of an inorganic proton conductor such as silica gel doped with phosphoric acid and a hydrocarbon polymer compound.

一方、フッ素系の固体高分子電解質は、過酸化物ラジカルによる劣化が少なく、耐久性に優れている。しかしながら、フッ素系電解質は、高コストであるという問題がある。また、本願発明者らは、燃料電池の作動条件が過酷になると、フッ素系電解質であっても過酸化物ラジカルによって劣化する場合があることを見出している。   On the other hand, fluorine-based solid polymer electrolytes are less deteriorated by peroxide radicals and have excellent durability. However, the fluorine-based electrolyte has a problem of high cost. The inventors of the present application have also found that when the operating conditions of the fuel cell become severe, even a fluorine-based electrolyte may be deteriorated by peroxide radicals.

また、多孔性シートと無機プロトン伝導体ゲルとの複合体からなるゲル電解質膜では、多くの場合、作製時にクラックが生じやすいという問題がある。ゲル電解質膜にクラックが発生すると、反応ガスが反対極に流出し、発電効率を低下させる原因となる。
さらに、従来の固体高分子型燃料電池は、固体高分子電解質膜と触媒層との界面の接触抵抗が相対的に大きいという問題があった。
In many cases, gel electrolyte membranes composed of a composite of a porous sheet and an inorganic proton conductor gel tend to cause cracks during production. When a crack occurs in the gel electrolyte membrane, the reaction gas flows out to the opposite electrode, which causes a decrease in power generation efficiency.
Furthermore, the conventional solid polymer fuel cell has a problem that the contact resistance at the interface between the solid polymer electrolyte membrane and the catalyst layer is relatively large.

本発明が解決しようとする課題は、安価であり、補給可能で、電解質/触媒層間の接触抵抗が小さく、かつ、電極間の電子的短絡や反応ガスの流出のおそれの少ないゾル状プロトン伝導性電解質、及び、これを用いた燃料電池を提供することにある。   The problems to be solved by the present invention are low-cost, replenishable, low contact resistance between the electrolyte / catalyst layers, and sol-like proton conductivity with low risk of electronic short-circuit between electrodes or outflow of reaction gas An electrolyte and a fuel cell using the same are provided.

上記課題を解決するために本発明に係るゾル状プロトン伝導性電解質は、水と、水溶性高分子電解質とを含み、その粘性率が0.1〜100Pa・sであることを要旨とする。この場合、その含水率は、20〜95wt%が好ましい。   In order to solve the above-described problems, the sol-like proton conductive electrolyte according to the present invention includes water and a water-soluble polymer electrolyte, and its viscosity is 0.1 to 100 Pa · s. In this case, the water content is preferably 20 to 95 wt%.

また、本発明に係る燃料電池は、枠状のストッパと、該ストッパの枠内に保持された多孔体と、前記ストッパの両面に接合された一対の拡散層と、記各拡散層の内表面側に形成された触媒層と、前記ストッパと前記拡散層で囲まれる空間内に充填された本発明に係るゾル状プロトン伝導性電解質とを備えていることを要旨とする。この場合、前記ストッパは、前記空間に前記ゾル状プロトン伝導性電解質を充填するための注入孔を備えているのが好ましい。   Further, the fuel cell according to the present invention includes a frame-shaped stopper, a porous body held in the frame of the stopper, a pair of diffusion layers bonded to both surfaces of the stopper, and an inner surface of each diffusion layer And a sol-like proton conductive electrolyte according to the present invention filled in a space surrounded by the stopper and the diffusion layer. In this case, it is preferable that the stopper includes an injection hole for filling the space with the sol-like proton conductive electrolyte.

ゾル状プロトン伝導性電解質は、水溶性高分子電解質として炭化水素系電解質を用いることができるので、相対的に安価である。また、ゾル状プロトン伝導性電解質は、流動性があるので、容易に補給することができる。そのため、これを用いた燃料電池において、ゾル状プロトン伝導性電解質の一部が過酸化物ラジカルにより劣化し、系外に流出しても、補給によって長期にわたって高い出力を維持することができる。また、電極間が常にゾル状プロトン伝導性電解質で満たされているので、接触抵抗を小さくでき、また、締結圧の低減及び多孔体により電極間の電子的短絡や反応ガスの流出のおそれも少ない。   Since the sol-like proton conductive electrolyte can use a hydrocarbon-based electrolyte as the water-soluble polymer electrolyte, it is relatively inexpensive. Further, since the sol proton conductive electrolyte has fluidity, it can be easily replenished. Therefore, in a fuel cell using this, even if part of the sol-like proton conductive electrolyte is deteriorated by peroxide radicals and flows out of the system, high output can be maintained for a long time by replenishment. In addition, since the gap between the electrodes is always filled with the sol-like proton conductive electrolyte, the contact resistance can be reduced, and the fastening pressure is reduced and the possibility of an electronic short circuit between the electrodes and the outflow of the reaction gas is reduced due to the porous body. .

以下、本発明の一実施の形態について詳細に説明する。本発明に係るゾル状プロトン伝導性電解質は、水と水溶性高分子電解質とを含むものからなる。
ここで、「水溶性高分子電解質」とは、水と混合することによって均一なゾルとなるものをいう。水溶性高分子電解質は、高分子鎖内にC−H結合を含み、かつC−F結合を含まない炭化水素系電解質、及び高分子鎖内にC−F結合を含むフッ素系電解質のいずれであっても良い。また、水溶性高分子電解質は、高分子鎖内にC−H結合とC−F結合の双方を含む部分フッ素系電解質であっても良く、あるいは、高分子鎖内にC−F結合を含み、かつC−H結合を含まない全フッ素系電解質であっても良い。
Hereinafter, an embodiment of the present invention will be described in detail. The sol-like proton conductive electrolyte according to the present invention comprises water and a water-soluble polymer electrolyte.
Here, the “water-soluble polymer electrolyte” refers to one that becomes a uniform sol when mixed with water. The water-soluble polyelectrolyte is a hydrocarbon electrolyte that contains a C—H bond in the polymer chain and does not contain a C—F bond, and a fluorine-based electrolyte that contains a C—F bond in the polymer chain. There may be. The water-soluble polymer electrolyte may be a partially fluorinated electrolyte containing both C—H bonds and C—F bonds in the polymer chain, or may contain C—F bonds in the polymer chain. In addition, a perfluorinated electrolyte that does not include a C—H bond may be used.

さらに、フッ素系電解質は、フルオロカーボン構造(−CF−、−CFCl−)の他、クロロカーボン構造(−CCl−)や、その他の構造(例えば、−O−、−S−、−C(=O)−、−N(R)−等。但し、「R」は、アルキル基)を備えていてもよい。また、水溶性高分子電解質の分子構造は、特に限定されるものではなく、直鎖状又は分岐状のいずれであっても良く、あるいは環状構造を備えていても良い。 Further, the fluorine-based electrolyte includes a fluorocarbon structure (—CF 2 —, —CFCl—), a chlorocarbon structure (—CCl 2 —), and other structures (for example, —O—, —S—, —C ( ═O) —, —N (R) —, etc. provided that “R” may be an alkyl group). Further, the molecular structure of the water-soluble polymer electrolyte is not particularly limited, and may be either linear or branched, or may have a cyclic structure.

また、水溶性高分子電解質に結合している酸基の種類についても、特に限定されるものではない。酸基としては、スルホン酸基、カルボン酸基、ホスホン酸基、スルホンイミド基等が好適な一例として挙げられる。水溶性高分子電解質には、これらの酸基の内、いずれか1種類のみが含まれていても良く、あるいは、2種以上が含まれていても良い。さらに、これらの酸基は、直鎖状の高分子化合物に直接結合していても良く、あるいは、分枝状の高分子化合物の主鎖又は側鎖のいずれかに結合していても良い。   Further, the type of acid group bonded to the water-soluble polymer electrolyte is not particularly limited. Preferred examples of the acid group include a sulfonic acid group, a carboxylic acid group, a phosphonic acid group, and a sulfonimide group. The water-soluble polymer electrolyte may contain only one of these acid groups, or may contain two or more. Furthermore, these acid groups may be directly bonded to the linear polymer compound, or may be bonded to either the main chain or the side chain of the branched polymer compound.

水溶性高分子電解質には、具体的には、以下のようなものがある。
水溶性高分子電解質の第1の具体例は、炭化水素系電解質の一種であり、次の(1)式に示す分子構造を備えたものからなる。(1)式に示す水溶性高分子電解質において、ゾル状の電解質を得るためには、m/(m+n)は、0.2以上1以下が好ましい。m/(m+n)が0.2未満になると、難溶性となり、均一なゾルは得られない。
また、官能基A、R〜Rは、それぞれ、1種類の官能基のみが含まれていても良く、あるいは、2種以上が含まれていても良い。
Specific examples of the water-soluble polymer electrolyte include the following.
The first specific example of the water-soluble polymer electrolyte is a kind of hydrocarbon electrolyte, and has a molecular structure represented by the following formula (1). In the water-soluble polymer electrolyte represented by the formula (1), m / (m + n) is preferably 0.2 or more and 1 or less in order to obtain a sol-shaped electrolyte. When m / (m + n) is less than 0.2, it becomes hardly soluble and a uniform sol cannot be obtained.
In addition, each of the functional groups A and R 1 to R 3 may contain only one type of functional group, or may contain two or more types.

Figure 2006059540
Figure 2006059540

水溶性高分子電解質の第2の具体例は、炭化水素系電解質の一種であり、次の(2)式に示す分子構造を備えたものからなる。(2)式に示す水溶性高分子電解質において、ゾル状の電解質を得るためには、m/(m+n)は、0.2以上1以下が好ましい。m/(m+n)が0.2未満になると、難溶性となり、均一なゾルは得られない。
また、官能基A、Rは、それぞれ、1種類の官能基のみが含まれていても良く、あるいは、2種以上が含まれていても良い。
A second specific example of the water-soluble polymer electrolyte is a kind of hydrocarbon-based electrolyte, and has a molecular structure represented by the following formula (2). In the water-soluble polymer electrolyte represented by the formula (2), m / (m + n) is preferably 0.2 or more and 1 or less in order to obtain a sol-shaped electrolyte. When m / (m + n) is less than 0.2, it becomes hardly soluble and a uniform sol cannot be obtained.
In addition, each of the functional groups A and R 1 may contain only one type of functional group, or may contain two or more types.

Figure 2006059540
Figure 2006059540

水溶性高分子電解質の第3の具体例は、フッ素系電解質の一種であり、次の(3)式に示す分子構造を備えたものからなる。(3)式に示す水溶性高分子電解質において、ゾル状の電解質を得るためには、m/(m+n)は、0.2以上1以下が好ましい。m/(m+n)が0.2未満になると、難溶性となり、均一なゾルは得られない。
また、官能基A、R〜Rは、それぞれ、1種類の官能基のみが含まれていても良く、あるいは、2種以上が含まれていても良い。
The third specific example of the water-soluble polymer electrolyte is a kind of fluorine-based electrolyte, and has a molecular structure represented by the following formula (3). In the water-soluble polymer electrolyte represented by the formula (3), m / (m + n) is preferably 0.2 or more and 1 or less in order to obtain a sol-like electrolyte. When m / (m + n) is less than 0.2, it becomes hardly soluble and a uniform sol cannot be obtained.
In addition, each of the functional groups A and R 1 to R 3 may contain only one type of functional group, or may contain two or more types.

Figure 2006059540
Figure 2006059540

水溶性高分子電解質の第4の具体例は、フッ素系電解質の一種であり、次の(4)式に示す分子構造を備えたものからなる。(4)式に示す水溶性高分子電解質において、ゾル状の電解質を得るためには、m/(m+n)は、0.2以上1以下が好ましい。m/(m+n)が0.2未満になると、難溶性となり、均一なゾルは得られない。
また、官能基A、Rは、それぞれ、1種類の官能基のみが含まれていても良く、あるいは、2種以上が含まれていても良い。
The fourth specific example of the water-soluble polymer electrolyte is a kind of fluorine-based electrolyte, and has a molecular structure represented by the following formula (4). In the water-soluble polymer electrolyte represented by the formula (4), m / (m + n) is preferably 0.2 or more and 1 or less in order to obtain a sol-like electrolyte. When m / (m + n) is less than 0.2, it becomes hardly soluble and a uniform sol cannot be obtained.
In addition, each of the functional groups A and R 1 may contain only one type of functional group, or may contain two or more types.

Figure 2006059540
Figure 2006059540

水溶性高分子電解質の第5の具体例は、フッ素系電解質の一種であり、次の(5)式に示す分子構造を備えたものからなる。(5)式に示す水溶性高分子電解質において、ゾル状の電解質を得るためには、m/(m+n)は、0.5以上1以下が好ましい。m/(m+n)が0.5未満になると、難溶性となり、均一なゾルは得られない。
また、官能基Aは、1種類の官能基のみが含まれていても良く、あるいは、2種以上が含まれていても良い。
A fifth specific example of the water-soluble polymer electrolyte is a kind of fluorine-based electrolyte, and has a molecular structure represented by the following formula (5). In the water-soluble polymer electrolyte represented by the formula (5), m / (m + n) is preferably from 0.5 to 1 in order to obtain a sol-like electrolyte. When m / (m + n) is less than 0.5, it becomes hardly soluble and a uniform sol cannot be obtained.
In addition, the functional group A may include only one type of functional group, or may include two or more types.

Figure 2006059540
Figure 2006059540

ゾル状プロトン伝導性電解質の粘性率は、0.1Pa・s以上が好ましい。粘性率が0.1Pa・s未満になると、燃料電池用の電解質として使用したときに拡散層を通ってゾル状プロトン伝導性電解質が流出するおそれがある。一般に、ゾル状プロトン伝導性電解質の粘性率が高くなるほど、ゾル状プロトン伝導性電解質の流出を抑制することができる。但し、粘性率が高くなりすぎると、ゾル状プロトン伝導性電解質の補給が困難となる。従って、粘性率は、100Pa・s以下が好ましい。   The viscosity of the sol proton conductive electrolyte is preferably 0.1 Pa · s or more. If the viscosity is less than 0.1 Pa · s, the sol proton conductive electrolyte may flow out through the diffusion layer when used as an electrolyte for a fuel cell. In general, the higher the viscosity of the sol proton conductive electrolyte, the more the outflow of the sol proton conductive electrolyte can be suppressed. However, if the viscosity is too high, it becomes difficult to replenish the sol-like proton conductive electrolyte. Therefore, the viscosity is preferably 100 Pa · s or less.

ゾル状プロトン伝導性電解質の含水率は、20wt%以上が好ましい。含水率が20wt%未満になると、粘性率が高くなり、ゾル状プロトン伝導性電解質の補給が困難となる。一般に、含水率が高くなるほど、粘性率は低くなる。また、プロトンの移動は、水を介して行われるので、含水率が高くなるほど、高いプロトン伝導度が得られる。但し、含水率が高くなりすぎると、ゾル状プロトン伝導性電解質が流出するおそれがある。従って、含水率は、95wt%以下が好ましい。   The water content of the sol proton conductive electrolyte is preferably 20 wt% or more. When the water content is less than 20 wt%, the viscosity increases and it becomes difficult to replenish the sol proton conductive electrolyte. In general, the higher the moisture content, the lower the viscosity. Moreover, since the movement of protons is performed through water, the higher the water content, the higher the proton conductivity. However, if the water content becomes too high, the sol proton conductive electrolyte may flow out. Therefore, the water content is preferably 95 wt% or less.

次に、本発明に係るゾル状プロトン伝導性電解質の製造方法について説明する。上述した各種水溶性高分子電解質は、市販のモノマ又はこれに適当な官能基変換を加えたモノマを、公知の方法を用いて重合又は共重合させることにより得られる。   Next, a method for producing a sol proton conductive electrolyte according to the present invention will be described. The various water-soluble polymer electrolytes described above can be obtained by polymerizing or copolymerizing a commercially available monomer or a monomer obtained by adding an appropriate functional group conversion thereto using a known method.

例えば、(1)式に示す水溶性高分子電解質は、一般式:HC=C(R)(A’)(但し、A’は、−COOH、−SOH、−PO、又は、これらの誘導体)で表される第1のモノマと、一般式:HC=C(R)(R)で表される第2のモノマとを所定の比率で混合し、重合又は共重合させることにより得られる。
この場合、重合方法は特に限定されるものではなく、熱重合、光重合、放射線重合等、公知の方法を用いることができる。また、第1のモノマに備えられる官能基A’が酸基の誘導体(例えば、酸基のハライド体、アルカリ塩等)である場合、第1のモノマ及び第2のモノマを共重合させた後に、官能基A’を酸基に変換(プロトン交換)する。変換方法は、酸処理、ケン化+酸処理等の公知の方法を用いることができる。
For example, the water-soluble polymer electrolyte represented by the formula (1) has a general formula: H 2 C═C (R 1 ) (A ′) (where A ′ is —COOH, —SO 3 H, —PO 3 H). 2 or a derivative thereof) and a second monomer represented by the general formula: H 2 C═C (R 2 ) (R 3 ) are mixed at a predetermined ratio. , Obtained by polymerization or copolymerization.
In this case, the polymerization method is not particularly limited, and known methods such as thermal polymerization, photopolymerization, and radiation polymerization can be used. Further, when the functional group A ′ provided in the first monomer is a derivative of an acid group (for example, a halide of an acid group, an alkali salt, etc.), after copolymerizing the first monomer and the second monomer The functional group A ′ is converted into an acid group (proton exchange). As the conversion method, known methods such as acid treatment, saponification + acid treatment, and the like can be used.

また、例えば、(2)式に示す水溶性高分子電解質は、一般式:HC=C(H)(CA’)(但し、A’は、−COOH、−SOH、−PO、又は、これらの誘導体)で表される第1のモノマと、一般式:HC=C(H)(C)で表される第2のモノマとを所定の比率で混合し、重合又は共重合させることにより得られる。
なお、重合又は共重合方法として種々の方法を用いることができる点、及び、重合又は共重合後に必要に応じてプロトン交換を行う点は、第1の具体例と同様である。
For example, the water-soluble polymer electrolyte represented by the formula (2) has a general formula: H 2 C═C (H) (C 6 H 4 A ′) (where A ′ is —COOH, —SO 3 H). , —PO 3 H 2 , or a derivative thereof) and a second monomer represented by the general formula: H 2 C═C (H) (C 6 H 4 R 1 ) Are mixed at a predetermined ratio and polymerized or copolymerized.
In addition, the point which can use various methods as a superposition | polymerization or a copolymerization method, and the point which performs proton exchange as needed after superposition | polymerization or a copolymerization are the same as that of a 1st example.

また、例えば、(3)式に示す水溶性高分子電解質は、一般式:FC=C(R)(A’)(但し、A’は、−COOH、−SOH、−PO、又は、これらの誘導体)で表される第1のモノマと、一般式:FC=C(R)(R)で表される第2のモノマとを所定の比率で混合し、重合又は共重合させることにより得られる。
なお、重合方法として種々の方法を用いることができる点、及び、重合又は共重合後に必要に応じてプロトン交換を行う点は、第1の具体例と同様である。
Further, for example, the water-soluble polymer electrolyte represented by the formula (3) has a general formula: F 2 C═C (R 1 ) (A ′) (where A ′ is —COOH, —SO 3 H, —PO 3 H 2 or a derivative thereof) and a second monomer represented by the general formula: F 2 C═C (R 2 ) (R 3 ) at a predetermined ratio. It is obtained by mixing and polymerizing or copolymerizing.
In addition, the point which can use various methods as a polymerization method, and the point which performs proton exchange as needed after superposition | polymerization or copolymerization are the same as that of a 1st specific example.

また、例えば、(4)式に示す水溶性高分子電解質は、一般式:FC=C(F)(CA’)(但し、A’は、−COOH、−SOH、−PO、又は、これらの誘導体)で表される第1のモノマと、一般式:FC=C(F)(C)で表される第2のモノマとを所定の比率で混合し、重合又は共重合させることにより得られる。
なお、重合又は共重合方法として種々の方法を用いることができる点、及び、重合後に必要に応じてプロトン交換を行う点は、第2の具体例と同様である。
For example, the water-soluble polymer electrolyte represented by the formula (4) has a general formula: F 2 C═C (F) (C 6 H 4 A ′) (where A ′ is —COOH, —SO 3 H). , —PO 3 H 2 or a derivative thereof) and a second monomer represented by the general formula: F 2 C═C (F) (C 6 H 4 R 1 ) Are mixed at a predetermined ratio and polymerized or copolymerized.
In addition, the point which can use various methods as a polymerization or copolymerization method, and the point which performs proton exchange as needed after superposition | polymerization are the same as that of a 2nd example.

また、例えば、(5)式に示す水溶性高分子電解質は、一般式:FC=C(F)(−O−[CF−C(F)(CF)−O]−[CF]−A’)(但し、p=0〜2、q=2〜4、A’:−COOH、−SOH、−PO、又は、これらの誘導体)で表される第1のモノマと、一般式:FC=CFで表される第2のモノマとを所定の比率で混合し、重合又は共重合させることにより得られる。
なお、重合又は共重合方法として種々の方法を用いることができる点、及び、重合後に必要に応じてプロトン交換を行う点は、第1具体例と同様である。
Further, for example, the water-soluble polymer electrolyte represented by the formula (5) has a general formula: F 2 C═C (F) (— O— [CF 2 —C (F) (CF 3 ) —O] p — [ CF 2 ] q -A ′) (where p = 0 to 2, q = 2 to 4, A ′: —COOH, —SO 3 H, —PO 3 H 2 , or derivatives thereof) a first monomer of the general formula: and a second monomer represented by F 2 C = CF 2 were mixed in a predetermined ratio, it can be obtained by polymerization or copolymerization.
In addition, the point which can use various methods as a polymerization or copolymerization method, and the point which performs proton exchange as needed after superposition | polymerization are the same as that of a 1st specific example.

このようにして得られた1種又は2種以上の水溶性高分子電解質に、所定量の水を加え、攪拌、加熱、振動等を施すと、流動性のある均一なゾル状プロトン伝導性電解質が得られる。   When a predetermined amount of water is added to one or two or more water-soluble polymer electrolytes thus obtained and stirred, heated, vibrated, etc., it is fluid and has a uniform sol-like proton conducting electrolyte. Is obtained.

次に、本発明に係るゾル状プロトン伝導性電解質の作用について説明する。燃料電池のカソード側では、電極反応の副反応として過酸化物が発生する。この過酸化物は、価数が変わる遷移金属イオン(例えば、Fe2+/Fe3+)が共存する環境下において過酸化物ラジカルに分解し、電解質膜を劣化させる原因となる。電解質膜が劣化により薄膜化すると、反応ガスのリークや電極間の電子的短絡が起こり、発電効率を低下させる。そのため、炭化水素系電解質を用いた固体高分子型燃料電池では、実用上十分な耐久性が得られない。また、従来、耐酸化性に優れていると言われていた全フッ素系電解質であっても、使用条件が過酷になると、十分な耐久性が得られない場合がある。 Next, the action of the sol proton conductive electrolyte according to the present invention will be described. On the cathode side of the fuel cell, peroxide is generated as a side reaction of the electrode reaction. This peroxide is decomposed into peroxide radicals in an environment where transition metal ions (for example, Fe 2+ / Fe 3+ ) whose valence changes, and cause deterioration of the electrolyte membrane. When the electrolyte membrane becomes thinner due to deterioration, leakage of the reaction gas and electronic short circuit between the electrodes occur, thereby reducing power generation efficiency. Therefore, practically sufficient durability cannot be obtained in a polymer electrolyte fuel cell using a hydrocarbon electrolyte. Even in the case of a perfluorinated electrolyte that has been conventionally said to be excellent in oxidation resistance, sufficient durability may not be obtained if the use conditions become severe.

これに対し、ゾル状プロトン伝導性電解質は、流動性があるので、補給が容易である。そのため、過酸化物ラジカルによって水溶性高分子電解質が低分子量化し、系外に流出したとしても、補給によって電極間を常にゾル状プロトン伝導性電解質で満たすことができ、反応ガスのリークや電極間の電子的短絡のおそれが少ない。
また、補給が容易であるので、過酷な条件下で使用される電気化学デバイスであっても、耐酸化性に乏しい炭化水素系電解質を使用することができ、しかも、長期にわたって高い性能を維持することができる。そのため、耐久性を高めるために必ずしも高価なフッ素系電解質を用いる必要がなく、電気化学デバイスを低コスト化することができる。
On the other hand, the sol proton conductive electrolyte is easy to replenish because it has fluidity. Therefore, even if the water-soluble polymer electrolyte has a low molecular weight due to peroxide radicals and flows out of the system, the gap between the electrodes can always be filled with the sol proton conductive electrolyte by replenishment. There is little risk of electronic short circuit.
In addition, since it is easy to replenish, even an electrochemical device used under severe conditions can use a hydrocarbon-based electrolyte with poor oxidation resistance and maintain high performance over a long period of time. be able to. Therefore, it is not always necessary to use an expensive fluorine-based electrolyte in order to enhance durability, and the cost of the electrochemical device can be reduced.

さらに、ゾル状プロトン伝導性電解質は、適度な粘度を有しているので、これを燃料電池に用いても、リン酸型燃料電池やアルカリ型燃料電池のように、電解質の流出の問題が少ない。また、電極が流動性のあるゾル状プロトン伝導性電解質と直接接触するので、固体高分子電解質膜を用いた場合に比べて、接触抵抗を低減することができる。   Furthermore, since the sol-like proton conductive electrolyte has an appropriate viscosity, even if it is used for a fuel cell, there are few problems of electrolyte outflow as in a phosphoric acid fuel cell and an alkaline fuel cell. . Further, since the electrode is in direct contact with the fluid sol-like proton conductive electrolyte, the contact resistance can be reduced as compared with the case where a solid polymer electrolyte membrane is used.

次に、本発明に係る燃料電池について説明する。図1に、本発明に係る燃料電池の概略構成図を示す。図1において、燃料電池10は、ストッパ12と、多孔体14と、拡散層16、16と、触媒層18、18と、上述した本発明に係るゾル状プロトン伝導性電解質20と、セパレータ22とを備えている。なお、図1においては、単一のセルのみが記載されているが、これは単なる例示であり、実際の燃料電池は、図1に示す単セルが必要に応じて複数個積層される。   Next, the fuel cell according to the present invention will be described. FIG. 1 shows a schematic configuration diagram of a fuel cell according to the present invention. In FIG. 1, the fuel cell 10 includes a stopper 12, a porous body 14, diffusion layers 16 and 16, catalyst layers 18 and 18, the above-described sol-like proton conductive electrolyte 20 according to the present invention, a separator 22, and the like. It has. Although only a single cell is shown in FIG. 1, this is merely an example, and an actual fuel cell includes a plurality of single cells shown in FIG. 1 as necessary.

ストッパ12は、枠状(又は、リング状)を呈しており、その枠内には多孔体14が保持されている。ストッパ12の両面には、一対の拡散層16、16が接合(熱圧着等の化学的接合の他、単にストッパ12の両面を拡散層16、16で押さえ付ける等の物理的接合も含む。以下、同じ。)され、各拡散層16、16の内表面側には、それぞれ、触媒層18、18が形成されている。ストッパ12と拡散層16、16で囲まれる空間内には、ゾル状プロトン伝導性電解質20が充填されており、その一部は、多孔体14内部に含浸した状態になっている。さらに、各拡散層16、16の外表面側は、それぞれ、ガス流路22a、22aを備えたセパレータ22で挟持されている。   The stopper 12 has a frame shape (or ring shape), and a porous body 14 is held in the frame. A pair of diffusion layers 16 and 16 are bonded to both surfaces of the stopper 12 (including chemical bonding such as thermocompression bonding and physical bonding such as simply pressing both surfaces of the stopper 12 with the diffusion layers 16 and 16). The catalyst layers 18 and 18 are formed on the inner surface sides of the diffusion layers 16 and 16, respectively. A space surrounded by the stopper 12 and the diffusion layers 16 and 16 is filled with a sol-like proton conductive electrolyte 20, and a part thereof is impregnated into the porous body 14. Furthermore, the outer surface side of each diffusion layer 16, 16 is sandwiched between separators 22 provided with gas flow paths 22a, 22a, respectively.

ストッパ12は、ゾル状プロトン伝導性電解質20の保持、貯留及び補給を行うためのものである。ストッパ12と拡散層16、16とは、ストッパ12の全周に渡って接合されており、ストッパ12の内部に保持されるゾル状プロトン伝導性電解質20の漏れを抑制できるようになっている。ストッパ12の上部及びセパレータ22、22の上部には、注入孔12a及び注入孔22bが設けられており、注入孔12a及び注入孔22bを介して、ゾル状電解質12の充填、補給を行うようになっている。さらに、ストッパ12の注入孔12aの途中には、リザーバタンク12bが設けられており、注入孔12a及び注入孔22bから充填される余剰のゾル状プロトン伝導性電解質20を一時的に貯留できるようになっている。   The stopper 12 is for holding, storing, and replenishing the sol-like proton conductive electrolyte 20. The stopper 12 and the diffusion layers 16 and 16 are joined over the entire periphery of the stopper 12 so that leakage of the sol-like proton conductive electrolyte 20 held inside the stopper 12 can be suppressed. An injection hole 12a and an injection hole 22b are provided in the upper part of the stopper 12 and the separators 22 and 22, so that the sol electrolyte 12 is filled and replenished through the injection hole 12a and the injection hole 22b. It has become. Further, a reservoir tank 12b is provided in the middle of the injection hole 12a of the stopper 12, so that the surplus sol-like proton conductive electrolyte 20 filled from the injection hole 12a and the injection hole 22b can be temporarily stored. It has become.

ストッパ12の材質は、特に限定されるものではなく、拡散層16、16との間に良好な接合性が得られ、かつ、ゾル状プロトン伝導性電解質20を保持できるものであればよい。ストッパ12の材質としては、具体的には、ポリテトラフルオロエチレン、テトラフルオロエチレンパーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−エチレン共重合体(ETFE)等が好適である。   The material of the stopper 12 is not particularly limited as long as it can provide good bonding properties with the diffusion layers 16 and 16 and can hold the sol-like proton conductive electrolyte 20. Specific examples of the material of the stopper 12 include polytetrafluoroethylene, tetrafluoroethylene perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and tetrafluoroethylene-ethylene. A copolymer (ETFE) or the like is preferable.

多孔体14の材質は、ゾル状プロトン伝導性電解質20を安定に保持でき、かつ、セパレータ22、22で挟持したときに、触媒層18、18間の間隔をほぼ一定に維持できる程度の強度を有しているものであれば良い。多孔体14としては、具体的には、ポリテトラフルオロエチレン多孔体、テトラフルオロエチレンパーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−エチレン共重合体(ETFE)等が好適である。   The material of the porous body 14 has such a strength that the sol-like proton conductive electrolyte 20 can be stably held and the distance between the catalyst layers 18 and 18 can be maintained almost constant when sandwiched between the separators 22 and 22. What is necessary is just to have. Specific examples of the porous body 14 include a polytetrafluoroethylene porous body, a tetrafluoroethylene perfluoroalkyl vinyl ether copolymer (PFA), a tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and a tetrafluoroethylene- An ethylene copolymer (ETFE) or the like is preferable.

拡散層16、16は、触媒層18、18に電子及び反応ガスを供給するためのものであり、多孔質であって、かつ、電子伝導性を有する材料が用いられる。拡散層16、16としては、具体的には、カーボンクロス、カーボンペーパ等が好適である。
また、拡散層16、16からのゾル状プロトン伝導性電解質20の流出を抑制するためには、拡散層16、16の少なくとも内表面に撥水処理を施すのが好ましい。撥水処理としては、具体的には、拡散層16、16の内表面に、撥水性粉末(例えば、ポリテトラフルオロエチレン粉末)と炭素粉末を含むペーストを塗布し、撥水層を形成する方法等がある。撥水性粉末の粒径、含有量等は、ゾル状プロトン伝導性電解質20含水率、粘性率等に応じて、最適なものを選択する。
The diffusion layers 16 and 16 are for supplying electrons and reaction gases to the catalyst layers 18 and 18 and are made of a porous material having electron conductivity. Specifically, carbon cloth, carbon paper, and the like are preferable as the diffusion layers 16 and 16.
In order to suppress the outflow of the sol-like proton conductive electrolyte 20 from the diffusion layers 16, 16, it is preferable to perform water repellent treatment on at least the inner surfaces of the diffusion layers 16, 16. As the water repellent treatment, specifically, a method of forming a water repellent layer by applying a paste containing water repellent powder (for example, polytetrafluoroethylene powder) and carbon powder to the inner surfaces of the diffusion layers 16 and 16. Etc. The optimum particle size, content, etc. of the water-repellent powder are selected according to the water content, viscosity, etc. of the sol-like proton conductive electrolyte 20.

触媒層18、18は、電極反応の反応場となる部分であり、電極触媒又は電極触媒を担持した担体を備えている。一般に、電極触媒には、燃料電池の使用目的、使用条件等に応じて最適なものが用いられる。電極触媒としては、具体的には、白金、白金合金、パラジウム、ルテニウム、ロジウム等又はこれらの合金が好適である。触媒層に含まれる電極触媒の量は、燃料電池の用途、使用条件等に応じて最適な量を選択する。   The catalyst layers 18 and 18 are portions that serve as a reaction field for electrode reaction, and include an electrode catalyst or a carrier carrying an electrode catalyst. In general, an optimum electrode catalyst is used according to the purpose of use of the fuel cell, conditions of use, and the like. Specifically, platinum, a platinum alloy, palladium, ruthenium, rhodium or the like or an alloy thereof is suitable as the electrode catalyst. As the amount of the electrode catalyst contained in the catalyst layer, an optimal amount is selected according to the use of the fuel cell, use conditions, and the like.

触媒担体は、微粒の電極触媒を担持すると同時に、触媒層における電子の授受を行うためのものである。触媒担体には、一般に、カーボン、活性炭、フラーレン、カーボンナノフォン、カーボンナノチューブ等が用いられる。触媒担体表面への電極触媒の担持量は、電極触媒及び触媒担体の材質、燃料電池の用途、使用条件等に応じて最適な担持量を選択する。   The catalyst carrier is for carrying a fine electrode catalyst and simultaneously transferring electrons in the catalyst layer. Generally, carbon, activated carbon, fullerene, carbon nanophone, carbon nanotube or the like is used for the catalyst carrier. The loading amount of the electrode catalyst on the surface of the catalyst carrier is selected in accordance with the material of the electrode catalyst and the catalyst carrier, the use of the fuel cell, the use conditions, and the like.

本発明においては、流動性のあるゾル状プロトン伝導性電解質20と電極触媒との間で直接、プロトンの授受が行われるので、触媒層18、18は、電極触媒/又は電極触媒を坦持した坦体のみからなるものでも良いが、さらに、触媒層内電解質を含んでいても良い。また、触媒層内電解質は、水溶性の材料であっても良く、あるいは、水に対して不溶性又は難溶性の材料でも良い。触媒層内電解質としては、具体的には、上述した(1)〜(5)式に示す水溶性高分子電解質、上述した(1)〜(4)式において、m/(m+n)が0.2未満の材料、(5)式において、m/(m+n)が0.5未満の材料等が好適である。触媒層内電解質の量は、燃料電池の用途、使用条件等に応じて最適な量を選択する。   In the present invention, since protons are directly exchanged between the fluid sol-form proton conductive electrolyte 20 and the electrode catalyst, the catalyst layers 18 and 18 carry the electrode catalyst / or the electrode catalyst. Although it may consist only of a carrier, it may further contain an electrolyte in the catalyst layer. Further, the electrolyte in the catalyst layer may be a water-soluble material, or may be a material that is insoluble or hardly soluble in water. Specifically, as the electrolyte in the catalyst layer, the water-soluble polymer electrolyte represented by the above-described formulas (1) to (5), and in the above-described formulas (1) to (4), m / (m + n) is 0. A material with less than 2 or a material with m / (m + n) less than 0.5 in the formula (5) is suitable. The optimum amount of the electrolyte in the catalyst layer is selected according to the use of the fuel cell, the use conditions, and the like.

また、ゾル状プロトン伝導性電解質20の流出を抑制するためには、触媒層18、18に撥水処理を施すのが好ましい。撥水処理としては、具体的には、触媒層18、18に、さらに撥水性粉末(例えば、ポリテトラフルオロエチレン粉末)を加える方法がある。撥水性粉末の粒径、含有量等は、ゾル状プロトン伝導性電解質20の含水率、粘性率等に応じて、最適なものを選択する。   Further, in order to suppress the outflow of the sol-like proton conductive electrolyte 20, it is preferable to subject the catalyst layers 18 and 18 to water repellent treatment. As the water repellent treatment, specifically, there is a method of adding water repellent powder (for example, polytetrafluoroethylene powder) to the catalyst layers 18 and 18. The optimum particle diameter, content, etc. of the water-repellent powder are selected according to the water content, viscosity, etc. of the sol-like proton conductive electrolyte 20.

セパレータ22、22は、拡散層16、16に反応ガスを供給すると同時に、拡散層16、16との間で電子の授受を行うためのものであり、電子伝導性を有する材料が用いられる。セパレータ22、22の材質としては、カーボン、ステンレス等が好適である。   The separators 22 and 22 are for supplying the reaction gas to the diffusion layers 16 and 16 and simultaneously transferring electrons between the diffusion layers 16 and 16, and a material having electron conductivity is used. As a material of the separators 22 and 22, carbon, stainless steel, or the like is preferable.

本発明に係る燃料電池は、以下のようにして作製することができる。まず、電極触媒又は電極触媒を坦持した坦体、並びに、必要に応じて触媒層内電解質及び/又は撥水性粉末を含む溶液(触媒インク)を適当な基板(例えば、ポリテトラフルオロエチレンシート)表面に塗布し、触媒層18を形成する。次いで、これを拡散層16の表面にホットプレスにより転写する。あるいは、拡散層16を基板として用いて、その表面に直接、触媒層18を形成しても良い。   The fuel cell according to the present invention can be manufactured as follows. First, an electrode catalyst or a carrier carrying an electrode catalyst, and a solution (catalyst ink) containing an electrolyte in the catalyst layer and / or a water-repellent powder as necessary (appropriate substrate (for example, a polytetrafluoroethylene sheet)) The catalyst layer 18 is formed by coating on the surface. Next, this is transferred onto the surface of the diffusion layer 16 by hot pressing. Alternatively, the catalyst layer 18 may be formed directly on the surface using the diffusion layer 16 as a substrate.

次に、ストッパ12の枠内に、多孔体14を挿入し、ストッパ12の両面に、触媒層18が内側となるように拡散層16、16を接合(熱圧着等)する。熱圧着等の化学的接合を行う場合、その条件は、特に限定されるものではなく、ストッパ12及び拡散層16、16の材質に応じて、最適な条件を選択する。さらに、ストッパ12/拡散層16接合体の両面をセパレータ22で挟持して単セルとし、この単セルを複数層積層する。さらに、ストッパ12の枠内を減圧しながら、注入孔12a及び注入孔22bを介して本発明に係るゾル状プロトン伝導性電解質20を充填すれば、本発明に係る燃料電池10が得られる。   Next, the porous body 14 is inserted into the frame of the stopper 12, and the diffusion layers 16 and 16 are bonded to both surfaces of the stopper 12 so that the catalyst layer 18 is on the inside (thermocompression bonding or the like). When chemical bonding such as thermocompression bonding is performed, the conditions are not particularly limited, and optimum conditions are selected according to the materials of the stopper 12 and the diffusion layers 16 and 16. Further, both surfaces of the stopper 12 / diffusion layer 16 assembly are sandwiched between separators 22 to form a single cell, and a plurality of single cells are laminated. Furthermore, the fuel cell 10 according to the present invention can be obtained by filling the sol-like proton conductive electrolyte 20 according to the present invention through the injection hole 12 a and the injection hole 22 b while reducing the pressure inside the stopper 12.

次に、本発明に係る燃料電池10の作用について説明する。本発明に係る燃料電池10は、電解質として、流動性のあるゾル状プロトン伝導性電解質20を用いているので、触媒層18、18との界面の間の接触抵抗を小さくすることができる。また、ゾル状プロトン伝導性電解質20は、適度な粘度を有しているので、触媒層18及び拡散層16を通ってゾル状プロトン伝導性電解質20が流出するおそれが少ない。さらに、触媒層18及び/又は拡散層16に撥水処理が施されている場合には、ゾル状プロトン伝導性電解質20の流出をさらに抑制することができる。   Next, the operation of the fuel cell 10 according to the present invention will be described. Since the fuel cell 10 according to the present invention uses the fluid sol-like proton conductive electrolyte 20 as an electrolyte, the contact resistance between the interfaces with the catalyst layers 18 and 18 can be reduced. Further, since the sol-like proton conductive electrolyte 20 has an appropriate viscosity, there is little possibility that the sol-like proton conductive electrolyte 20 flows out through the catalyst layer 18 and the diffusion layer 16. Furthermore, when the catalyst layer 18 and / or the diffusion layer 16 is subjected to water repellent treatment, the outflow of the sol-like proton conductive electrolyte 20 can be further suppressed.

また、燃料電池10の使用条件が過酷になると、過酸化物ラジカルが発生し、ゾル状プロトン伝導性電解質20に含まれる水溶性高分子電解質と反応する。過酸化物ラジカルと水溶性高分子電解質とが反応すると、水溶性高分子電解質が低分子量化し、触媒層18及び拡散層16を通って系外に流出しやすくなる。このような反応が著しくなると、やがて電極が露出し、反応ガスのリークが発生する。   Further, when the use condition of the fuel cell 10 becomes severe, peroxide radicals are generated and react with the water-soluble polymer electrolyte contained in the sol-like proton conductive electrolyte 20. When the peroxide radical reacts with the water-soluble polymer electrolyte, the water-soluble polymer electrolyte has a low molecular weight and easily flows out of the system through the catalyst layer 18 and the diffusion layer 16. When such a reaction becomes remarkable, the electrode is eventually exposed and a leak of the reaction gas occurs.

しかしながら、本発明に係る燃料電池10は、注入孔12a及び注入孔22bを備えているので、ゾル状プロトン伝導性電解質20が劣化により減少しても、ゾル状プロトン伝導性電解質20を補充することができる。そのため、水溶性高分子電解質として耐酸化性に乏しい炭化水素系電解質を用いた場合であっても、補充を繰り返すことにより長期間に渡って高い性能を維持することができる。また、ゾル状プロトン伝導性電解質20を一時的に貯留するリザーバタンク22bを備えている場合には、ゾル状プロトン伝導性電解質20の補充頻度を低減することができる。   However, since the fuel cell 10 according to the present invention includes the injection hole 12a and the injection hole 22b, even if the sol proton conductive electrolyte 20 decreases due to deterioration, the sol proton conductive electrolyte 20 is replenished. Can do. Therefore, even when a hydrocarbon-based electrolyte having poor oxidation resistance is used as the water-soluble polymer electrolyte, high performance can be maintained over a long period by repeating replenishment. In addition, when the reservoir tank 22b that temporarily stores the sol-like proton conductive electrolyte 20 is provided, the replenishment frequency of the sol-like proton conductive electrolyte 20 can be reduced.

(実施例1)
撥水性粉末としてポリテトラフルオロエチレン(PTFE)粉末を分散させた溶液(PTFE粉末の含有量:10wt%)に白金坦持カーボン(アノード側:30wt%Pt/C、カソード側:60wt%Pt/C)を加えて触媒インクを作製した。なお、触媒インクに含まれる白金坦持カーボンの含有量は、70wt%とした。この触媒インクをPTFEシート上に塗布して、触媒層を作製した。
Example 1
Platinum-supported carbon (anode side: 30 wt% Pt / C, cathode side: 60 wt% Pt / C) in a solution (PTFE powder content: 10 wt%) in which polytetrafluoroethylene (PTFE) powder is dispersed as a water repellent powder ) Was added to prepare a catalyst ink. Note that the content of platinum-supported carbon contained in the catalyst ink was 70 wt%. This catalyst ink was applied on a PTFE sheet to produce a catalyst layer.

次に、PTFE粉末を分散させた溶液(PTFE粉末の含有量:10wt%)にカーボン粉末を加え、この溶液をカーボンクロスからなる拡散層の表面に塗布して撥水層を形成した。次いで、撥水層の表面にホットプレスを用いて触媒層を転写した。ホットプレス条件は、温度:120℃、圧力:0.5MPa、加圧時間:0.1時間とした。   Next, carbon powder was added to a solution in which PTFE powder was dispersed (content of PTFE powder: 10 wt%), and this solution was applied to the surface of a diffusion layer made of carbon cloth to form a water repellent layer. Next, the catalyst layer was transferred onto the surface of the water repellent layer using a hot press. The hot press conditions were as follows: temperature: 120 ° C., pressure: 0.5 MPa, pressurization time: 0.1 hour.

次に、PTFE製ストッパの枠内にPTFE製の厚さ100μmの多孔質シートを挿入し、PTFE製ストッパの両側から、拡散層及びカーボンセパレータで押さえつけた。さらに、PTFE製ストッパの枠内を減圧(100mmHg)した状態で、注入孔からゾル状プロトン伝導性電解質を注入し、図1に示す燃料電池を得た。本実施例において、ゾル状プロトン伝導性電解質には、−(CFCFSOH)−(CFCF)−(m/(m+n)=0.5)の30wt%水溶液を用いた。 Next, a porous sheet made of PTFE having a thickness of 100 μm was inserted into the frame of the PTFE stopper, and pressed with a diffusion layer and a carbon separator from both sides of the PTFE stopper. Further, in a state where the inside of the PTFE stopper was depressurized (100 mmHg), a sol-like proton conductive electrolyte was injected from the injection hole to obtain the fuel cell shown in FIG. In this embodiment, the sol-like proton conducting electrolyte, - (CF 2 CFSO 3 H ) m - (CF 2 CF 2) n - with 30 wt% aqueous solution of (m / (m + n) = 0.5) .

本実施例で得られた燃料電池は、拡散層あるいは接合部からゾル状プロトン伝導性電解質が漏れることはなかった。また、セル温度:80℃、アノード側露点温度:75℃、カソード側露点温度:85℃、背圧:2ata、燃料ガス:水素、酸化剤ガス:空気、の条件下で燃料電池評価を行ったところ、0.5mA/cmの電流密度において、出力電圧は、0.6Vであった。さらに、10日間の連続運転後には、電圧の低下とゾル状プロトン伝導性電解質の減少が見られたが、ゾル状プロトン伝導性電解質を追加することにより、問題なく運転を継続することができた。 In the fuel cell obtained in this example, the sol proton conductive electrolyte did not leak from the diffusion layer or the junction. The fuel cell was evaluated under the conditions of cell temperature: 80 ° C., anode side dew point temperature: 75 ° C., cathode side dew point temperature: 85 ° C., back pressure: 2 ata, fuel gas: hydrogen, oxidant gas: air. However, the output voltage was 0.6 V at a current density of 0.5 mA / cm 2 . Furthermore, after 10 days of continuous operation, a decrease in voltage and a decrease in sol-like proton conducting electrolyte were observed, but by adding a sol-like proton conducting electrolyte, the operation could be continued without problems. .

以上、本発明の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改変が可能である。
例えば、上述した例においては、リザーバタンクは、ストッパ内に設けられているが、これをセパレータ内あるいはセパレータの外側に設けても良い。
Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the present invention.
For example, in the example described above, the reservoir tank is provided in the stopper, but it may be provided in the separator or outside the separator.

本発明に係るゾル状プロトン伝導性電解質は、燃料電池、水電解装置、ハロゲン化水素酸電解装置、食塩電解装置、酸素及び/又は水素濃縮器、湿度センサ、ガスセンサ等の各種電気化学デバイスに用いられる電解質として用いることができる。
また、本発明に係る燃料電池は、車載用動力源、定置型小型発電器、コジェネレーションシステム等に使用することができる。
The sol-like proton conductive electrolyte according to the present invention is used in various electrochemical devices such as fuel cells, water electrolyzers, hydrohalic acid electrolyzers, salt electrolyzers, oxygen and / or hydrogen concentrators, humidity sensors, and gas sensors. It can be used as an electrolyte.
Further, the fuel cell according to the present invention can be used for an in-vehicle power source, a stationary small power generator, a cogeneration system, and the like.

本発明に係る燃料電池の概略構成図である。1 is a schematic configuration diagram of a fuel cell according to the present invention.

符号の説明Explanation of symbols

10 燃料電池
12 ストッパ
14 多孔体
16 拡散層
18 触媒層
20 ゾル状プロトン伝導性電解質
22 セパレータ
DESCRIPTION OF SYMBOLS 10 Fuel cell 12 Stopper 14 Porous body 16 Diffusion layer 18 Catalyst layer 20 Sol-like proton conductive electrolyte 22 Separator

Claims (7)

水と、水溶性高分子電解質とを含み、
その粘性率が0.1〜100Pa・sであるゾル状プロトン伝導性電解質。
Including water and a water-soluble polyelectrolyte,
A sol-like proton conducting electrolyte having a viscosity of 0.1 to 100 Pa · s.
含水率が20〜95wt%である請求項1に記載のゾル状プロトン伝導性電解質。   The sol-like proton conductive electrolyte according to claim 1, wherein the water content is 20 to 95 wt%. 枠状のストッパと、
該ストッパの枠内に保持された多孔体と、
前記ストッパの両面に接合された一対の拡散層と、
前記各拡散層の内表面側に形成された触媒層と、
前記ストッパと前記拡散層で囲まれる空間内に充填された請求項1から4までのいずれかに記載のゾル状プロトン伝導性電解質とを備えた燃料電池。
A frame-shaped stopper;
A porous body held in the frame of the stopper;
A pair of diffusion layers bonded to both sides of the stopper;
A catalyst layer formed on the inner surface side of each diffusion layer;
A fuel cell comprising the sol-like proton conductive electrolyte according to any one of claims 1 to 4, which is filled in a space surrounded by the stopper and the diffusion layer.
前記拡散層は、少なくともその内表面に撥水処理が施されている請求項3に記載の燃料電池。   The fuel cell according to claim 3, wherein at least an inner surface of the diffusion layer is subjected to water repellent treatment. 前記触媒層は、撥水処理が施されている請求項3又は4に記載の燃料電池。   The fuel cell according to claim 3, wherein the catalyst layer is subjected to a water repellent treatment. 前記ストッパは、前記空間に前記ゾル状プロトン伝導性電解質を充填するための注入孔を備えている請求項3から5までのいずれかに記載の燃料電池。   The fuel cell according to any one of claims 3 to 5, wherein the stopper includes an injection hole for filling the space with the sol-like proton conductive electrolyte. 前記注入孔から前記空間に充填される前記ゾル状プロトン伝導性電解質を一時的に貯留するリザーバタンクを備えている請求項6に記載の燃料電池。
The fuel cell according to claim 6, further comprising a reservoir tank that temporarily stores the sol-like proton conductive electrolyte filled in the space from the injection hole.
JP2004237048A 2004-08-17 2004-08-17 Sol-like proton conducting electrolyte and fuel cell Expired - Fee Related JP4552183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004237048A JP4552183B2 (en) 2004-08-17 2004-08-17 Sol-like proton conducting electrolyte and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004237048A JP4552183B2 (en) 2004-08-17 2004-08-17 Sol-like proton conducting electrolyte and fuel cell

Publications (2)

Publication Number Publication Date
JP2006059540A true JP2006059540A (en) 2006-03-02
JP4552183B2 JP4552183B2 (en) 2010-09-29

Family

ID=36106858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004237048A Expired - Fee Related JP4552183B2 (en) 2004-08-17 2004-08-17 Sol-like proton conducting electrolyte and fuel cell

Country Status (1)

Country Link
JP (1) JP4552183B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011368A1 (en) * 2007-07-19 2009-01-22 Gunze Limited Solid ion-conducting material, electrochemical device utilizing the solid ion-conducting material, and method for production of the electrochemical device
JP2009300224A (en) * 2008-06-12 2009-12-24 Gunze Ltd Hydrogen gas sensor

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08249923A (en) * 1995-03-07 1996-09-27 Matsushita Electric Ind Co Ltd Proton conductive material and electrochemical element using the same
JPH09180740A (en) * 1995-12-27 1997-07-11 Tokyo Gas Co Ltd Solid high-molecular fuel cell and manufacture and device thereof
JPH1069817A (en) * 1996-08-29 1998-03-10 Matsushita Electric Ind Co Ltd Proton conductor and electrochemical element using proton conductor
JPH11203936A (en) * 1998-01-19 1999-07-30 Matsushita Electric Ind Co Ltd Proton-conductive body and electrochemical element using the proton-conductive body
JPH11307113A (en) * 1998-04-17 1999-11-05 Tokyo Electric Power Co Inc:The Manufacture of cell for solid electrolyte type fuel battery
JP2002075406A (en) * 2000-08-30 2002-03-15 Sanyo Electric Co Ltd Fuel battery cell unit and manufacturing method
JP2003178773A (en) * 2001-12-11 2003-06-27 Sanyo Electric Co Ltd Fuel-cell unit
JP2003217339A (en) * 2002-01-16 2003-07-31 Nagoya Industrial Science Research Inst Proton conductive gel, proton conductor and method for manufacturing these
JP2003317749A (en) * 2002-04-24 2003-11-07 Jsr Corp Varnish composition, manufacturing method of film- electrode conjugate
JP2004139899A (en) * 2002-10-18 2004-05-13 Matsushita Electric Ind Co Ltd Electrode ink for solid polymer electrolyte fuel cell and manufacturing method of the same
WO2004054021A2 (en) * 2002-12-10 2004-06-24 3M Innovative Properties Company Catalyst ink
JP2004186128A (en) * 2002-04-16 2004-07-02 Toyobo Co Ltd Composite ion exchange membrane and its manufacturing method
JP2005248114A (en) * 2004-03-08 2005-09-15 Shin Etsu Chem Co Ltd Silicon-containing polymer compound, composition for forming solid polymer electrolyte membrane, solid polymer electrolyte membrane and its production method and fuel cell

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08249923A (en) * 1995-03-07 1996-09-27 Matsushita Electric Ind Co Ltd Proton conductive material and electrochemical element using the same
JPH09180740A (en) * 1995-12-27 1997-07-11 Tokyo Gas Co Ltd Solid high-molecular fuel cell and manufacture and device thereof
JPH1069817A (en) * 1996-08-29 1998-03-10 Matsushita Electric Ind Co Ltd Proton conductor and electrochemical element using proton conductor
JPH11203936A (en) * 1998-01-19 1999-07-30 Matsushita Electric Ind Co Ltd Proton-conductive body and electrochemical element using the proton-conductive body
JPH11307113A (en) * 1998-04-17 1999-11-05 Tokyo Electric Power Co Inc:The Manufacture of cell for solid electrolyte type fuel battery
JP2002075406A (en) * 2000-08-30 2002-03-15 Sanyo Electric Co Ltd Fuel battery cell unit and manufacturing method
JP2003178773A (en) * 2001-12-11 2003-06-27 Sanyo Electric Co Ltd Fuel-cell unit
JP2003217339A (en) * 2002-01-16 2003-07-31 Nagoya Industrial Science Research Inst Proton conductive gel, proton conductor and method for manufacturing these
JP2004186128A (en) * 2002-04-16 2004-07-02 Toyobo Co Ltd Composite ion exchange membrane and its manufacturing method
JP2003317749A (en) * 2002-04-24 2003-11-07 Jsr Corp Varnish composition, manufacturing method of film- electrode conjugate
JP2004139899A (en) * 2002-10-18 2004-05-13 Matsushita Electric Ind Co Ltd Electrode ink for solid polymer electrolyte fuel cell and manufacturing method of the same
WO2004054021A2 (en) * 2002-12-10 2004-06-24 3M Innovative Properties Company Catalyst ink
JP2006509859A (en) * 2002-12-10 2006-03-23 スリーエム イノベイティブ プロパティズ カンパニー Catalyst ink
JP2005248114A (en) * 2004-03-08 2005-09-15 Shin Etsu Chem Co Ltd Silicon-containing polymer compound, composition for forming solid polymer electrolyte membrane, solid polymer electrolyte membrane and its production method and fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011368A1 (en) * 2007-07-19 2009-01-22 Gunze Limited Solid ion-conducting material, electrochemical device utilizing the solid ion-conducting material, and method for production of the electrochemical device
JPWO2009011368A1 (en) * 2007-07-19 2010-09-24 グンゼ株式会社 Solid ion conductor, electrochemical device using the solid ion conductor, and method for producing the same
JP2009300224A (en) * 2008-06-12 2009-12-24 Gunze Ltd Hydrogen gas sensor

Also Published As

Publication number Publication date
JP4552183B2 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
KR101135479B1 (en) A polymer electrolyte membrane for fuel cell, a method for preparing the same, and a fuel cell system comprising the same
WO2007052650A1 (en) Method for producing membrane electrode assembly for solid polymer fuel cell
KR101275790B1 (en) Membrane-electrode assembly for fuel cell, methode of manufacturing membrane-electrode assembly for fuel cell, and fuel cell system
JP4708757B2 (en) Polymer electrolyte fuel cell
JP2008510064A (en) Fuel composition
JP4919005B2 (en) Method for producing electrode for fuel cell
JP4823583B2 (en) Polymer membrane / electrode assembly for fuel cell and fuel cell including the same
KR101229597B1 (en) Membrane electrode assembly for fuel cell and Method of preparing the same and Fuel cell comprising the same
KR20170112014A (en) Nanostructured electrode for polymer electrolyte membrane fuel cell, and method for manufacturing the same
KR101117630B1 (en) Membrane-electrode assembly for fuel cell and method for preparating the same
JP2006210342A (en) Fuel cell electrode, film-electrode bonded body including the same
JP4552183B2 (en) Sol-like proton conducting electrolyte and fuel cell
JP4649094B2 (en) Manufacturing method of membrane electrode assembly for fuel cell
KR100612233B1 (en) A membrane electrode assembly for fuel cell, a method for preparing the same and a fuel cell comprising the same
JP2002110190A (en) Fuel cell
KR101112693B1 (en) Membrane-electrode assembly of fuel cell and preparing method thereof
JP2005085611A (en) Electrode for fuel cell
JP2006286478A (en) Membrane electrode assembly
KR20080045461A (en) Polymer electrolyte membrane for fuel cell, membrane-electrode assembly comprising for fuel cell and fuel cell system comprising same
JP2002252001A (en) Gas diffusion electrode and solid high polymer type fuel cell equipped with this
KR20070014619A (en) Membrane electrode assembly for fuel cell, method of preparing the same, and stack for fuel cell and full cell system comprising the same
JP2007157453A (en) Membrane catalyst layer assembly, membrane electrode assembly using same, and polymer electrolyte fuel cell
JP2004063409A (en) Manufacturing method of solid high molecular fuel cell
JP5795489B2 (en) Fuel cell
JP2021190176A (en) Membrane electrode gas diffusion layer assembly for fuel battery cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100618

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100701

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140723

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees