JP2009300224A - Hydrogen gas sensor - Google Patents

Hydrogen gas sensor Download PDF

Info

Publication number
JP2009300224A
JP2009300224A JP2008154220A JP2008154220A JP2009300224A JP 2009300224 A JP2009300224 A JP 2009300224A JP 2008154220 A JP2008154220 A JP 2008154220A JP 2008154220 A JP2008154220 A JP 2008154220A JP 2009300224 A JP2009300224 A JP 2009300224A
Authority
JP
Japan
Prior art keywords
hydrogen gas
gas sensor
catalyst layer
catalyst
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008154220A
Other languages
Japanese (ja)
Other versions
JP5080375B2 (en
Inventor
Tomoko Hane
友子 羽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunze Ltd
Original Assignee
Gunze Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunze Ltd filed Critical Gunze Ltd
Priority to JP2008154220A priority Critical patent/JP5080375B2/en
Publication of JP2009300224A publication Critical patent/JP2009300224A/en
Application granted granted Critical
Publication of JP5080375B2 publication Critical patent/JP5080375B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small-sized inexpensive hydrogen gas sensor capable of properly detecting a hydrogen gas even if an oxygen gas is absent and even not in a heating environment and having good hydrogen gas selectivity. <P>SOLUTION: The hydrogen gas sensor has a detection part formed with a catalyst layer 3 having a catalyst 3a such as platinum which is held by sputtering or the like on at least one side surface of a base material 2 as a solid polymer electrolyte membrane comprising a perfluoro polymer and the like and which has a catalytic function by making contact with a hydrogen gas, and the detection part is joined with air-permeable electrodes 4, thus constituting the sensor. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、気相または液相中の水素ガス濃度を検出する水素ガスセンサに関する。   The present invention relates to a hydrogen gas sensor that detects a hydrogen gas concentration in a gas phase or a liquid phase.

燃料電池に代表される水素エネルギーシステムを構成するうえで、水素の濃度を精度良く検出する水素ガスセンサの必要性は極めて高く、様々な水素ガスセンサが提案されている。   In configuring a hydrogen energy system typified by a fuel cell, the necessity of a hydrogen gas sensor that accurately detects the concentration of hydrogen is extremely high, and various hydrogen gas sensors have been proposed.

代表的なものとして、特許文献1には、熱伝導層中にヒータコイルを埋設し、該熱伝導層の表面に検知対象ガスを接触により燃焼させる燃焼触媒層を被覆し、燃焼触媒層および熱伝導層がいずれも酸化スズを主成分とする焼成材料からなる接触燃焼式ガスセンサ用検知素子が提案されている。
特開2007-271556号公報
As a typical example, in Patent Document 1, a heater coil is embedded in a heat conductive layer, and a surface of the heat conductive layer is covered with a combustion catalyst layer for burning a detection target gas by contact. A sensing element for a catalytic combustion type gas sensor has been proposed in which the conductive layer is made of a fired material mainly composed of tin oxide.
JP 2007-271556 A

しかし、特許文献1に記載された接触燃焼式ガスセンサ用検知素子は、熱伝導層中にヒータコイルを埋設し、その熱伝導層の表面に検知対象ガスを接触により燃焼させる燃焼触媒層を被覆するように構成し、燃焼触媒層の表面に吸着した酸素と対象ガスとの反応に伴う電気抵抗の変化を検出するものであるため、酸素の非存在下では対象ガスを検出することができないという問題があった。   However, the detection element for a contact combustion type gas sensor described in Patent Document 1 embeds a heater coil in a heat conduction layer and covers the surface of the heat conduction layer with a combustion catalyst layer that burns the detection target gas by contact. In this configuration, the change in electrical resistance associated with the reaction between oxygen adsorbed on the surface of the combustion catalyst layer and the target gas is detected, so that the target gas cannot be detected in the absence of oxygen. was there.

また、酸素分子の吸脱着を十分に生起させるべく感応部の素子温度を数百度に加熱するヒータコイルを設ける必要があるため、そのための消費電力が増加するという問題や、耐熱構造を備える必要があるという問題があり、さらには、水素ガスの他にもメタンガスや一酸化炭素ガス等の可燃性ガスにも応答し、ガス選択性が無いという問題もあった。   In addition, since it is necessary to provide a heater coil that heats the element temperature of the sensitive part to several hundred degrees in order to cause sufficient adsorption and desorption of oxygen molecules, there is a problem that the power consumption increases for that purpose, and it is necessary to provide a heat-resistant structure. In addition to the hydrogen gas, there is also a problem that it has no gas selectivity in response to flammable gases such as methane gas and carbon monoxide gas.

本発明の目的は、上述の問題点に鑑み、酸素ガスの非存在下であっても、また加熱環境下で無くとも水素ガスを適正に検出でき、良好な水素ガス選択性を備えた小型且つ安価な水素ガスセンサを提供する点にある。   In view of the above-mentioned problems, the object of the present invention is to detect hydrogen gas properly even in the absence of oxygen gas or in a heating environment, and to achieve a small size and good hydrogen gas selectivity. The object is to provide an inexpensive hydrogen gas sensor.

上述の目的を達成するため、本発明による水素ガスセンサの特徴構成は、特許請求の範囲の書類の請求項1に記載した通り、固体高分子電解質で構成される基材の少なくとも一側面に触媒層が形成され、酸素ガスの非存在下で水素ガスを検出可能な検出部を備えている点にある。   In order to achieve the above object, the hydrogen gas sensor according to the present invention is characterized in that a catalyst layer is formed on at least one side surface of a substrate made of a solid polymer electrolyte as described in claim 1 of the claims. And is provided with a detection unit capable of detecting hydrogen gas in the absence of oxygen gas.

本願発明者らは、鋭意研究を重ねた結果、固体高分子電解質で構成される基材の少なくとも一側面に水素ガスと接触することにより触媒機能を持つ金属等でなる触媒層を形成することにより、酸素ガスの非存在下で当該触媒層に向けて水素ガスを供給したときに十分な発電特性が現れる検出部を構成できることが確認された。   As a result of intensive research, the inventors of the present application have formed a catalyst layer made of a metal having a catalytic function by contacting hydrogen gas on at least one side surface of a substrate composed of a solid polymer electrolyte. It has been confirmed that a detection unit that exhibits sufficient power generation characteristics when hydrogen gas is supplied toward the catalyst layer in the absence of oxygen gas can be configured.

このとき、固体高分子電解質で構成される基材の少なくとも一側面に触媒層が形成された検出部が通気性を有する電極で接合されることにより、検出部へ水素ガスを供給しながら同時に発電電圧を外部に取り出せる点で好ましい。   At this time, the detection part in which the catalyst layer is formed on at least one side surface of the base material made of the solid polymer electrolyte is joined with a gas-permeable electrode, thereby simultaneously generating power while supplying hydrogen gas to the detection part. This is preferable in that the voltage can be extracted to the outside.

前記触媒層が前記基材にスパッタリングにより担持され、水素ガスと接触することにより触媒機能を持つ金属または合金、若しくは触媒活性を有する有機金属または有機物で構成されていることが好ましく、スパッタリングによれば触媒担持体上に担持される触媒の粒径分布、担持量を好適に制御することができる。   Preferably, the catalyst layer is supported on the base material by sputtering and is made of a metal or alloy having a catalytic function by contacting with hydrogen gas, or an organometallic or organic substance having catalytic activity. The particle size distribution and supported amount of the catalyst supported on the catalyst support can be suitably controlled.

以上説明した通り、本発明によれば、酸素ガスの非存在下であっても、また加熱環境下で無くとも水素ガスを適正に検出でき、良好な水素ガス選択性を備えた小型且つ安価な水素ガスセンサを提供することができるようになった。   As described above, according to the present invention, hydrogen gas can be properly detected even in the absence of oxygen gas or in a heating environment, and it is small and inexpensive with good hydrogen gas selectivity. A hydrogen gas sensor can be provided.

以下、本発明による水素ガスセンサについて説明する。図1に示すように、水素ガスセンサ1は、固体高分子電解質でなる基材2の一側面に水素ガスと接触することにより触媒機能を持つ触媒層3を形成し、当該基材2の両面を通気性を有する電極4で接合して構成されている。   Hereinafter, a hydrogen gas sensor according to the present invention will be described. As shown in FIG. 1, the hydrogen gas sensor 1 forms a catalyst layer 3 having a catalytic function by contacting hydrogen gas on one side surface of a base material 2 made of a solid polymer electrolyte. It is configured to be joined by an electrode 4 having air permeability.

基材2としては、プロトン導電性を示すものであれば特に限定されないが、高いプロトン導電性を有するパーフルオロスルフォン酸系、パーフルオロカルボン酸系等のパーフルオロ系高分子や、Poly(styrene-ran-ethylene),sulfonated等のpartially sulfonated styrene-olefin copolymerでなる固体高分子電解質膜を採用することが好ましく、ナフィオン(デュポン社登録商標:NAFION)やアシプレックス(旭化成株式会社登録商標:ACIPLEX)等が好適に使用できる。   The substrate 2 is not particularly limited as long as it exhibits proton conductivity. However, perfluorosulfonic acid-based and perfluorocarboxylic acid-based perfluoropolymers having high proton conductivity, poly (styrene- It is preferable to adopt a solid polymer electrolyte membrane made of partially sulfonated styrene-olefin copolymer such as ran-ethylene), sulfonated, etc., such as Nafion (DuPont registered trademark: NAFION), Aciplex (Asahi Kasei Corporation registered trademark: ACIPLEX), etc. Can be suitably used.

触媒層3は、上述したように水素ガスと接触することにより触媒機能を持つ金属等でなる触媒3aが基材2の一側面にスパッタリングにより担持されて構成されている。つまり、基材2は触媒3aの担体としても機能する。   As described above, the catalyst layer 3 is configured such that the catalyst 3a made of a metal having a catalytic function by contacting with hydrogen gas is supported on one side surface of the base material 2 by sputtering. That is, the base material 2 also functions as a carrier for the catalyst 3a.

スパッタリングの処理時間は90秒未満が好ましく、さらに60秒以下とすることがより好ましい。また、スパッタリングの際のDC、RF出力値は特に制限されないが、1.2W/cm以上とすることが好ましい。 The sputtering treatment time is preferably less than 90 seconds, and more preferably 60 seconds or less. The DC and RF output values during sputtering are not particularly limited, but are preferably 1.2 W / cm 2 or more.

触媒3aとして、白金Ptまたは白金合金が好適に用いられるが、その他に、金Au、銀Ag、イリジウムIr、パラジウムPd、ルテニウムRu、オスミウムOs、コバルトCo、ニッケルNi、タングステンW、モリブデンMo、マンガンMn、イットリウムY、バナジウムV、ニオブNb、チタンTi、希土類金属、から選択される少なくとも一種を含む金属を用いることができ、さらには金属触媒に代えてモリブデンカーバイドMoC等の炭化物を用いることも可能である。これらの触媒は一種類を単独で用いてもよいし、複数を併用してもよく、これらの一部または全部を合金形態で使用してもよい。 As the catalyst 3a, platinum Pt or a platinum alloy is suitably used. Besides, gold Au, silver Ag, iridium Ir, palladium Pd, ruthenium Ru, osmium Os, cobalt Co, nickel Ni, tungsten W, molybdenum Mo, manganese A metal containing at least one selected from Mn, yttrium Y, vanadium V, niobium Nb, titanium Ti, rare earth metal can be used, and a carbide such as molybdenum carbide Mo 2 C can be used instead of the metal catalyst. Is also possible. These catalysts may be used alone or in combination, or some or all of them may be used in the form of an alloy.

また、触媒層3は、水素ガスと接触することにより触媒活性を有する有機金属または有機物でなる触媒3aを基材2の一側面に担持させることにより構成するものであってもよい。   Further, the catalyst layer 3 may be configured by supporting a catalyst 3a made of an organic metal or an organic substance having catalytic activity by contacting with hydrogen gas on one side surface of the substrate 2.

このような有機金属触媒として、例えば、N,N’-Bis(salicylidene)ethylene-diamino-metal(=Ni, Fe, Vなど)、N,N’-mono-8-quinoly-σ-phenylenediamino-metal(=Ni, Fe, Vなど)等を用いることができ、有機物としては、例えばピロロピロール赤色顔料、ジピリジル誘導体を用いることができる。   Examples of such organometallic catalysts include N, N'-Bis (salicylidene) ethylene-diamino-metal (= Ni, Fe, V, etc.), N, N'-mono-8-quinoly-σ-phenylenediamino-metal. (= Ni, Fe, V, etc.) can be used, and examples of organic substances include pyrrolopyrrole red pigments and dipyridyl derivatives.

電極4は、基材2の一側面に触媒層3が形成された検出部に、少なくとも水素ガスが接触可能な構成であればよく、多数の細孔が形成された銅ニッケル合金薄膜や、良好な導電性を備えた金属ポーラス焼結体で構成することも可能である。   The electrode 4 only needs to have a configuration in which at least hydrogen gas can be in contact with the detection portion in which the catalyst layer 3 is formed on one side surface of the substrate 2, such as a copper-nickel alloy thin film having a large number of pores, It is also possible to form a metal porous sintered body having a good conductivity.

さらに、電極4は、良導体である金属で構成するものに限らず、導電性及び通気性を有するカーボンペーパーまたはカーボンクロスで構成することも可能である。   Furthermore, the electrode 4 is not limited to being composed of a metal that is a good conductor, but may be composed of carbon paper or carbon cloth having electrical conductivity and air permeability.

上述の水素ガスセンサ1の触媒層3側の電極4aに水素ガスが流入すると、触媒の作用により水素が水素イオンと電子に分解され、電子が電極4aに接続された外部回路に供給される。このとき水素ガス濃度と相関関係を有する電流値または電圧値を外部回路で検出することにより水素ガス濃度を検出することができる。   When hydrogen gas flows into the electrode 4a on the catalyst layer 3 side of the hydrogen gas sensor 1 described above, hydrogen is decomposed into hydrogen ions and electrons by the action of the catalyst, and the electrons are supplied to an external circuit connected to the electrode 4a. At this time, the hydrogen gas concentration can be detected by detecting a current value or a voltage value having a correlation with the hydrogen gas concentration by an external circuit.

上述した水素ガスセンサ1は、少なくとも触媒層3が形成された電極4a側が水素ガスに曝気されるように配置し、両電極4a,4b間に電圧検出回路6を備えることにより検出対象ガスに含まれる水素ガス濃度を計測することができる。   The hydrogen gas sensor 1 described above is arranged so that at least the electrode 4a side on which the catalyst layer 3 is formed is aerated with hydrogen gas, and the voltage detection circuit 6 is provided between the electrodes 4a and 4b, thereby being included in the detection target gas. The hydrogen gas concentration can be measured.

また、図2に示すように、電極4aに検出対象ガスが均一に供給されるように、両電極の表面にカーボンペーパーやカーボンクロス等でなるガス拡散層7を設けてもよい。   Further, as shown in FIG. 2, a gas diffusion layer 7 made of carbon paper, carbon cloth, or the like may be provided on the surfaces of both electrodes so that the detection target gas is uniformly supplied to the electrodes 4a.

上述の実施形態では、基材2に触媒3aを直接スパッタして触媒層3を形成するものを説明したが、例えば、基材2の一側面にカーボン繊維やカーボンナノチューブ等を塗布して形成された塗布層の上面に触媒3aを担持させるように構成してもよく、カーボンナノチューブを用いる場合には、その比表面積の大きさから触媒担持体として非常に優れた特性を示すようになる。   In the above-described embodiment, the catalyst layer 3 is formed by directly sputtering the catalyst 3a on the base material 2. However, for example, the catalyst layer 3 is formed by applying carbon fiber, carbon nanotube, or the like on one side surface of the base material 2. Alternatively, the catalyst 3a may be supported on the upper surface of the coated layer. When carbon nanotubes are used, the characteristics of the catalyst support are extremely excellent because of the specific surface area.

さらに、触媒層3をスパッタリングにより形成する以外に、公知の方法、例えば、真空蒸着、電子照射、CVD、PVD、含浸、スプレーコート、スプレー熱分解、練りこみ、吹き付け、ロールやコテによる塗り付け、スクリーン印刷、混錬法、光電解法、コーティング法、ゾルゲル法、ディップ法等を採用して触媒層3を形成することも可能である。   Furthermore, in addition to forming the catalyst layer 3 by sputtering, known methods such as vacuum deposition, electron irradiation, CVD, PVD, impregnation, spray coating, spray pyrolysis, kneading, spraying, coating with a roll or iron, It is also possible to form the catalyst layer 3 by employing screen printing, kneading method, photoelectrolysis method, coating method, sol-gel method, dipping method or the like.

本発明による水素ガスセンサは、基材2の少なくとも一側面に触媒層3が形成された検出部を備えているものであればよい。   The hydrogen gas sensor according to the present invention only needs to have a detection part in which the catalyst layer 3 is formed on at least one side surface of the substrate 2.

上述した実施形態では、基材が膜状に形成されたものを説明したが、その膜厚は特に制限されるものではなく、所期の効果が奏される範囲で適宜設定することが可能である。また、基材は面状体に限らず、立体で構成されるものであってもよい。この場合、電極の形成面が対向面に限られるものでもない。   In the above-described embodiment, the base material formed in a film shape has been described. However, the film thickness is not particularly limited, and can be appropriately set within a range in which an expected effect is achieved. is there. Further, the base material is not limited to a planar body, and may be a solid body. In this case, the electrode forming surface is not limited to the facing surface.

固体高分子電解質でなる基材として、デュポン社から購入した厚さ100μmのパーフルオロ系高分子、ナフィオン膜(NRE−212)を5cm角にカットし、カットしたナフィオン膜を濾紙で挟み、上方から130℃に加熱したアイロンで押圧し、濾紙に水が浸透しなくなるまで繰り返して水分を飛ばした。   As a substrate made of a solid polymer electrolyte, a 100 μm thick perfluoro polymer purchased from DuPont, Nafion membrane (NRE-212) is cut into 5 cm square, and the cut Nafion membrane is sandwiched between filter papers. It was pressed with an iron heated to 130 ° C., and water was repeatedly blown until water did not penetrate into the filter paper.

このようにして十分に水分を飛ばしたナフィオン膜の片面に4cm角の範囲で、30秒のスパッタリング時間で触媒として白金(Pt)を担持させて、20nmの膜厚の触媒層3を形成した。白金(Pt)のスパッタリング条件は、出力300W、ガス流量アルゴン(Ar)20cc/min.である。   Thus, platinum (Pt) was supported as a catalyst on one side of a Nafion membrane from which water had been sufficiently removed within a 4 cm square range for a sputtering time of 30 seconds to form a catalyst layer 3 having a thickness of 20 nm. The sputtering conditions for platinum (Pt) were as follows: output 300 W, gas flow rate argon (Ar) 20 cc / min. It is.

図3に示すように、触媒層3が形成されたナフィオン膜2を13mm径の円型に抜き取り、電極として外径が13mmの金属ワッシャー4で挟持し、当該金属ワッシャー4からリード線5を引き出して水素ガスセンサ1を試作した。   As shown in FIG. 3, the Nafion membrane 2 on which the catalyst layer 3 is formed is extracted in a circular shape having a diameter of 13 mm, and is sandwiched by a metal washer 4 having an outer diameter of 13 mm as an electrode, and the lead wire 5 is drawn out from the metal washer 4 Thus, a hydrogen gas sensor 1 was prototyped.

図4に示すように、試作した水素ガスセンサ1を200ml容積の円柱型のガラス管8の一端側に設置してリード線5を外部に引き出して、測定器6(MULTIMETER VOAC 7411、岩崎計測株式会社)に接続し、他端側からガラス管8内に窒素ガスを15分間流して内部の空気をパージし、水素ガスセンサ1を窒素雰囲気下とした。   As shown in FIG. 4, the prototype hydrogen gas sensor 1 is installed on one end side of a 200 ml cylindrical glass tube 8 and the lead wire 5 is pulled out to the outside. A measuring instrument 6 (MULTIMETER VOAC 7411, Iwasaki Measurement Co., Ltd.) ), Nitrogen gas was allowed to flow into the glass tube 8 from the other end side for 15 minutes to purge the internal air, and the hydrogen gas sensor 1 was placed in a nitrogen atmosphere.

次に、内部を純水素ガスで複数回パージしたシリンジで1cc、2cc、5cc、10cc、20cc、30cc、40cc、50ccの純水素を計り、夫々窒素ガスでパージしたガラス管8に注入し、その時の出力変化を計測した。   Next, 1 cc, 2 cc, 5 cc, 20 cc, 20 cc, 30 cc, 40 cc, and 50 cc pure hydrogen were measured with a syringe purged several times with pure hydrogen gas, and injected into the glass tube 8 purged with nitrogen gas. The output change of was measured.

このときの出力変化を図5(a),(b)に示す。その結果、窒素ガス雰囲気下つまり酸素ガスが存在しない環境で、水素ガスセンサ1に水素ガスを接触させると出力が現れることが確認された(図5(b)のグラフ中、実線で示される)。   The output change at this time is shown in FIGS. As a result, it was confirmed that an output appears when hydrogen gas is brought into contact with the hydrogen gas sensor 1 in a nitrogen gas atmosphere, that is, in an environment where oxygen gas is not present (indicated by a solid line in the graph of FIG. 5B).

被検出ガスとしてメタンガス及び一酸化炭素ガスに対して同様の実験を行なったが、何れも出力の変化が現れなかった。このことから、ガス選択性も備えていることが確認された。   A similar experiment was performed on methane gas and carbon monoxide gas as the gas to be detected, but no change in output appeared. From this, it was confirmed that the gas selectivity was also provided.

さらに、被検出ガスとして酸素ガスに対して同様の実験を行なったところ、図5(b)のグラフ中、破線で示すように、逆極性の出力変化が確認され、酸素ガスセンサとして使用できる可能性も見られた。   Further, when a similar experiment was performed on oxygen gas as a gas to be detected, as shown by the broken line in the graph of FIG. 5 (b), a change in output with a reverse polarity was confirmed, which could be used as an oxygen gas sensor. Was also seen.

本発明による水素ガスセンサの構成図Configuration of a hydrogen gas sensor according to the present invention 別実施形態を示す水素ガスセンサの構成図Configuration diagram of a hydrogen gas sensor showing another embodiment 試作した水素ガスセンサの構成図Configuration diagram of the prototype hydrogen gas sensor 酸素ガスの非存在下での水素ガスセンサの特性試験の説明図Explanatory drawing of characteristic test of hydrogen gas sensor in the absence of oxygen gas (a)は酸素ガスの非存在下での水素ガスセンサの特性試験のデータ表、(b)は酸素ガスの非存在下での水素ガスセンサの水素ガス濃度電圧特性を示すグラフ(A) is a data table of a characteristic test of a hydrogen gas sensor in the absence of oxygen gas, and (b) is a graph showing a hydrogen gas concentration voltage characteristic of the hydrogen gas sensor in the absence of oxygen gas.

符号の説明Explanation of symbols

1:水素ガスセンサ
2:固体高分子電解質でなる基材
3:触媒層
3a:触媒
4:電極
4a:アノード電極
4b:カソード電極
5:リード線
6:計測器(電圧検出回路)
7:ガス拡散層
8:ガラス管
1: Hydrogen gas sensor 2: Base material made of solid polymer electrolyte 3: Catalyst layer 3a: Catalyst 4: Electrode 4a: Anode electrode 4b: Cathode electrode 5: Lead wire 6: Measuring instrument (voltage detection circuit)
7: Gas diffusion layer 8: Glass tube

Claims (3)

固体高分子電解質で構成される基材の少なくとも一側面に触媒層が形成され、酸素ガスの非存在下で水素ガスを検出可能な検出部を備えている水素ガスセンサ。   A hydrogen gas sensor comprising a detection unit capable of detecting hydrogen gas in the absence of oxygen gas, wherein a catalyst layer is formed on at least one side surface of a substrate composed of a solid polymer electrolyte. 前記検出部が通気性を有する電極で接合されている請求項1記載の水素ガスセンサ。   The hydrogen gas sensor according to claim 1, wherein the detection unit is joined by an electrode having air permeability. 前記触媒層が前記基材にスパッタリングにより担持され、水素ガスと接触することにより触媒機能を持つ金属または合金、若しくは触媒活性を有する有機金属または有機物で構成されている請求項1または2記載の水素ガスセンサ。   3. The hydrogen according to claim 1, wherein the catalyst layer is supported on the base material by sputtering and is made of a metal or alloy having a catalytic function by contacting with hydrogen gas, or an organic metal or organic substance having catalytic activity. Gas sensor.
JP2008154220A 2008-06-12 2008-06-12 Hydrogen gas sensor Expired - Fee Related JP5080375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008154220A JP5080375B2 (en) 2008-06-12 2008-06-12 Hydrogen gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008154220A JP5080375B2 (en) 2008-06-12 2008-06-12 Hydrogen gas sensor

Publications (2)

Publication Number Publication Date
JP2009300224A true JP2009300224A (en) 2009-12-24
JP5080375B2 JP5080375B2 (en) 2012-11-21

Family

ID=41547285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008154220A Expired - Fee Related JP5080375B2 (en) 2008-06-12 2008-06-12 Hydrogen gas sensor

Country Status (1)

Country Link
JP (1) JP5080375B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010197075A (en) * 2009-02-23 2010-09-09 Gunze Ltd Hydrogen gas sensor
JP2010197074A (en) * 2009-02-23 2010-09-09 Gunze Ltd Hydrogen gas sensor
JP2013068567A (en) * 2011-09-26 2013-04-18 Gunze Ltd Signal processing method of hydrogen gas sensor, and signal processor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004199943A (en) * 2002-12-17 2004-07-15 Toyota Motor Corp Solid polymer electrolyte composition, solid polymer electrolyte membrane, membrane-electrode junction, and solid polymer electrolyte fuel cell
JP2006059540A (en) * 2004-08-17 2006-03-02 Toyota Central Res & Dev Lab Inc Sol state proton conductive electrolyte and fuel cell
JP2006322926A (en) * 2005-04-18 2006-11-30 Nagoya Institute Of Technology Hydrogen sensor and its manufacturing method
JP2009198410A (en) * 2008-02-25 2009-09-03 Gunze Ltd Hydrogen gas sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004199943A (en) * 2002-12-17 2004-07-15 Toyota Motor Corp Solid polymer electrolyte composition, solid polymer electrolyte membrane, membrane-electrode junction, and solid polymer electrolyte fuel cell
JP2006059540A (en) * 2004-08-17 2006-03-02 Toyota Central Res & Dev Lab Inc Sol state proton conductive electrolyte and fuel cell
JP2006322926A (en) * 2005-04-18 2006-11-30 Nagoya Institute Of Technology Hydrogen sensor and its manufacturing method
JP2009198410A (en) * 2008-02-25 2009-09-03 Gunze Ltd Hydrogen gas sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010197075A (en) * 2009-02-23 2010-09-09 Gunze Ltd Hydrogen gas sensor
JP2010197074A (en) * 2009-02-23 2010-09-09 Gunze Ltd Hydrogen gas sensor
JP2013068567A (en) * 2011-09-26 2013-04-18 Gunze Ltd Signal processing method of hydrogen gas sensor, and signal processor

Also Published As

Publication number Publication date
JP5080375B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
Ren et al. Efficient water splitting using a simple Ni/N/C paper electrocatalyst
JP4989661B2 (en) Hydrogen gas sensor
KR102364857B1 (en) Membrane electrode assembly and fuel cell including the same
Zhiani et al. Comparative study of aliphatic alcohols electrooxidation on zero-valent palladium complex for direct alcohol fuel cells
Guan et al. Highly sensitive amperometric Nafion-based CO sensor using Pt/C electrodes with different kinds of carbon materials
KR101734329B1 (en) Method for detecting chemical substances using impedance analysis
JP4945478B2 (en) Hydrogen gas sensor
JP5080375B2 (en) Hydrogen gas sensor
KR101269510B1 (en) Hydrogen sensor able to measure hydrogen concentration
JP6482973B2 (en) Gas sensor
JP4450773B2 (en) Thin film gas sensor
JP5042010B2 (en) Hydrogen gas sensor
JP5080396B2 (en) Hydrogen gas sensor
JP5208018B2 (en) Hydrogen gas sensor
JP2010197075A (en) Hydrogen gas sensor
JP5240767B2 (en) Thin film gas sensor and manufacturing method thereof
JP4353773B2 (en) Gas sensor element and electrochemical gas sensor
JP2008101923A (en) Electrochemical sensor
JP5777503B2 (en) Hydrogen gas sensor
JP5262940B2 (en) Carbon nanotube production equipment
JP2008128773A (en) Thin film gas sensor
JP5211531B2 (en) Solid oxide fuel cell
JP2005098947A (en) Thin-film gas sensor
JP2009016308A (en) Solid polymer fuel cell
SK500482014A3 (en) Method of plasma processing layer gas sensor sensitive to gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5080375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees