JPH09170407A - Steam turbine cooling device for uniaxial complex cycle power generation plant - Google Patents

Steam turbine cooling device for uniaxial complex cycle power generation plant

Info

Publication number
JPH09170407A
JPH09170407A JP33072295A JP33072295A JPH09170407A JP H09170407 A JPH09170407 A JP H09170407A JP 33072295 A JP33072295 A JP 33072295A JP 33072295 A JP33072295 A JP 33072295A JP H09170407 A JPH09170407 A JP H09170407A
Authority
JP
Japan
Prior art keywords
steam
cooling
steam turbine
turbine
low pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33072295A
Other languages
Japanese (ja)
Other versions
JP3660732B2 (en
Inventor
Shoichiro Fujioka
昭一郎 藤岡
Shinji Kawamoto
新二 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP33072295A priority Critical patent/JP3660732B2/en
Publication of JPH09170407A publication Critical patent/JPH09170407A/en
Application granted granted Critical
Publication of JP3660732B2 publication Critical patent/JP3660732B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • F01K13/025Cooling the interior by injection during idling or stand-by
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Abstract

PROBLEM TO BE SOLVED: To reduce start-up time without generation of overheat caused by windage loss and surely have cooling steam preventing the generation of overheat by providing a cooling steam control system giving a valve opening/closing signal to a flow control valve in a cooling steam system so that the quantity of cooling steam does not exceed a specified value. SOLUTION: There are provided a low pressure steam system LS guiding steam from a low pressure drum 14 of an exhaust heat recovery boiler HRSG to a steam turbine low pressure part 6 and a cooling steam system CS guiding steam from a separate steam source to the steam turbine low pressure part 6 as cooling steam. The total flow is obtained according to an output signal of a flow meter 23 of the low pressure steam system LS and a flow meter 26 of the cooling steam system CS. A cooling steam control system CSC giving a valve opening/closing signal to a flow control valve 27 of the cooling steam system CS is provided so that the ratio of cooling steam quantity from the cooling steam system CS to the total qauantity does not exceeds a specified value. It is thus possible to surely have cooling steam required for prevention of generation in overheat caused by windage loss.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、一軸型複合サイク
ル発電プラントの蒸気タービン冷却装置にかかり、とり
わけ起動運転中、蒸気タービン低圧部の最終段落部に生
起する過加熱状態を効果的に冷却する一軸型複合サイク
ル発電プラントの蒸気タービン冷却装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steam turbine cooling device for a single-shaft combined cycle power plant, and particularly effectively cools an overheated state that occurs in the final stage of the steam turbine low pressure section during start-up operation. The present invention relates to a steam turbine cooling device for a single-shaft combined cycle power plant.

【0002】[0002]

【従来の技術】一軸型複合サイクル発電プラントは、単
一軸に、圧縮機、ガスタービン、蒸気タービン高圧部、
蒸気タービン中圧部、蒸気タービン低圧部を串形配置し
たものであって、その配置が軸状になっているので比較
的設置面積が少なくて済み、またガスタービンに備わっ
た急速起動を活用でき、さらにまた、ガスタービンから
出る排熱が蒸気発生の熱源として有効活用ができるた
め、ガスタービン単体あるいは蒸気タービン単体の熱効
率に比べて高い点も手伝って最近、好まれて数多く採用
されている。
2. Description of the Related Art A single-shaft combined cycle power plant includes a single shaft, a compressor, a gas turbine, a steam turbine high pressure section,
The steam turbine middle pressure part and steam turbine low pressure part are arranged in a skewer, and because the arrangement is axial, the installation area is relatively small, and the quick start provided in the gas turbine can be used. Furthermore, since exhaust heat generated from a gas turbine can be effectively used as a heat source for steam generation, it has recently been favored and adopted in large numbers due to its high thermal efficiency as compared with the thermal efficiency of a gas turbine alone or a steam turbine alone.

【0003】この種の発電プラントの起動運転は、真空
ポンプによって復水器を通じて蒸気タービン低圧部内を
真空引きにしておき、規定真空度になったときスターテ
ィングモータの駆動力により単一軸(回転軸)を回転さ
せ、圧縮機、ガスタービン、蒸気タービンの各圧力部を
昇速させてからガスタービン燃焼器に燃料を投入して燃
焼ガスを生成し、この燃焼ガスの生成によってガスター
ビンを起動させている。
In this type of power plant start-up operation, a low pressure portion of the steam turbine is evacuated through a condenser by a vacuum pump, and when a prescribed vacuum degree is reached, a single shaft (rotating shaft) is driven by a driving force of a starting motor. ) Is rotated to accelerate each pressure part of the compressor, gas turbine, and steam turbine, and then fuel is injected into the gas turbine combustor to generate combustion gas, and the gas turbine is started by generation of this combustion gas. ing.

【0004】起動後のガスタービンは、燃焼ガスによっ
て膨張仕事をし、膨張仕事後の排熱を、熱源とする蒸気
発生用として排熱回収ボイラに送っている。この間、蒸
気タービンの各圧力部は、排熱回収ボイラから蒸気が得
られていないので、いわゆる無通気・無負荷の運転にあ
り、各圧力部のタービンケーシング内の空気を撹拌して
いるだけの状態になっている。
After starting, the gas turbine performs expansion work by the combustion gas and sends the exhaust heat after the expansion work to the exhaust heat recovery boiler for steam generation as a heat source. During this period, no steam is obtained from the exhaust heat recovery boiler in each pressure section of the steam turbine, so there is so-called no-ventilation / no-load operation, and only the air in the turbine casing of each pressure section is agitated. It is in a state.

【0005】このような空気撹拌状態下の蒸気タービン
各圧力部のうち、とりわけ蒸気タービン低圧部は、最終
段落部の動翼が1m以上にも及ぶ長翼化しているため、
風損(蒸気タービンケーシング内の空気撹拌による動力
損失)が生起し、その摩擦熱によって最終段落部の構成
部品が過加熱状態に落ち入り、材力強度の低下という問
題が出ている。
Among the pressure portions of the steam turbine under such an agitated state, especially in the low pressure portion of the steam turbine, since the moving blades in the final stage portion have a length of 1 m or more,
Wind loss (power loss due to air agitation in the steam turbine casing) occurs, and the frictional heat causes the components in the final stage to fall into an overheated state, resulting in a problem of reduced strength of the material.

【0006】このような問題点に対する回避策として、
例えば特公平6−78724号公報に見られるように、
最終段落部の風損が生起する回転数が経験的にわかって
いるところ、この風損に対する回転数と、排熱回収ボイ
ラの低圧ドラム内圧が所与値に達したことを条件に、排
熱回収ボイラの低圧ドラムから蒸気タービン低圧部に低
圧蒸気を供給し、蒸気タービン低圧部の最終段落部を冷
却し、その構成部品の過加熱状態から保護することがす
でに知られていた。
As a workaround for such a problem,
For example, as seen in Japanese Patent Publication No. 6-78724,
Empirically, the rotational speed at which the wind loss occurs in the final paragraph is empirically known, and the exhaust heat recovery is performed on the condition that the rotational speed for this wind loss and the low-pressure drum internal pressure of the exhaust heat recovery boiler have reached a given value It was already known to supply low pressure steam to the low pressure section of a steam turbine from a low pressure drum of a recovery boiler to cool the final stage of the low pressure section of the steam turbine and to protect its components from overheating.

【0007】[0007]

【発明が解決しようとする課題】ところが、上述公報の
ような従来技術では、排熱回収ボイラの低圧ドラムの器
内圧が所与圧に達するまでに時間を要し、この間、回転
軸は風損が生起しないよう回転数を、従来よりも低くし
ておかなければならず、起動運転の短縮化に支障をきた
している。特に、ホットスタートと異なってコールドス
タートの場合、起動時間に2時間以上も要しており、こ
の種の発電プラントの売りものの一つである起動短縮と
いう利点を損っている。
However, in the prior art as described in the above publication, it takes time for the internal pressure of the low-pressure drum of the exhaust heat recovery boiler to reach a given pressure, and during this period, the rotating shaft loses windage. Therefore, the rotation speed must be kept lower than before so that the start-up operation can be shortened. In particular, unlike a hot start, a cold start requires more than 2 hours for start-up time, which detracts from the advantage of shortening start-up, which is one of the selling points of this type of power plant.

【0008】また、最近の発電プラントは、その出力が
増加しており、出力増加に伴って起動時間も長くなる傾
向にあり、風損が生起しない回転数にホールドしていた
のでは起動時間短縮を図ることができないことと相まっ
て、排熱回収ボイラの低圧ドラムから蒸気タービン低圧
部に供給される低圧蒸気量だけでは上述最終段落部の構
成部品を過加熱状態から保護できなくなってきた。さら
にまた、負荷しゃ断時、蒸気タービンの各圧力部に供給
されていた蒸気は必然的にカットされるものの、それで
も回転軸だけは定速回転以上の回転数に維持する運転を
求められる場合があり、この場合も風損に伴う過加熱状
態回避のため、上記低圧ドラムからの蒸気を必要とし、
その蒸気量が多量化しているため、従来の蒸気量だけで
は賄いきれず、何らかの対策が必要になってきた。
In addition, the output of a recent power plant is increasing, and the start-up time tends to increase as the output increases, and the start-up time is shortened if the rotation speed is held at a level at which windage loss does not occur. In addition to this, it has become impossible to protect the components in the final paragraph from the overheated state only with the low-pressure steam amount supplied from the low-pressure drum of the exhaust heat recovery boiler to the low-pressure part of the steam turbine. Furthermore, when the load is cut off, the steam supplied to each pressure section of the steam turbine is inevitably cut off, but there are still cases where it is required to maintain the rotation speed of the rotating shaft at a constant speed or higher. , In this case as well, steam from the low pressure drum is required to avoid overheating due to windage loss,
Since the amount of steam is increasing, it is not possible to cover it with the conventional amount of steam alone, and some measures have to be taken.

【0009】本発明は、このような事情にもとずいてな
されたものであり、単一軸(回転軸)の回転数を、従来
の回転数よりも低くホールドすることなく風損に伴う過
加熱を回避して起動時間の短縮化を図るとともに、風損
に伴う過加熱の回避に必要な冷却蒸気を確実に確保でき
るようにした一軸型複合サイクル発電プラントの蒸気タ
ービン冷却装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and it is possible to prevent overheating due to windage loss without holding the rotation speed of a single shaft (rotating shaft) lower than the conventional rotation speed. In order to shorten the start-up time by avoiding the above, it is possible to provide a steam turbine cooling device for a single-shaft combined cycle power plant that can reliably secure the cooling steam necessary for avoiding overheating due to windage loss. To aim.

【0010】[0010]

【課題を解決するための手段】本発明にかかる一軸型複
合サイクル発電プラントの蒸気タービン冷却装置は、上
記目的を達成するために、請求項1に記載したように単
一軸に、圧縮機、ガスタービン、蒸気タービン高圧部、
蒸気タービン中圧部、蒸気タービン低圧部を設け、上記
圧縮機からの高圧空気を燃焼器に送り、ここで燃料を加
えて燃焼ガスを生成し、生成燃焼ガスを上記ガスタービ
ンに送って膨張仕事をさせ、膨張仕事後の燃焼ガスの排
熱を熱源として別置き排熱回収ボイラにより蒸気を発生
させ、その発生蒸気により上記蒸気タービン高圧部、蒸
気タービン中圧部、蒸気タービン低圧部で膨張仕事をさ
せる一軸型複合サイクル発電プラントにおいて、上記排
熱回収ボイラの低圧ドラムからの蒸気を、上記蒸気ター
ビン低圧部に案内する低圧蒸気系と、この低圧蒸気系に
接続され、別置き蒸気源からの蒸気を冷却蒸気として上
記蒸気タービン低圧部に案内する冷却蒸気系とを備える
一方、上記低圧蒸気系の流量計の出力信号と上記冷却蒸
気系の流量計の出力信号との合計流量和のうち、上記冷
却蒸気系からの冷却蒸気量の占める割合が所与値を越え
ないように、上記冷却蒸気系の流量調節弁に弁開閉信号
を与える冷却蒸気制御系を設けたものである。
In order to achieve the above object, a steam turbine cooling device for a single-shaft combined cycle power plant according to the present invention has a single shaft, a compressor, and a gas. Turbine, steam turbine high pressure part,
A steam turbine intermediate pressure part and a steam turbine low pressure part are provided, and high pressure air from the compressor is sent to a combustor, where fuel is added to generate combustion gas, and the generated combustion gas is sent to the gas turbine to perform expansion work. The exhaust heat of the combustion gas after expansion work is used as a heat source to generate steam by a separate heat recovery steam generator, and the generated steam causes expansion work in the steam turbine high pressure section, steam turbine intermediate pressure section, and steam turbine low pressure section. In the single-screw combined cycle power generation plant that performs the steam from the low-pressure drum of the exhaust heat recovery boiler, a low-pressure steam system that guides the steam turbine low-pressure section, and is connected to this low-pressure steam system, from a separately placed steam source. A cooling steam system for guiding steam to the low-pressure part of the steam turbine as cooling steam is provided, while an output signal of the low-pressure steam system flow meter and an output of the cooling steam system flow meter are provided. A cooling steam control system that gives a valve opening / closing signal to the flow control valve of the cooling steam system so that the proportion of the amount of cooling steam from the cooling steam system in the total flow rate sum with the signal does not exceed a given value. It is provided.

【0011】また、請求項2記載の本発明は、請求項1
記載の冷却蒸気系の流量調節弁に弁開閉信号を与える冷
却蒸気制御系を、低圧蒸気系の流量計の出力信号と上記
冷却蒸気系の流量計の出力信号とを加算する加算部と、
この加算部からの出力信号に設定器からの所与値を突合
わせる比較部と、この比較部からの偏差に基づいて上記
冷却蒸気系の流量調節弁に弁開閉信号を与える調節部と
を有する構成にしたものである。
The present invention described in claim 2 is the same as the claim 1.
A cooling steam control system for giving a valve opening / closing signal to the flow control valve of the cooling steam system described above, an adding unit for adding the output signal of the flow meter of the low-pressure steam system and the output signal of the flow meter of the cooling steam system,
It has a comparing section for matching a given value from the setter with the output signal from the adding section, and an adjusting section for giving a valve opening / closing signal to the flow rate control valve of the cooling steam system based on the deviation from the comparing section. It is configured.

【0012】さらに、請求項3記載の本発明は、請求項
2記載の冷却蒸気系の流量調節弁に弁開閉信号を与える
冷却蒸気制御系の設定器の所与値を、復水器から求めた
真空度に見合う冷却蒸気量を算出する関数発生器の出力
信号により定められたものである。
Further, according to the present invention as set forth in claim 3, a given value of a setter of the cooling steam control system for giving a valve opening / closing signal to the flow control valve of the cooling steam system according to claim 2 is obtained from the condenser. It is determined by the output signal of the function generator that calculates the amount of cooling steam commensurate with the degree of vacuum.

【0013】さらに、請求項4記載の本発明にかかる一
軸型複合サイクル発電プラントの蒸気タービン冷却装置
は、単一軸に、圧縮機、ガスタービン、蒸気タービン高
圧部、蒸気タービン中圧部、蒸気タービン低圧部を設
け、上記圧縮機からの高圧空気を燃焼器に送り、ここで
燃料を加えて燃焼ガスを生成し、生成燃焼ガスを上記ガ
スタービンに送って膨張仕事をさせ、膨張仕事後の燃焼
ガスの排熱を熱源として別置き排熱回収ボイラにより蒸
気を発生させ、その発生蒸気により上記蒸気タービン高
圧部、蒸気タービン中圧部、蒸気タービン低圧部で膨張
仕事をさせる一軸型複合サイクル発電プラントにおい
て、上記排熱回収ボイラの低圧ドラムからの蒸気を、上
記蒸気タービン低圧部に案内する低圧蒸気系と、この低
圧蒸気系に接続され、別置き蒸気源からの蒸気を冷却蒸
気として上記蒸気タービン低圧部に案内する冷却蒸気系
と、上記排熱回収ボイラの再熱器からの再熱蒸気を、上
記蒸気タービン中圧部を介して上記蒸気タービン低圧部
に案内する再熱蒸気系とを備える一方、この再熱蒸気系
に流量計を設け、この流量計が再熱蒸気のみで上記蒸気
タービン低圧部の冷却を賄えることを検出したとき、上
記冷却蒸気系の冷却蒸気供給弁に弁閉信号を与える冷却
蒸気制御系を設けたものである。
Further, the steam turbine cooling device for a single-shaft combined cycle power plant according to the present invention according to claim 4 has, in a single shaft, a compressor, a gas turbine, a steam turbine high pressure section, a steam turbine intermediate pressure section, and a steam turbine. A low-pressure part is provided, and high-pressure air from the compressor is sent to a combustor, where fuel is added to generate combustion gas, and the generated combustion gas is sent to the gas turbine to perform expansion work and combustion after expansion work. Single-screw combined cycle power generation plant in which steam is generated by a separately placed exhaust heat recovery boiler using the exhaust heat of gas as a heat source, and the generated steam performs expansion work in the steam turbine high pressure section, steam turbine intermediate pressure section, and steam turbine low pressure section. In, the steam from the low-pressure drum of the exhaust heat recovery boiler, a low-pressure steam system for guiding to the steam turbine low-pressure portion, connected to this low-pressure steam system, A cooling steam system that guides the steam from the stationary steam source to the steam turbine low-pressure section as cooling steam, and the reheated steam from the reheater of the exhaust heat recovery boiler, the steam through the steam turbine intermediate pressure section. While having a reheat steam system to guide to the turbine low pressure section, while providing a flow meter to this reheat steam system, when detecting that this flow meter can cover the cooling of the steam turbine low pressure section only with reheat steam, A cooling steam control system for giving a valve closing signal to the cooling steam supply valve of the cooling steam system is provided.

【0014】また、請求項7記載の本発明にかかる一軸
型複合サイクル発電プラントの蒸気タービン冷却装置
は、単一軸に、圧縮機、ガスタービン、蒸気タービン高
圧部、蒸気タービン中圧部、蒸気タービン低圧部を設
け、上記圧縮機からの高圧空気を燃焼器に送り、ここで
燃料を加えて燃焼ガスを生成し、生成燃焼ガスを上記ガ
スタービンに送って膨張仕事をさせ、膨張仕事後の燃焼
ガスの排熱を熱源として別置き排熱回収ボイラにより蒸
気を発生させ、その発生蒸気により上記蒸気タービン高
圧部、蒸気タービン中圧部、蒸気タービン低圧部で膨張
仕事をさせる一軸型複合サイクル発電プラントにおい
て、上記排熱回収ボイラの低圧ドラムからの蒸気を、上
記蒸気タービン低圧部に案内する低圧蒸気系と、この低
圧蒸気系に接続され、別置き蒸気源からの蒸気を冷却蒸
気として上記蒸気タービン低圧部に案内する冷却蒸気系
と、上記排熱回収ボイラの過熱器からの主蒸気を、上記
蒸気タービン高圧部、上記排熱回収ボイラの再熱器、上
記蒸気タービン中圧部を介して上記蒸気タービン低圧部
に案内する主蒸気系とを備える一方、この主蒸気系の高
圧加減弁の弁開度を検出する弁リフト検出器を設け、こ
の弁リフト検出器が主蒸気のみで上記蒸気タービン低圧
部の冷却を賄えることを検出したとき、上記冷却蒸気系
の冷却蒸気供給弁に弁閉信号を与える冷却蒸気制御系を
設けたものである。
According to a seventh aspect of the present invention, there is provided a single-shaft combined cycle power plant steam turbine cooling device in which a single shaft is provided with a compressor, a gas turbine, a steam turbine high pressure section, a steam turbine intermediate pressure section, and a steam turbine. A low-pressure part is provided, and high-pressure air from the compressor is sent to a combustor, where fuel is added to generate combustion gas, and the generated combustion gas is sent to the gas turbine to perform expansion work and combustion after expansion work. Single-screw combined cycle power generation plant in which steam is generated by a separately placed exhaust heat recovery boiler using the exhaust heat of gas as a heat source, and the generated steam performs expansion work in the steam turbine high pressure section, steam turbine intermediate pressure section, and steam turbine low pressure section. In the above, a low pressure steam system for guiding the steam from the low pressure drum of the exhaust heat recovery boiler to the low pressure part of the steam turbine and a low pressure steam system connected to the low pressure steam system, The cooling steam system that guides the steam from the steam source to the low pressure part of the steam turbine as cooling steam, and the main steam from the superheater of the exhaust heat recovery boiler, the high pressure part of the steam turbine and the reheat of the exhaust heat recovery boiler. Heater, while having a main steam system for guiding to the steam turbine low-pressure portion via the steam turbine intermediate pressure portion, provided with a valve lift detector for detecting the valve opening of the high-pressure control valve of the main steam system, When the valve lift detector detects that only the main steam can cover the low pressure part of the steam turbine, a cooling steam control system for providing a valve closing signal to the cooling steam supply valve of the cooling steam system is provided. .

【0015】[0015]

【発明の実施の形態】以下、本発明にかかる一軸型複合
サイクル発電プラントの蒸気タービン冷却装置を容易に
理解するために、第1実施の形態、第2実施の形態およ
び第3実施の形態とに分けて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION In order to easily understand a steam turbine cooling device for a single-shaft combined cycle power plant according to the present invention, a first embodiment, a second embodiment and a third embodiment will be described below. I will explain separately.

【0016】(第1実施の形態)図1は、本発明にかか
る一軸型複合サイクル発電プラントの蒸気タービン冷却
装置を示す概略系統図である。
(First Embodiment) FIG. 1 is a schematic system diagram showing a steam turbine cooling device of a single-shaft combined cycle power plant according to the present invention.

【0017】一軸型複合サイクル発電プラントの蒸気タ
ービン冷却装置は、図1に示されるように、原動機部G
Tと、排熱回収ボイラHRSGと、低圧蒸気系LSと、
冷却蒸気系CSと、冷却蒸気制御系CSCとを有する構
成になっている。
As shown in FIG. 1, a steam turbine cooling device of a single-shaft combined cycle power plant has a prime mover section G.
T, an exhaust heat recovery boiler HRSG, a low pressure steam system LS,
It has a configuration including a cooling steam system CS and a cooling steam control system CSC.

【0018】原動機部GTは、単一軸(回転軸)に、ガ
スタービン1、圧縮機3、蒸気タービン高圧部4、蒸気
タービン中圧部5、蒸気タービン低圧部6を串形配置に
して軸状に長く延びる構成になっている。
The prime mover section GT has a single shaft (rotating shaft) in which a gas turbine 1, a compressor 3, a steam turbine high pressure part 4, a steam turbine intermediate pressure part 5, and a steam turbine low pressure part 6 are arranged in a skewed shape in an axial shape. It has a long stretch.

【0019】排熱回収ボイラHRSGの入口端Aは、上
記原動機部GTと距離を置いて離れ、ガスタービン1の
出口端Aに接続している。この排熱回収ボイラHRSG
は、ガスタービン1の燃焼ガスの排熱を受け、その流れ
に沿って過熱器8、再熱器9、高圧ドラム10に連通す
る高圧蒸発器11、中圧ドラム12に連通する中圧蒸発
器13、低圧ドラム14に連通する低圧蒸発器15、節
炭器16を備え、ここから発生した蒸気を上記原動機部
GTの蒸気タービン高圧部4、蒸気タービン中圧部5、
蒸気タービン低圧部6のそれぞれに送給する構成になっ
ている。すなわち、蒸気タービン高圧部4は、主蒸気系
MSの高圧加減弁17を介装して過熱器8に、その出口
端Bは、再熱器9の入口端Bのそれぞれに接続してい
る。この再熱器9は、蒸気タービン高圧部4により膨張
仕事をした蒸気の蒸気条件(圧力・温度)を、原蒸気条
件に回復する、いわゆる再熱蒸気を発生させるものであ
って、その出口端Cと蒸気タービン中圧部5の入口端C
を、中間阻止弁18を介装して接続する再熱系RHSを
備えたものである。また、蒸気タービン低圧部6の入口
端は、低圧加減弁21を介装して低圧蒸気系LSに、そ
の出口端は復水器19、復水ポンプ20、を介装して排
熱回収ボイラHRSGの節炭器16にそれぞれ接続して
いる。
The inlet end A of the exhaust heat recovery boiler HRSG is separated from the prime mover GT by a distance, and is connected to the outlet end A of the gas turbine 1. This exhaust heat recovery boiler HRSG
Receives the exhaust heat of the combustion gas of the gas turbine 1, and along the flow thereof, the superheater 8, the reheater 9, the high-pressure evaporator 11 communicating with the high-pressure drum 10, and the medium-pressure evaporator communicating with the intermediate-pressure drum 12. 13, a low-pressure evaporator 15 communicating with the low-pressure drum 14 and a economizer 16. The steam generated from the low-pressure evaporator 15 and the economizer 16 are used for the steam turbine high-pressure section 4, the steam turbine intermediate-pressure section 5, and the steam turbine high-pressure section 4.
The configuration is such that the steam turbine low-pressure portion 6 is fed. That is, the steam turbine high pressure section 4 is connected to the superheater 8 via the high pressure control valve 17 of the main steam system MS, and the outlet end B thereof is connected to the inlet end B of the reheater 9. The reheater 9 is for generating so-called reheated steam that recovers the steam condition (pressure / temperature) of the steam expanded by the steam turbine high-pressure unit 4 to the original steam condition, and has its outlet end. C and the inlet end C of the steam turbine intermediate pressure section 5
Is provided with a reheat system RHS for connecting the intermediate block valve 18 via the intermediate block valve 18. Further, the inlet end of the steam turbine low-pressure portion 6 is provided with a low-pressure control valve 21 to the low-pressure steam system LS, and the outlet end thereof is provided with a condenser 19 and a condensate pump 20 to provide an exhaust heat recovery boiler. Each is connected to the HRSG economizer 16.

【0020】低圧蒸気系LSは、蒸気タービン低圧部6
の入口端と排熱回収ボイラHRSGの低圧ドラム14と
を結び、低圧加減弁21、逆止弁24、流量計23を備
えた管路構成になっており、この低圧蒸気系LSには、
冷却蒸気系CSが付設追加されている。
The low pressure steam system LS comprises a steam turbine low pressure section 6
Is connected to the low-pressure drum 14 of the exhaust heat recovery boiler HRSG, and has a pipeline structure including a low-pressure control valve 21, a check valve 24, and a flow meter 23. This low-pressure steam system LS has
A cooling steam system CS is additionally attached.

【0021】冷却蒸気系CSは、蒸気源22を備えると
ともに、ここから送給される冷却蒸気の流れに沿って流
量計26、流量調節弁27、冷却蒸気供給弁25を備え
た管路構成になっており、上記低圧蒸気系LSの低圧加
減弁21の入口側に接続している。上記蒸気源22は、
蒸気タービン低圧部6の風損に伴う過加熱を回避する関
係上、多量の冷却蒸気を消費するといえども、経済性を
考慮すると最低必要限度にとどめておくことが得策であ
り、このため、利便性を考慮して、例えば既存の複合サ
イクル発電プラントの他の低圧蒸気系または発電所内専
用のハウスボイラを使用することが望ましい。
The cooling steam system CS is provided with a steam source 22, and is provided with a flowmeter 26, a flow rate control valve 27, and a cooling steam supply valve 25 along the flow of the cooling steam sent from the cooling steam system CS. It is connected to the inlet side of the low pressure control valve 21 of the low pressure steam system LS. The vapor source 22 is
Even though a large amount of cooling steam is consumed in order to avoid overheating due to windage loss of the steam turbine low-pressure part 6, it is a good idea to keep it at the minimum necessary limit in view of economic efficiency. In consideration of the property, it is desirable to use, for example, another low-pressure steam system of the existing combined cycle power plant or a house boiler exclusively used in the power plant.

【0022】上記低圧蒸気系LSと冷却蒸気系CSに
は、ともに共通の冷却蒸気制御系CSCが設けられてい
る。この冷却蒸気制御系CSCは、上記蒸気源22から
蒸気タービン低圧部6に送給される冷却蒸気量を、最低
必要限度にコントロールするものであって、低圧蒸気系
LSの流量計23の出力信号に、冷却蒸気系CSの流量
計26の出力信号を加算する加算部28と、この加算部
28の出力信号に、設定器30から予じめ定められた所
与値としての出力信号を突合わせる比較部29と、比較
部29からの偏差に比例・積分演算して上記流量調節弁
27の弁開閉信号を作り出す調節部31とを有する構成
になっている。
The low-pressure steam system LS and the cooling steam system CS are both provided with a common cooling steam control system CSC. The cooling steam control system CSC controls the amount of cooling steam fed from the steam source 22 to the steam turbine low pressure section 6 to a minimum required limit, and is an output signal of the flow meter 23 of the low pressure steam system LS. In addition, an adder 28 for adding the output signal of the flow meter 26 of the cooling steam system CS and the output signal of the adder 28 are matched with the output signal as a given value predetermined by the setter 30. It is configured to include a comparison unit 29 and an adjustment unit 31 that produces a valve opening / closing signal of the flow rate adjustment valve 27 by performing proportional / integral calculation on the deviation from the comparison unit 29.

【0023】次に、上記構成に基ずく作用を説明する。Next, the operation based on the above configuration will be described.

【0024】起動前、復水器19は、図示しない真空ポ
ンプにより真空引にされており、規定真空度に達する
と、スターティングモータ(図示せず)により原動機部
GTは回転し、燃焼器2の着火によりガスタービン1お
よび圧縮機3は、併入運転に入る。
Before starting, the condenser 19 is evacuated by a vacuum pump (not shown), and when the specified vacuum degree is reached, a starting motor (not shown) causes the prime mover GT to rotate and the combustor 2 The ignition of the gas turbine 1 and the compressor 3 starts the parallel operation.

【0025】圧縮機3は、大気を吸込んで高圧化し、そ
の高圧空気を燃焼ガス生成用として燃焼器2に送給して
いる。燃焼器2には、高圧空気とともに燃料、例えばL
NGまたは灯油が加えられ、高温の燃焼ガスを生成して
いる。ガスタービン1は、燃焼ガスに膨張仕事をさせ、
膨張仕事後の燃焼ガスを排熱回収ボイラHRSGに蒸気
発生用の熱源として送給している。この間、原動機部G
Tの蒸気タービン高圧部4、蒸気タービン中圧部5、蒸
気タービン低圧部6は排熱回収ボイラHRSGからの蒸
気を得ていない、いわゆる無通気・無負荷の状態にあ
り、このため各圧力部4,5,6のケーシング内は動翼
回転による空気の撹拌が継続している。特に、蒸気ター
ビン低圧部6の最終段落部の動翼は、他の各圧力部4,
5のそれと較べ長翼であるため、空気の撹拌中、回転摩
擦熱が多く出、この回転摩擦熱により最終段落部の構成
部品は過加熱状態に落ち入る。このときには、排熱回収
ボイラHRSGの低圧ドラム4は、開口しており、所与
圧力になっているので、ここから低圧蒸気を低圧蒸気系
LSの低圧加減弁21を経て蒸気タービン低圧部6に送
り、蒸気タービン低圧部6の過加熱状態の回避を図って
いる。
The compressor 3 sucks in atmospheric air to increase its pressure and sends the high-pressure air to the combustor 2 for producing combustion gas. In the combustor 2, fuel such as L
NG or kerosene is added to produce hot combustion gas. The gas turbine 1 causes the combustion gas to perform expansion work,
The combustion gas after the expansion work is sent to the exhaust heat recovery boiler HRSG as a heat source for generating steam. During this period, the engine department G
The steam turbine high-pressure part 4, the steam turbine medium-pressure part 5, and the steam turbine low-pressure part 6 of T are in a so-called no-ventilation / no-load state in which steam from the exhaust heat recovery boiler HRSG is not obtained. In the casings 4, 5 and 6, air is continuously stirred by rotating the moving blades. In particular, the rotor blades in the final stage of the steam turbine low-pressure section 6 are
Since the blade is longer than that of No. 5, a large amount of rotational frictional heat is generated during agitation of air, and the rotational frictional heat causes the components in the final paragraph to fall into an overheated state. At this time, the low-pressure drum 4 of the exhaust heat recovery boiler HRSG is open and is at a given pressure, so that the low-pressure steam from this is passed through the low-pressure control valve 21 of the low-pressure steam system LS to the steam turbine low-pressure section 6. The steam turbine low pressure portion 6 is prevented from being overheated.

【0026】ところが、高出力化に伴って起動時間も従
来よりも長くなってくると、低圧蒸気系LSから蒸気タ
ービン低圧部6に送給していた低圧蒸気量だけでは蒸気
タービン低圧部6の過加熱状態回避に対し、賄うことが
できなくなっている。このため、低圧蒸気系LSには、
低圧蒸気の不足分として蒸気源22からの冷却蒸気をも
ってバックアップする冷却蒸気系CSが設けられてい
る。この冷却蒸気系CSは、あくまでも低圧蒸気系LS
のバックアップ用であるから、上記低圧蒸気の不足分に
対し、過不足のない最低必要限度の冷却蒸気量にしてお
く必要がある。
However, when the start-up time becomes longer than before with the increase in output, the low-pressure steam amount supplied from the low-pressure steam system LS to the low-pressure steam turbine section 6 alone is enough to drive the low-pressure steam turbine section 6. It is no longer possible to cover for avoiding overheating. Therefore, in the low pressure steam system LS,
A cooling steam system CS is provided that backs up the cooling steam from the steam source 22 as a shortage of low-pressure steam. This cooling steam system CS is just a low pressure steam system LS
Since it is for backup of the above, it is necessary to keep the amount of cooling steam at the minimum necessary limit without excess or deficiency with respect to the above shortage of low pressure steam.

【0027】冷却蒸気系CSの蒸気源22から低圧蒸気
系LSに送給される冷却蒸気量は冷却蒸気制御系CSC
によってコントロールされている。すなわち、低圧蒸気
系LSの低圧蒸気は流量計23により検出され、また冷
却蒸気系CSの冷却蒸気は流量計26により検出されて
いる。流量計23,26により検出された出力信号は、
それぞれ加算部28に送られ、ここで加算信号として比
較部29に送っている。比較部29は、上記加算信号と
ともに、設定器30からの予じめ定められた所与値とし
ての出力信号を突合わせ、偏差が生じた場合、その偏差
信号を演算部31に送り、ここで比例・積分動作による
弁開閉信号を作り出し、その弁開閉信号を冷却蒸気系C
Sの流量調節弁27に与え、蒸気源22からの冷却蒸気
量をコントロールしている。
The amount of cooling steam sent from the steam source 22 of the cooling steam system CS to the low pressure steam system LS is the cooling steam control system CSC.
Is controlled by That is, the low pressure steam of the low pressure steam system LS is detected by the flow meter 23, and the cooling steam of the cooling steam system CS is detected by the flow meter 26. The output signals detected by the flow meters 23 and 26 are
Each is sent to the adder 28, where it is sent to the comparator 29 as an addition signal. The comparison unit 29 compares the addition signal with the output signal from the setter 30 as a predetermined given value, and when a deviation occurs, sends the deviation signal to the calculation unit 31, where A valve opening / closing signal is generated by proportional / integral operation, and the valve opening / closing signal is used as the cooling steam system C.
It is given to the flow rate control valve 27 of S to control the amount of cooling steam from the steam source 22.

【0028】したがって、本発明にかかる一軸型複合発
電プラントの蒸気冷却装置では、起動中、蒸気タービン
低圧部6が風損に伴う過加熱状態に落ち入ろうとも冷却
蒸気系CSの流量調節弁27の流量コントロールによ
り、過加熱状態を回避するに必要な蒸気量を確実に確保
でき、これにより起動時間も短縮することができる。
Therefore, in the steam cooling device for a single-shaft combined cycle power plant according to the present invention, even if the steam turbine low-pressure portion 6 falls into an overheated state due to windage loss during start-up, the flow control valve 27 of the cooling steam system CS is operated. By controlling the flow rate, the amount of steam required to avoid the overheated state can be reliably ensured, and the start-up time can be shortened.

【0029】なお、ガスタービン1、蒸気タービン高圧
部4、蒸気タービン中圧部5および蒸気タービン低圧部
6がともに定格回転数に達し、ガスタービン1のみが併
入運転に入ると、燃焼ガス温度の高まりも増し、排熱回
収ボイラHRSGの高圧ドラム10の蒸気圧力が所与圧
に近づいてくるので、主蒸気系MSの高圧蒸気加減弁1
7、再熱蒸気系RHSの中間阻止弁18を開口して高圧
ドラム10からの高圧蒸気による蒸気タービン各圧力部
4,5,6への通気を行い、通気運転後、ガスタービン
1の負荷上昇とともに蒸気タービン各圧力部4,5,6
も負荷運転に入り、このようにして発電機7からの電気
出力を得るようにしている。
When the gas turbine 1, the steam turbine high pressure section 4, the steam turbine medium pressure section 5 and the steam turbine low pressure section 6 all reach the rated speed and only the gas turbine 1 enters the parallel operation, the combustion gas temperature is increased. As the steam pressure of the high pressure drum 10 of the exhaust heat recovery boiler HRSG approaches a given pressure, the high pressure steam control valve 1 of the main steam system MS 1
7. Open the intermediate blocking valve 18 of the reheat steam system RHS to ventilate the high pressure steam from the high pressure drum 10 to each pressure section 4, 5, 6 of the steam turbine, and increase the load of the gas turbine 1 after the ventilation operation. Together with steam turbine pressure parts 4, 5, 6
Also enters the load operation, and thus the electric output from the generator 7 is obtained.

【0030】図2は、本発明にかかる第1実施の形態の
変形例、とりわけ冷却蒸気制御系を示す概略系統図であ
る。なお、第1実施の形態における構成部品と同一部分
には同一符号を付し、その説明を省略する。
FIG. 2 is a schematic system diagram showing a modified example of the first embodiment according to the present invention, particularly a cooling steam control system. The same parts as those of the first embodiment are designated by the same reference numerals and the description thereof will be omitted.

【0031】本変形例では、冷却蒸気系CSの流量調節
弁27に弁開閉制御信号を与える制御系CSSの設定器
30の所与値を復水器19の真空度に求めたものであ
る。
In this modified example, a given value of the setter 30 of the control system CSS that gives a valve opening / closing control signal to the flow rate control valve 27 of the cooling steam system CS is obtained as the degree of vacuum of the condenser 19.

【0032】一般に、復水器19の真空度が高くなる
と、蒸気タービン低圧部6の風損に伴う過加熱の影響が
少なくなることが知られており、真空度の高低変化によ
り蒸気タービン低圧部6に案内される蒸気量の増減変化
に直接影響を与えている。この場合、真空度の高低変化
は、復水器19に蒸気タービン低圧部6から案内される
排気蒸気量、復水器19に冷却水源、例えば海洋から案
内される海水量および海水温度の影響を受けるが、海水
量は設計値を維持していると考えられるから、結局、海
水温度に左右されている。つまり、海水温度が高いと、
真空度は低下する関係にある。海水温度は、温度調整が
できないので、結局、真空度変化に対応させて蒸気ター
ビン低圧部6に案内される蒸気量を定める必要がある。
It is generally known that when the degree of vacuum of the condenser 19 becomes higher, the influence of overheating due to windage loss of the steam turbine low-pressure portion 6 becomes smaller. It directly affects the increase / decrease in the amount of steam guided in No. 6. In this case, changes in the degree of vacuum affect the influence of the amount of exhaust steam guided from the steam turbine low-pressure portion 6 to the condenser 19, the cooling water source to the condenser 19, for example, the amount of seawater and the temperature of seawater guided from the ocean. However, it is considered that the amount of seawater maintains the design value, so it is ultimately affected by the seawater temperature. In other words, if the seawater temperature is high,
The degree of vacuum has a relationship of decreasing. Since the temperature of seawater cannot be adjusted, it is necessary to determine the amount of steam guided to the steam turbine low-pressure section 6 in the end, corresponding to changes in the degree of vacuum.

【0033】本発明にかかる第1実施の形態の第1実施
例では、このような点に着目したものであって、図2に
示されるように、復水器19に真空度計32を設け、こ
の真空度計32の出力信号を、図3に示される蒸気ター
ビン低圧部6に案内される蒸気量と真空度との関係の特
性線図を入力化しておいた関数発生器33から求め、こ
こで定められた出力信号を設定器30を介して比較部2
9に入力し、上述加算部28からの出力信号との偏差演
算信号により冷却蒸気系CSの流量調節弁27に開閉信
号を与え、蒸気源22からの冷却蒸気をコントロールす
るものである。
The first example of the first embodiment of the present invention focuses on such a point, and as shown in FIG. 2, the condenser 19 is provided with a vacuum gauge 32. , The output signal of the vacuum gauge 32 is obtained from the function generator 33 in which the characteristic diagram of the relationship between the amount of steam guided to the steam turbine low-pressure section 6 and the vacuum degree shown in FIG. 3 is input. The output signal determined here is passed through the setting unit 30 to the comparison unit 2
9 is input to the flow control valve 27 of the cooling steam system CS by a deviation calculation signal from the output signal from the adding unit 28 to control the cooling steam from the steam source 22.

【0034】したがって、冷却蒸気系CSの蒸気源22
からの冷却蒸気は、復水器19の真空度の変化に見合う
ように低圧蒸気系LSの低圧蒸気に過不足なく、バック
アップして加えることができるので、蒸気タービン低圧
部6は風損に伴う過加熱状態から回避させることができ
る。
Therefore, the vapor source 22 of the cooling vapor system CS
The cooling steam from the can be backed up to the low pressure steam of the low pressure steam system LS without excess or deficiency so as to correspond to the change in the degree of vacuum of the condenser 19, so that the steam turbine low pressure portion 6 is accompanied by windage loss. It is possible to avoid overheating.

【0035】(第2実施の形態)図4は、本発明にかか
る第2実施の形態を示す概略系統図である。なお第1実
施の形態と同一構成部品には同一符号を付し、その説明
を省略する。
(Second Embodiment) FIG. 4 is a schematic system diagram showing a second embodiment according to the present invention. The same components as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted.

【0036】通気運転中、高圧ドラム10の主蒸気は過
熱器8、主蒸気系MS、高圧加減弁17、蒸気タービン
高圧部4を介して流れ、再熱器9を通過したとき再熱蒸
気として再熱蒸気系RHS、中間阻止弁18を介して蒸
気タービン中圧部5、蒸気タービン低圧部6に順に流れ
るようになっているが、本実施の形態では、蒸気タービ
ン低圧部6に流れる再熱蒸気(この時点では未だ所与力
になっていない)を、風損に伴う過加熱を回避するため
に活用するものである。すなわち、通気運転前において
は、低圧蒸気系LSの低圧蒸気が、冷却蒸気系CSの冷
却蒸気とともに、蒸気タービン低圧部6に案内されてい
るが、この冷却蒸気には使用限界があることから、上記
再熱蒸気が冷却蒸気系CSの冷却蒸気量よりも上回った
とき、冷却蒸気の蒸気タービン低圧部6への供給を、停
止させることにしたものである。
During the aeration operation, the main steam of the high pressure drum 10 flows through the superheater 8, the main steam system MS, the high pressure regulator valve 17, and the steam turbine high pressure section 4, and when passing through the reheater 9, it becomes reheated steam. The reheat steam system RHS and the intermediate stop valve 18 are used to sequentially flow to the steam turbine intermediate pressure portion 5 and the steam turbine low pressure portion 6. However, in the present embodiment, reheat flowing to the steam turbine low pressure portion 6 is performed. The steam (which is not yet at a given force at this point) is used to avoid overheating associated with windage loss. That is, before the ventilating operation, the low-pressure steam of the low-pressure steam system LS is guided to the steam turbine low-pressure section 6 together with the cooling steam of the cooling steam system CS, but since this cooling steam has a usage limit, When the amount of reheated steam exceeds the amount of cooling steam of the cooling steam system CS, the supply of cooling steam to the steam turbine low pressure portion 6 is stopped.

【0037】以下に図4を参照して説明する。A description will be given below with reference to FIG.

【0038】排熱回収ボイラHRSGの再熱器9の出口
端Cと、蒸気タービン中圧部5の入口端Cとは、中間阻
止弁18を介装する再熱蒸気系RHSにより接続されて
おり、この再熱蒸気系RHSには流量計34が設けられ
ている。流量計34の出力信号は、冷却蒸気制御系CS
Cに送られている。冷却蒸気制御系CSCは、設定器3
5と比較演算部36とを有し、冷却蒸気系CSの冷却蒸
気供給弁25に弁閉信号を与えて冷却蒸気タービン低圧
部6への供給を停止させるものである。すなわち、再熱
器9から蒸気タービン中圧部5に案内される再熱蒸気
は、流量計34により検出されており、この検出信号は
冷却蒸気制御系CSCの比較演算部36に送られてい
る。ここで、設定器35からの所与値としての出力信号
と突合わされ、偏差(再熱蒸気量が冷却蒸気系CSの冷
却蒸気を上回ったとき)が出ると、その偏差を演算して
弁閉信号を作り出し、その弁閉信号を冷却蒸気系CSの
冷却蒸気供給弁25に与えて冷却蒸気の供給をカットす
る。
An outlet end C of the reheater 9 of the exhaust heat recovery boiler HRSG and an inlet end C of the steam turbine intermediate pressure portion 5 are connected by a reheat steam system RHS having an intermediate blocking valve 18 interposed therebetween. A flow meter 34 is provided in the reheat steam system RHS. The output signal of the flow meter 34 is the cooling steam control system CS.
It has been sent to C. The cooling steam control system CSC is a setter 3
5 and a comparison calculation unit 36, and supplies a valve closing signal to the cooling steam supply valve 25 of the cooling steam system CS to stop the supply to the cooling steam turbine low-pressure unit 6. That is, the reheated steam guided from the reheater 9 to the steam turbine intermediate pressure section 5 is detected by the flow meter 34, and this detection signal is sent to the comparison calculation section 36 of the cooling steam control system CSC. . Here, when a deviation (when the amount of reheat steam exceeds the cooling steam of the cooling steam system CS) is collated with the output signal as a given value from the setter 35, the deviation is calculated and the valve is closed. A signal is generated and the valve closing signal is given to the cooling steam supply valve 25 of the cooling steam system CS to cut off the supply of the cooling steam.

【0039】このように、本実施の形態では、蒸気ター
ビン低圧部6に案内される再熱蒸気系RHSの再熱蒸気
が、冷却蒸気系CSの冷却蒸気量を上回ったとき、その
冷却蒸気の供給を自動的にカットできるようにしたの
で、冷却蒸気系CSの蒸気源22はその冷却蒸気を過分
に消費することがなく、安定した蒸気量および蒸気圧を
維持することができる。
As described above, in the present embodiment, when the reheated steam of the reheated steam system RHS guided to the steam turbine low pressure section 6 exceeds the cooling steam amount of the cooling steam system CS, Since the supply can be automatically cut, the steam source 22 of the cooling steam system CS does not excessively consume the cooling steam and can maintain a stable steam amount and steam pressure.

【0040】図5は、本発明にかかる第2実施の形態の
変形例を示す概略系統図である。なお、上述した第2実
施の形態と同一構成部品には同一符号を付し、その説明
を省略する。
FIG. 5 is a schematic system diagram showing a modification of the second embodiment according to the present invention. The same components as those of the second embodiment described above are designated by the same reference numerals, and the description thereof will be omitted.

【0041】本変形例では、図4に示されている第2実
施の形態中、再熱蒸気系RHSの流量計34に代えて圧
力計37を設けたものである。蒸気流量と蒸気圧力とは
比例関係にあることに着目したからである。この場合、
蒸気タービン低圧部6の風損に伴う過加熱状態は、蒸気
圧力が所与値になれば回避することが経験的に分ってい
るので、再熱蒸気系RHSの圧力計37の検出圧力が冷
却蒸気制御系CSCの設定器35からの出力信号を上回
っていれば、冷却蒸気系CSの冷却蒸気供給弁25に弁
閉信号を与えることができ、冷却蒸気の蒸気タービン低
圧部6への供給をカットすることができる。したがっ
て、冷却蒸気系CSの蒸気源22は、安定した蒸気量お
よび蒸気圧を維持することができる。
In the present modification, a pressure gauge 37 is provided in place of the flow meter 34 of the reheat steam system RHS in the second embodiment shown in FIG. This is because we paid attention to the fact that the steam flow rate and the steam pressure are in a proportional relationship. in this case,
It has been empirically known that the overheated state due to the windage loss of the steam turbine low-pressure part 6 can be avoided if the steam pressure reaches a given value. Therefore, the pressure detected by the pressure gauge 37 of the reheat steam system RHS is If the output signal from the setting device 35 of the cooling steam control system CSC is exceeded, a valve closing signal can be given to the cooling steam supply valve 25 of the cooling steam system CS, and the cooling steam is supplied to the steam turbine low pressure section 6. Can be cut. Therefore, the vapor source 22 of the cooling vapor system CS can maintain a stable vapor amount and vapor pressure.

【0042】(第3の実施の形態)図6は、本発明にか
かる第3実施の形態を示す概略系統図である。なお、第
2実施の形態と同一構成部品には同一符号を付し、その
説明を省略する。
(Third Embodiment) FIG. 6 is a schematic system diagram showing a third embodiment according to the present invention. The same components as those of the second embodiment are designated by the same reference numerals, and the description thereof will be omitted.

【0043】通気運転中、排熱回収ボイラの蒸気は、上
述第2実施の形態で説明したように、高圧ドラム10か
ら蒸気タービン高圧部4、再熱器9、蒸気タービン中圧
部5、蒸気タービン低圧部6の順に流れるようになって
いるが、本実施の形態では、通気の蒸気源となる高圧ド
ラム10からの主蒸気に着目したものであり、この主蒸
気が冷却蒸気系CSの冷却蒸気量よりも上回ったとき、
冷却蒸気の蒸気タービン低圧部6への供給を停止させる
ことにしたものである。すなわち、主蒸気が主蒸気系M
Sの高圧加減弁17を介して蒸気タービン高圧部4に流
れる蒸気量と、蒸気タービン低圧部6に流れる蒸気量と
はほぼ等量の関係にあることに着目したからである。
During the ventilating operation, the steam of the exhaust heat recovery boiler, as described in the second embodiment, includes the high pressure drum 10, the steam turbine high pressure section 4, the reheater 9, the steam turbine intermediate pressure section 5, and the steam. The turbine low pressure portion 6 flows in this order, but in the present embodiment, attention is paid to the main steam from the high pressure drum 10 serving as a ventilation steam source, and this main steam cools the cooling steam system CS. When it exceeds the amount of steam,
The supply of cooling steam to the steam turbine low-pressure section 6 is stopped. That is, the main steam is the main steam system M.
This is because it has been noted that the amount of steam flowing to the steam turbine high-pressure part 4 via the high-pressure control valve 17 for S and the amount of steam flowing to the low-pressure part 6 of the steam turbine have a substantially equal relationship.

【0044】以下に図6を参照して説明する。A description will be given below with reference to FIG.

【0045】排熱回収ボイラHRSGの高圧ドラム10
から主蒸気が発生し(通気中の主蒸気は今だ所与圧力に
なっていない)、この主蒸気は過熱器8、主蒸気系MS
の高圧加減弁17を介して蒸気タービン高圧部4に流
れ、ここで各構成部品を加温した後、再熱器9に流れて
原蒸気条件(圧力・温度)に回復させ、再熱蒸気として
再熱蒸気系RHSの中間阻止弁18から蒸気タービン中
圧部5、蒸気タービン低圧部6の順に流れているので蒸
気タービン高圧部4を通過する蒸気量と、蒸気タービン
低圧部6に流れる蒸気量とはほぼ等量である。
Exhaust heat recovery boiler HRSG high-pressure drum 10
Main steam is generated from the main steam (the main steam being ventilated is not at a given pressure), and this main steam is the superheater 8 and the main steam system MS.
After flowing through the high pressure control valve 17 of the steam turbine to the steam turbine high pressure section 4, where each component is heated, it flows to the reheater 9 to recover the original steam conditions (pressure / temperature), and as reheated steam, The amount of steam passing through the steam turbine high-pressure part 4 and the amount of steam flowing into the steam turbine low-pressure part 6 because the steam turbine intermediate pressure part 5 and the steam turbine low-pressure part 6 flow in this order from the intermediate blocking valve 18 of the reheat steam system RHS. And are almost equal.

【0046】そこで、本発明にかかる第3実施の形態で
は、主蒸気系MSの高圧加減弁17に弁リフト検出器3
8を設けたものである。この弁リフト検出器38の出力
信号は、制御系CSCに送られている。制御系CSC
は、設定器39と比較演算部40とを有し、冷却蒸気系
CSの冷却蒸気供給弁25に弁閉信号を与えて冷却蒸気
の蒸気タービン低圧部6へ供給を停止させるものであ
る。すなわち、高圧ドラム10から蒸気タービン高圧部
4に案内される主蒸気の蒸気量は、高圧加減弁17の開
度により定まり、弁リフト検出器38はこの開度を検出
している。弁リフト検出器38の出力信号は、冷却蒸気
制御系CSCの比較演算部40に送られ、ここで設定器
39からの出力信号と突合わされ、偏差(主蒸気量が冷
却蒸気系CSの冷却蒸気を上回ったとき)が出ると、そ
の偏差を演算して弁閉信号を作り出し、その弁閉信号を
冷却蒸気系CSの冷却蒸気供給弁25に与えて冷却蒸気
の供給をカットする。
Therefore, in the third embodiment according to the present invention, the valve lift detector 3 is attached to the high pressure control valve 17 of the main steam system MS.
8 is provided. The output signal of the valve lift detector 38 is sent to the control system CSC. Control system CSC
Has a setter 39 and a comparison calculation unit 40, and supplies a valve closing signal to the cooling steam supply valve 25 of the cooling steam system CS to stop the supply of cooling steam to the steam turbine low-pressure unit 6. That is, the amount of main steam guided from the high-pressure drum 10 to the steam turbine high-pressure unit 4 is determined by the opening of the high-pressure regulator valve 17, and the valve lift detector 38 detects this opening. The output signal of the valve lift detector 38 is sent to the comparison calculation unit 40 of the cooling steam control system CSC, where it is collated with the output signal from the setter 39 to generate a deviation (the main steam amount is the cooling steam of the cooling steam system CS). Is exceeded), the deviation is calculated to generate a valve closing signal, and the valve closing signal is supplied to the cooling steam supply valve 25 of the cooling steam system CS to cut off the supply of cooling steam.

【0047】このように、本実施の形態では、蒸気ター
ビン低圧部6に案内される主蒸気が、冷却蒸気系CSの
冷却蒸気量を上回ったとき、その冷却蒸気の供給を自動
的にカットできるようにしたので、上述第2実施の形態
と同様に、冷却蒸気系CSの蒸気源22は蒸気量および
蒸気圧を安定状態に置くことができる。
As described above, in this embodiment, when the main steam guided to the steam turbine low pressure portion 6 exceeds the cooling steam amount of the cooling steam system CS, the supply of the cooling steam can be automatically cut. As a result, as in the second embodiment described above, the steam source 22 of the cooling steam system CS can keep the amount of steam and the steam pressure in a stable state.

【0048】図7は、本発明にかかる第3実施の形態の
変形例を示す概略系統図である。なお、第3実施の形態
と同一構成部品には同一符号を付し、その説明を省略す
る。
FIG. 7 is a schematic system diagram showing a modification of the third embodiment according to the present invention. The same components as those in the third embodiment are designated by the same reference numerals and the description thereof will be omitted.

【0049】本変形例では、図6に示されている第3実
施の形態中、高圧加減弁17の弁リフト検出器38に代
えて流量計41を主蒸気系MSに設けたものである。弁
リフト、つまり弁開度によって求められる蒸気量と、流
量計の蒸気量とは一致するからである。
In the present modification, a flow meter 41 is provided in the main steam system MS in place of the valve lift detector 38 of the high pressure regulator valve 17 in the third embodiment shown in FIG. This is because the amount of steam obtained by the valve lift, that is, the valve opening, and the amount of steam of the flow meter match.

【0050】したがって、本実施の形態では上述第3実
施の形態と同様に、主蒸気が冷却蒸気系CSの冷却蒸気
を上回ったとき、冷却蒸気制御系CSCにより冷却蒸気
系CSの冷却蒸気をカットでき、冷却蒸気系CSの蒸気
源22を、蒸気安定状態の下に保持することができる。
Therefore, in the present embodiment, as in the third embodiment, when the main steam exceeds the cooling steam of the cooling steam system CS, the cooling steam of the cooling steam system CS is cut by the cooling steam control system CSC. Therefore, the steam source 22 of the cooling steam system CS can be maintained under a stable steam condition.

【0051】[0051]

【発明の効果】以上の説明のとおり、本発明にかかる一
軸型複合サイクル発電プラントの蒸気タービン冷却装置
では、排熱回収ボイラの低圧ドラムと蒸気タービン低圧
部とを接続する低蒸気系に、冷却蒸気系を付設追加し、
この冷却蒸気系により低圧蒸気系が蒸気タービン低圧部
の風損に伴う過加熱状態を回避するに必要な蒸気量の不
足分をバックアップし、しかもこのバックアップ蒸気量
を最低必要限度にとどめるよう制御系を設けたので、従
来のように単一軸(回転軸)の回転数を低くホールドす
ることなく風損に伴う過加熱を回避して起動時間の短縮
化を図ることができ、風損に伴う過加熱に必要な冷却蒸
気を確実に確保することができ、冷却蒸気系の蒸気源か
らの冷却蒸気を蒸気タービン低圧部に安定供給をするこ
とができる。
As described above, in the steam turbine cooling device of the single-shaft combined cycle power plant according to the present invention, the low steam system connecting the low pressure drum of the exhaust heat recovery boiler and the low pressure part of the steam turbine is cooled. Added steam system,
With this cooling steam system, the low-pressure steam system backs up the shortage of the amount of steam required to avoid overheating due to wind damage in the low-pressure part of the steam turbine, and the control system keeps this backup steam amount to the minimum required limit. Since it is equipped with the above, it is possible to avoid overheating due to windage loss and to shorten the start-up time without keeping the rotation speed of a single shaft (rotating shaft) low as in the conventional case. The cooling steam required for heating can be reliably secured, and the cooling steam from the steam source of the cooling steam system can be stably supplied to the low-pressure part of the steam turbine.

【0052】また、本発明にかかる一軸型複合サイクル
発電プラントの蒸気タービン冷却装置では、蒸気タービ
ン低圧部に供給する冷却蒸気系の冷却蒸気を、最低必要
限度にとどめるために、再熱蒸気系の再熱蒸気あるいは
主蒸気系の主蒸気を風損に伴う過加熱回避として活用す
るので、冷却蒸気系の蒸気源からの冷却蒸気の消費を軽
減することができ、蒸気源は安定した蒸気量および蒸気
圧を維持することができる。
Further, in the steam turbine cooling device of the single-shaft combined cycle power plant according to the present invention, in order to keep the cooling steam of the cooling steam system supplied to the low pressure part of the steam turbine to the minimum necessary limit, Since reheated steam or main steam in the main steam system is used to avoid overheating due to windage loss, it is possible to reduce the consumption of cooling steam from the steam source in the cooling steam system, and the steam source has a stable steam amount and The vapor pressure can be maintained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる一軸型複合サイクル発電プラン
トの蒸気タービン冷却装置の実施の形態を示す概略系統
図。
FIG. 1 is a schematic system diagram showing an embodiment of a steam turbine cooling device of a single-shaft combined cycle power generation plant according to the present invention.

【図2】本発明にかかる第1実施の形態の変形例を示す
概略系統図。
FIG. 2 is a schematic system diagram showing a modified example of the first embodiment according to the present invention.

【図3】復水器の真空度と冷却蒸気量との関係を示すグ
ラフ。
FIG. 3 is a graph showing the relationship between the degree of vacuum of the condenser and the amount of cooling steam.

【図4】本発明にかかる第2実施の形態を示す概略系統
図。
FIG. 4 is a schematic system diagram showing a second embodiment according to the present invention.

【図5】本発明にかかる第2実施の形態の変形例を示す
概略系統図。
FIG. 5 is a schematic system diagram showing a modified example of the second embodiment according to the present invention.

【図6】本発明にかかる第3実施の形態を示す概略系統
図。
FIG. 6 is a schematic system diagram showing a third embodiment according to the present invention.

【図7】本発明にかかる第3実施の形態の変形例を示す
概略系統図。
FIG. 7 is a schematic system diagram showing a modified example of the third embodiment according to the present invention.

【符号の説明】[Explanation of symbols]

1 ガスタービン 2 燃焼器 3 圧縮機 4 蒸気タービン高圧部 5 蒸気タービン中圧部 6 蒸気タービン低圧部 7 発電機 8 過熱器 9 再熱器 10 高圧ドラム 11 高圧蒸発器 12 中圧ドラム 13 中圧蒸発器 14 低圧ドラム 15 低圧蒸発器 16 節炭器 17 高圧加減弁 18 中間阻止弁 19 復水器 20 復水ポンプ 21 低圧加減弁 22 蒸気源 23,26,34,41 流量計 24 逆止弁 25 冷却蒸気供給弁 27 流量調節弁 28 加算部 29 比較部 30,35,39 設定器 31 調節部 32 真空度計 33 関数発生器 36,40 比較演算部 37 圧力計 38 弁リフト検出器 GT 原動機部 HRSG 排熱回収ボイラ MS 主蒸気系 RHS 再熱蒸気系 LS 低圧蒸気系 CS 冷却蒸気系 CSC 冷却蒸気制御系 1 Gas turbine 2 Combustor 3 Compressor 4 Steam turbine high pressure part 5 Steam turbine medium pressure part 6 Steam turbine low pressure part 7 Generator 8 Superheater 9 Reheater 10 High pressure drum 11 High pressure evaporator 12 Medium pressure drum 13 Medium pressure evaporation 14 low pressure drum 15 low pressure evaporator 16 economizer 17 high pressure regulator valve 18 intermediate blocking valve 19 condenser 20 condensate pump 21 low pressure regulator valve 22 steam source 23, 26, 34, 41 flow meter 24 check valve 25 cooling Steam supply valve 27 Flow rate control valve 28 Addition section 29 Comparison section 30, 35, 39 Setter 31 Control section 32 Vacuum gauge 33 Function generator 36, 40 Comparison calculation section 37 Pressure gauge 38 Valve lift detector GT Motor section HRSG Discharge Heat recovery boiler MS Main steam system RHS Reheat steam system LS Low pressure steam system CS Cooling steam system CSC Cooling steam control system

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 単一軸に、圧縮機、ガスタービン、蒸気
タービン高圧部、蒸気タービン中圧部、蒸気タービン低
圧部を設け、上記圧縮機からの高圧空気を燃焼器に送
り、ここで燃料を加えて燃焼ガスを生成し、生成燃焼ガ
スを上記ガスタービンに送って膨張仕事をさせ、膨張仕
事後の燃焼ガスの排熱を熱源として別置き排熱回収ボイ
ラにより蒸気を発生させ、その発生蒸気により上記蒸気
タービン高圧部、蒸気タービン中圧部、蒸気タービン低
圧部で膨張仕事をさせる一軸型複合サイクル発電プラン
トにおいて、上記排熱回収ボイラの低圧ドラムからの蒸
気を、上記蒸気タービン低圧部に案内する低圧蒸気系
と、この低圧蒸気系に接続され、別置き蒸気源からの蒸
気を冷却蒸気として上記蒸気タービン低圧部に案内する
冷却蒸気系とを備える一方、上記低圧蒸気系の流量計の
出力信号と上記冷却蒸気系の流量計の出力信号との合計
流量和のうち、上記冷却蒸気系からの冷却蒸気量の占め
る割合が所与値を越えないように、上記冷却蒸気系の流
量調節弁に弁開閉信号を与える冷却蒸気制御系を設けた
ことを特徴とする一軸型複合サイクル発電プラントの蒸
気タービン冷却装置。
1. A single shaft is provided with a compressor, a gas turbine, a steam turbine high pressure section, a steam turbine medium pressure section, and a steam turbine low pressure section, and high pressure air from the compressor is sent to a combustor where fuel is supplied. In addition, combustion gas is generated, and the generated combustion gas is sent to the gas turbine for expansion work, and exhaust heat of the combustion gas after expansion work is used as a heat source to generate steam by a separate heat recovery steam generator, and the generated steam In the single-shaft combined cycle power plant that performs expansion work in the steam turbine high pressure section, the steam turbine intermediate pressure section, and the steam turbine low pressure section, the steam from the low pressure drum of the exhaust heat recovery boiler is guided to the steam turbine low pressure section. And a cooling steam system which is connected to the low pressure steam system and which guides the steam from the separately placed steam source to the low pressure part of the steam turbine as cooling steam. On the other hand, in the total flow rate sum of the output signal of the low-pressure steam system flow meter and the output signal of the cooling steam system flow meter, the proportion of the amount of cooling steam from the cooling steam system does not exceed a given value. As described above, the steam turbine cooling device for a single-shaft combined cycle power plant, comprising a cooling steam control system for providing a valve opening / closing signal to the flow control valve of the cooling steam system.
【請求項2】 冷却蒸気系の流量調節弁に弁開閉信号を
与える冷却蒸気制御系は、低圧蒸気系の流量計の出力信
号と上記冷却蒸気系の流量計の出力信号とを加算する加
算部と、この加算部からの出力信号に設定器からの所与
値を突合わせる比較部と、この比較部からの偏差に基づ
いて上記冷却蒸気系の流量調節弁に弁開閉信号を与える
調節部とを有する構成にしたことを特徴とする請求項1
記載の一軸型複合サイクル発電プラントの蒸気タービン
冷却装置。
2. A cooling steam control system for giving a valve opening / closing signal to a flow control valve of the cooling steam system adds a signal output from the flow meter of the low pressure steam system and an output signal of the flow meter of the cooling steam system. And a comparison unit that compares a given value from the setter with the output signal from the addition unit, and a control unit that gives a valve opening / closing signal to the flow control valve of the cooling steam system based on the deviation from the comparison unit. 2. The structure according to claim 1, wherein
A steam turbine cooling device for a single-shaft combined cycle power plant according to the description.
【請求項3】 冷却蒸気系の流量調節弁に弁開閉信号を
与える冷却蒸気制御系の設定器の所与値は、復水器から
求めた真空度に見合う冷却蒸気量を算出する関数発生器
の出力信号により定められたことを特徴とする請求項2
記載の一軸型複合サイクル発電プラントの蒸気タービン
冷却装置。
3. A function generator for calculating a cooling steam amount commensurate with a degree of vacuum obtained from a condenser, for a given value of a setter of a cooling steam control system for giving a valve opening / closing signal to a flow control valve of the cooling steam system. 3. The output signal according to claim 2, wherein
A steam turbine cooling device for a single-shaft combined cycle power plant according to the description.
【請求項4】 単一軸に、圧縮機、ガスタービン、蒸気
タービン高圧部、蒸気タービン中圧部、蒸気タービン低
圧部を設け、上記圧縮機からの高圧空気を燃焼器に送
り、ここで燃料を加えて燃焼ガスを生成し、生成燃焼ガ
スを上記ガスタービンに送って膨張仕事をさせ、膨張仕
事後の燃焼ガスの排熱を熱源として別置き排熱回収ボイ
ラにより蒸気を発生させ、その発生蒸気により上記蒸気
タービン高圧部、蒸気タービン中圧部、蒸気タービン低
圧部で膨張仕事をさせる一軸型複合サイクル発電プラン
トにおいて、上記排熱回収ボイラの低圧ドラムからの蒸
気を、上記蒸気タービン低圧部に案内する低圧蒸気系
と、この低圧蒸気系に接続され、別置き蒸気源からの蒸
気を冷却蒸気として上記蒸気タービン低圧部に案内する
冷却蒸気系と、上記排熱回収ボイラの再熱器からの再熱
蒸気を、上記蒸気タービン中圧部を介して上記蒸気ター
ビン低圧部に案内する再熱蒸気系とを備える一方、この
再熱蒸気系に流量計を設け、この流量計が再熱蒸気のみ
で上記蒸気タービン低圧部の冷却を賄えることを検出し
たとき、上記冷却蒸気系の冷却蒸気供給弁に弁閉信号を
与える冷却蒸気制御系を設けたことを特徴とする一軸型
複合サイクル発電プラントの蒸気タービン冷却装置。
4. A single shaft is provided with a compressor, a gas turbine, a steam turbine high pressure section, a steam turbine medium pressure section, and a steam turbine low pressure section, and high pressure air from the compressor is sent to a combustor where fuel is supplied. In addition, combustion gas is generated, and the generated combustion gas is sent to the gas turbine for expansion work, and exhaust heat of the combustion gas after expansion work is used as a heat source to generate steam by a separate heat recovery steam generator, and the generated steam In the single-shaft combined cycle power plant that performs expansion work in the steam turbine high pressure section, the steam turbine intermediate pressure section, and the steam turbine low pressure section, the steam from the low pressure drum of the exhaust heat recovery boiler is guided to the steam turbine low pressure section. Low pressure steam system, a cooling steam system that is connected to the low pressure steam system and guides steam from a separately placed steam source to the low pressure part of the steam turbine as cooling steam, and the exhaust heat The reheated steam from the reheater of the recovery boiler is provided with a reheated steam system that guides the steam turbine low pressure part through the steam turbine intermediate pressure part, while providing a flow meter in the reheated steam system, When it is detected that the flow meter can cool the low-pressure part of the steam turbine only with reheated steam, a cooling steam control system for providing a valve closing signal to the cooling steam supply valve of the cooling steam system is provided. A steam turbine cooling system for a single-shaft combined cycle power plant.
【請求項5】 冷却蒸気系の冷却蒸気供給弁に弁閉信号
を与える冷却蒸気制御系は、再熱蒸気系の流量計の出力
信号と、設定器から予じめ定められた所与値の出力信号
とを突合わせ、上記流量計の出力信号が上回ったとき、
弁閉信号を作り出す比較演算部を備えたことを特徴とす
る請求項4記載の一軸型複合サイクル発電プラントの蒸
気タービン冷却装置。
5. A cooling steam control system for giving a valve closing signal to a cooling steam supply valve of the cooling steam system, wherein the output signal of the flow meter of the reheat steam system and a given value predetermined by a setter are used. When the output signal of the above flowmeter exceeds the output signal,
The steam turbine cooling device for a single-shaft combined cycle power plant according to claim 4, further comprising a comparison calculation unit that generates a valve closing signal.
【請求項6】 再熱蒸気系に設けた流量計に代えて圧力
計を設けたことを特徴とする請求項4記載の一軸型複合
サイクル発電プラントの蒸気タービン冷却装置。
6. The steam turbine cooling device for a single-shaft combined cycle power plant according to claim 4, wherein a pressure gauge is provided in place of the flow meter provided in the reheat steam system.
【請求項7】 単一軸に、圧縮機、ガスタービン、蒸気
タービン高圧部、蒸気タービン中圧部、蒸気タービン低
圧部を設け、上記圧縮機からの高圧空気を燃焼器に送
り、ここで燃料を加えて燃焼ガスを生成し、生成燃焼ガ
スを上記ガスタービンに送って膨張仕事をさせ、膨張仕
事後の燃焼ガスの排熱を熱源として別置き排熱回収ボイ
ラにより蒸気を発生させ、その発生蒸気により上記蒸気
タービン高圧部、蒸気タービン中圧部、蒸気タービン低
圧部で膨張仕事をさせる一軸型複合サイクル発電プラン
トにおいて、上記排熱回収ボイラの低圧ドラムからの蒸
気を、上記蒸気タービン低圧部に案内する低圧蒸気系
と、この低圧蒸気系に接続され、別置き蒸気源からの蒸
気を冷却蒸気として上記蒸気タービン低圧部に案内する
冷却蒸気系と、上記排熱回収ボイラの過熱器からの主蒸
気を、上記蒸気タービン高圧部、上記排熱回収ボイラの
再熱器、上記蒸気タービン中圧部を介して上記蒸気ター
ビン低圧部に案内する主蒸気系とを備える一方、この主
蒸気系の高圧加減弁の弁開度を検出する弁リフト検出器
を設け、この弁リフト検出器が主蒸気のみで上記蒸気タ
ービン低圧部の冷却を賄えることを検出したとき、上記
冷却蒸気系の冷却蒸気供給弁に弁閉信号を与える冷却蒸
気制御系を設けたことを特徴とする一軸型複合サイクル
発電プラントの蒸気タービン冷却装置。
7. A single shaft is provided with a compressor, a gas turbine, a steam turbine high pressure section, a steam turbine medium pressure section, and a steam turbine low pressure section, and high pressure air from the compressor is sent to a combustor where fuel is supplied. In addition, combustion gas is generated, and the generated combustion gas is sent to the gas turbine for expansion work, and exhaust heat of the combustion gas after expansion work is used as a heat source to generate steam by a separate heat recovery steam generator, and the generated steam In the single-shaft combined cycle power plant that performs expansion work in the steam turbine high pressure section, the steam turbine intermediate pressure section, and the steam turbine low pressure section, the steam from the low pressure drum of the exhaust heat recovery boiler is guided to the steam turbine low pressure section. Low pressure steam system, a cooling steam system that is connected to the low pressure steam system and guides steam from a separately placed steam source to the low pressure part of the steam turbine as cooling steam, and the exhaust heat A main steam system for guiding the main steam from the superheater of the recovery boiler to the steam turbine high pressure section, the reheater of the exhaust heat recovery boiler, and the steam turbine low pressure section via the steam turbine intermediate pressure section On the other hand, a valve lift detector for detecting the valve opening of the high pressure control valve of the main steam system is provided, and when the valve lift detector detects that the steam turbine low pressure part can be cooled by the main steam alone, A steam turbine cooling device for a single-shaft combined cycle power plant, comprising a cooling steam control system for giving a valve closing signal to a cooling steam supply valve of the cooling steam system.
【請求項8】 冷却蒸気系の冷却蒸気供給弁に弁閉信号
を与える冷却蒸気制御系は、主蒸気系の高圧加減弁の弁
リフト検出器の出力信号と設定器から予じめ定められた
所与値の出力信号とを突合わせ、上記弁リフト検出器の
出力信号が上回ったとき、弁閉信号を作り出す比較演算
部を備えたことを特徴とする請求項7記載の一軸型複合
サイクル発電プラントの蒸気タービン冷却装置。
8. A cooling steam control system for giving a valve closing signal to a cooling steam supply valve of a cooling steam system is predetermined from an output signal of a valve lift detector of a high pressure control valve of a main steam system and a setter. 8. The single-axis combined cycle power generation according to claim 7, further comprising: a comparison calculation unit that produces a valve closing signal when the output signal of the valve lift detector exceeds the output signal of a given value. Plant steam turbine cooling system.
【請求項9】 主蒸気系の蒸気加減弁に設けた弁リフト
検出器に代えて流量計を設けたことを特徴とする請求項
7記載の一軸型複合サイクル発電プラントの蒸気タービ
ン冷却装置。
9. The steam turbine cooling device for a single-shaft combined cycle power plant according to claim 7, wherein a flow meter is provided in place of the valve lift detector provided in the steam control valve of the main steam system.
JP33072295A 1995-12-19 1995-12-19 Steam turbine cooling system for uniaxial combined cycle power plant Expired - Lifetime JP3660732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33072295A JP3660732B2 (en) 1995-12-19 1995-12-19 Steam turbine cooling system for uniaxial combined cycle power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33072295A JP3660732B2 (en) 1995-12-19 1995-12-19 Steam turbine cooling system for uniaxial combined cycle power plant

Publications (2)

Publication Number Publication Date
JPH09170407A true JPH09170407A (en) 1997-06-30
JP3660732B2 JP3660732B2 (en) 2005-06-15

Family

ID=18235842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33072295A Expired - Lifetime JP3660732B2 (en) 1995-12-19 1995-12-19 Steam turbine cooling system for uniaxial combined cycle power plant

Country Status (1)

Country Link
JP (1) JP3660732B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1304735C (en) * 2000-07-21 2007-03-14 西门子公司 Method for primary control in combined gas/steam turbine installation
CN104271899A (en) * 2012-05-09 2015-01-07 三电有限公司 Exhaust heat recovery device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1304735C (en) * 2000-07-21 2007-03-14 西门子公司 Method for primary control in combined gas/steam turbine installation
CN104271899A (en) * 2012-05-09 2015-01-07 三电有限公司 Exhaust heat recovery device
US9518480B2 (en) 2012-05-09 2016-12-13 Sanden Holdings Corporation Exhaust heat recovery device

Also Published As

Publication number Publication date
JP3660732B2 (en) 2005-06-15

Similar Documents

Publication Publication Date Title
JP3239128B2 (en) Gas turbine power plant and cooling method in gas turbine power plant
KR100313824B1 (en) Gas turbine plant
US20040237535A1 (en) Method of operating a gas turbine
JP5787857B2 (en) Control method for gas turbine cooling system, control device for executing the method, and gas turbine equipment equipped with the control device
JPS6118649B2 (en)
US6978623B2 (en) Gas turbine, driving method thereof and gas turbine combined electric power generation plant
US6223518B1 (en) Single shaft combined cycle plant and method for operating the same
JP2019157848A (en) Plant control device, plant control method, and power generation plant
JP4762310B2 (en) How to start steam turbine equipment
JPH09112215A (en) Gas turbine power plant and method of operating thereof
CN107614837B (en) Combined cycle plant, control device and starting method thereof
JP5694112B2 (en) Uniaxial combined cycle power plant and operation method thereof
US6286297B1 (en) Steam cooled type combined cycle power generation plant and operation method thereof
JP4373420B2 (en) Combined power plant and closed air cooled gas turbine system
JP4208397B2 (en) Start-up control device for combined cycle power plant
JPH09170407A (en) Steam turbine cooling device for uniaxial complex cycle power generation plant
JPH112105A (en) Combined cycle power generation plant
JP3857350B2 (en) Control device for combined cycle power plant
US5661967A (en) Method of operating a sequentially fired gas-turbine group
JP6882945B2 (en) Combined cycle plant controller and combined cycle plant shutdown method
JP3872407B2 (en) Combined power plant and closed air cooled gas turbine system
JP2908884B2 (en) Pressurized fluidized bed combined plant and its partial load operation control method and control device
JPH11117715A (en) Steam turbine cooling system for compound cycle power plant
JP3993515B2 (en) Gas turbine fuel gas supply system and method
JPS58107805A (en) Control of turbine for combined cycle power generation

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050318

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080325

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 9

EXPY Cancellation because of completion of term