JPH09165293A - Growing method for single crystal - Google Patents

Growing method for single crystal

Info

Publication number
JPH09165293A
JPH09165293A JP34781395A JP34781395A JPH09165293A JP H09165293 A JPH09165293 A JP H09165293A JP 34781395 A JP34781395 A JP 34781395A JP 34781395 A JP34781395 A JP 34781395A JP H09165293 A JPH09165293 A JP H09165293A
Authority
JP
Japan
Prior art keywords
single crystal
diameter
growing
melt
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34781395A
Other languages
Japanese (ja)
Inventor
Soichiro Otani
聡一郎 大谷
Yoshiyuki Shirakawa
義之 白川
Hisao Minoda
尚雄 蓑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP34781395A priority Critical patent/JPH09165293A/en
Publication of JPH09165293A publication Critical patent/JPH09165293A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for growing a single crystal in a high yield by growing the single crystal having its diameter controlled at a constant value despite of having a long length. SOLUTION: This method for growing a single crystal is to set at least one of a time constant and a gain of the responding function of the diameter of the single crystal 21 to the temperature of a heater 13 reducing monotonously with the lapse of the growing time for the straight drum part of the single crystal 21. Since, even if the remaining amount of the molten liquid 14 is reduced or the relative position of the heater 13 with the molten liquid 14 is changed, the responding property of the diameter of the single crystal 21 to the temperature of the heater 13 does not become faster, it is possible to grow the single crystal 21 having its diameter controlled at a constant value despite of having a long length.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、モデル予測制御を
用いて引上げ法による単結晶の育成を行う方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing a single crystal by a pulling method using model predictive control.

【0002】[0002]

【従来の技術】引上げ法によって単結晶を育成するに際
して、単結晶の径を一定の値に制御することができなけ
れば、径の変動幅を見込んで大きめの径の単結晶を育成
する必要があり、また、単結晶からの放熱が不安定にな
って製品として使用することができない多結晶の比率が
高くなるので、単結晶を高い歩留りで育成することがで
きない。
2. Description of the Related Art When a single crystal is grown by a pulling method, if the diameter of the single crystal cannot be controlled to a constant value, it is necessary to grow a single crystal with a larger diameter in consideration of the fluctuation range of the diameter. In addition, since the heat radiation from the single crystal becomes unstable and the proportion of the polycrystals that cannot be used as a product increases, the single crystal cannot be grown with a high yield.

【0003】そこで、原料の融液を形成するために原料
を加熱する温度に対する単結晶の径の応答関数を予め求
めておき、単結晶の実際の育成中における加熱の履歴と
重量法等で求めた単結晶の径とから所定時間経過後にお
ける単結晶の径の予測値を応答関数から求め、この予測
値が当該所定時間経過後における目標値に一致する様に
加熱の温度を制御するというモデル予測制御を用いる方
法が知られている(例えば、特開平4−108687号
公報)。
Therefore, the response function of the diameter of the single crystal with respect to the temperature at which the raw material is heated to form the melt of the raw material is obtained in advance, and is obtained by the heating history during the actual growth of the single crystal and the weight method. A model in which the predicted value of the diameter of the single crystal after a lapse of a predetermined time from the diameter of the single crystal is obtained from the response function, and the heating temperature is controlled so that the predicted value matches the target value after the lapse of the predetermined time. A method using predictive control is known (for example, Japanese Patent Laid-Open No. 4-108687).

【0004】[0004]

【発明が解決しようとする課題】しかし、単結晶の実際
の育成においては、上述の様なモデル予測制御を用いて
も、単結晶の育成に伴って、応答関数で求めた予測値と
実際に育成した単結晶の径との差が大きくなっていた。
このため、予測値と目標値とが一致する様に加熱の温度
を制御しても、実際に育成した単結晶の径が目標値から
ずれ、単結晶を高い歩留りで育成することが依然として
困難であった。
However, in the actual growth of the single crystal, even if the model predictive control as described above is used, the predicted value obtained by the response function and The difference from the diameter of the grown single crystal was large.
Therefore, even if the heating temperature is controlled so that the predicted value and the target value match, the diameter of the actually grown single crystal deviates from the target value, and it is still difficult to grow the single crystal with a high yield. there were.

【0005】この様な予測値と目標値とのずれは、本願
の発明者によれば、単結晶の育成に伴う育成環境の変
化、例えば、融液の残量の減少や、この減少による加熱
手段と融液との相対位置の変化に起因すると考えられ
る。このことは、長尺の単結晶を育成するために多量の
融液を使用すると予測値と目標値とのずれが更に顕著に
なることからも考えられる。
According to the inventor of the present application, such a difference between the predicted value and the target value is caused by a change in the growth environment due to the growth of the single crystal, such as a decrease in the remaining amount of the melt or a heating due to this decrease. It is considered that this is due to the change in the relative position between the means and the melt. This may be because the deviation between the predicted value and the target value becomes more remarkable when a large amount of melt is used to grow a long single crystal.

【0006】従って、本発明は、長尺でも径が一定の値
に制御された単結晶を育成することができて、単結晶を
高い歩留りで育成することができる方法を提供すること
を目的としている。
Therefore, an object of the present invention is to provide a method capable of growing a single crystal whose diameter is controlled to be a constant value even if it is long and growing the single crystal with a high yield. There is.

【0007】[0007]

【課題を解決するための手段】請求項1の単結晶の育成
方法は、原料を加熱して形成した融液に種結晶を接触さ
せ、この種結晶を前記融液から引き上げることによって
単結晶を育成するに際して、前記加熱の温度に対する前
記単結晶の径の応答関数を予め求めておき、前記育成中
における前記加熱の履歴と前記径とから所定時間経過後
における前記径の予測値を前記応答関数から求め、この
予測値が前記所定時間経過後における前記径の目標値に
一致する様に前記加熱の温度を制御する単結晶の育成方
法において、前記単結晶の直胴部の育成時間が経過する
に連れて前記応答関数の時定数または利得の少なくとも
一方が単調的に小さくなっていることを特徴としてい
る。
A method for growing a single crystal according to claim 1 is to grow a single crystal by bringing a seed crystal into contact with a melt formed by heating a raw material and pulling the seed crystal from the melt. When growing, a response function of the diameter of the single crystal with respect to the heating temperature is obtained in advance, and the predicted value of the diameter after a lapse of a predetermined time from the heating history and the diameter during the growth is the response function. Obtained from, in the single crystal growth method of controlling the temperature of the heating so that this predicted value matches the target value of the diameter after the predetermined time has elapsed, the growth time of the straight body part of the single crystal elapses. It is characterized in that at least one of the time constant and the gain of the response function is monotonically decreased in accordance with.

【0008】請求項2の単結晶の育成方法は、請求項1
の単結晶の育成方法において、前記融液の残量が減少す
るに連れて前記時定数または前記利得の少なくとも一方
が単調的に小さくなっていることを特徴としている。
The method for growing a single crystal according to claim 2 is the method according to claim 1.
In the method for growing a single crystal as described above, at least one of the time constant and the gain monotonically decreases as the remaining amount of the melt decreases.

【0009】請求項3の単結晶の育成方法は、請求項1
の単結晶の育成方法において、前記加熱の手段と前記融
液との相対位置が変化するに連れて前記時定数または前
記利得の少なくとも一方が単調的に小さくなっているこ
とを特徴としている。
The method for growing a single crystal according to claim 3 is the method according to claim 1.
In the method for growing a single crystal, the at least one of the time constant and the gain monotonically decreases as the relative position between the heating means and the melt changes.

【0010】請求項4の単結晶の育成方法は、請求項1
〜3の何れかの単結晶の育成方法において、前記時定数
または前記利得の少なくとも一方が一次関数的に小さく
なっていることを特徴としている。
The method for growing a single crystal according to claim 4 is the method according to claim 1.
1 to 3, at least one of the time constant and the gain is reduced in a linear function.

【0011】本発明による単結晶の育成方法では、単結
晶の直胴部の育成時間が経過するに連れて加熱の温度に
対する単結晶の径の応答関数の時定数または利得の少な
くとも一方が単調的に小さくなっているので、融液の残
量が減少したり、加熱の手段と融液との相対位置が変化
したりしても、加熱の温度に対する単結晶の径の応答性
が速くなることはない。
In the method for growing a single crystal according to the present invention, at least one of the time constant and the gain of the response function of the diameter of the single crystal with respect to the heating temperature is monotonic as the growing time of the straight body portion of the single crystal elapses. As the melt remains small, the responsiveness of the diameter of the single crystal to the heating temperature becomes faster even if the remaining amount of the melt decreases or the relative position between the heating means and the melt changes. There is no.

【0012】[0012]

【発明の実施の形態】以下、直径4インチのウェハを得
ることができる様に目標半径が55mmで長さが200
mmであるGaAs単結晶を、引上げ法の一種である液
体封止引上げ法で育成する場合に適用した本発明の一具
体例を、図1〜4を参照しながら説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a target radius is 55 mm and a length is 200 mm so that a wafer having a diameter of 4 inches can be obtained.
A specific example of the present invention applied when a GaAs single crystal having a size of mm is grown by a liquid sealing pulling method which is a kind of pulling method will be described with reference to FIGS.

【0013】本具体例では、図1に示す様に、育成炉1
1内に配置されており直径が300mmであるpBN
(熱分解窒化硼素)製の坩堝12内に、原料になる高純
度のGaAs15kgと封止剤になるB2 3 2.5k
gとを投入し、育成炉11内の空気を真空ポンプで排気
した後、Arガスで育成炉11内を20気圧にする。
In this specific example, as shown in FIG.
PBN located in 1 and having a diameter of 300 mm
In a crucible 12 made of (pyrolytic boron nitride), 15 kg of high-purity GaAs used as a raw material and 2.5 k of B 2 O 3 used as a sealant.
g, and the air in the growth furnace 11 is exhausted by a vacuum pump, and then the pressure in the growth furnace 11 is adjusted to 20 atm with Ar gas.

【0014】そして、ヒータ13に給電して坩堝12を
加熱し、坩堝12内のGaAs及びB2 3 を融解させ
て、GaAsの融液14を形成すると共に、B2 3
融解させてB2 3 の融液(図示せず)をGaAsの融
液14上に形成して、B2 3 の融液でGaAsの融液
14を坩堝12内に封止する。
Then, power is supplied to the heater 13 to heat the crucible 12 to melt GaAs and B 2 O 3 in the crucible 12 to form a GaAs melt 14 and melt B 2 O 3. A melt of B 2 O 3 (not shown) is formed on the melt 14 of GaAs, and the melt of GaAs 14 is sealed in the crucible 12 with the melt of B 2 O 3 .

【0015】その後、育成しつつある結晶と融液14と
の固液界面形状が下方へ向かって凸形状になる温度分布
を育成炉11が有する様にヒータ13への供給電力を制
御しつつ、種結晶15を融液14に接触させ、この種結
晶15を懸吊している結晶引上軸16を時計回り方向へ
6回転/分で回転させると共に、坩堝12を支持してい
る坩堝軸17を反時計回り方向へ20〜30回転/分で
回転させつつ、6〜10mm/時の速度で種結晶15を
上方へ引き上げることによって、結晶方位が<100>
であるGaAsの単結晶21を得る。
After that, while controlling the electric power supplied to the heater 13 so that the growth furnace 11 has a temperature distribution in which the solid-liquid interface shape between the growing crystal and the melt 14 becomes convex downward, The seed crystal 15 is brought into contact with the melt 14, the crystal pulling shaft 16 suspending the seed crystal 15 is rotated clockwise at 6 revolutions / minute, and the crucible shaft 17 supporting the crucible 12 is rotated. The crystal orientation is <100> by pulling the seed crystal 15 upward at a speed of 6 to 10 mm / hour while rotating the steel in the counterclockwise direction at 20 to 30 rotations / minute.
A single crystal 21 of GaAs is obtained.

【0016】単結晶21が目標半径に到達するまで、つ
まり単結晶21の肩部を育成している間は、単結晶21
の実際の形状に応じて手動でヒータ13の温度を制御
し、単結晶21が目標半径に到達した後、つまり単結晶
21の直胴部の育成開始以後は、目標半径のままで単結
晶21を育成するために、以下の様なヒータ13の温度
の自動制御を行った。
Until the single crystal 21 reaches the target radius, that is, while the shoulder portion of the single crystal 21 is grown, the single crystal 21
The temperature of the heater 13 is manually controlled according to the actual shape of the single crystal 21, and after the single crystal 21 reaches the target radius, that is, after the straight body portion of the single crystal 21 is grown, the single crystal 21 remains at the target radius. In order to grow the seeds, the temperature of the heater 13 was automatically controlled as follows.

【0017】即ち、まず、図2(a)に示す様にステッ
プ状に設定した温度のヒータ13による加熱によって、
単結晶21の半径が図2(b)に示す様にステップ状に
応答するとする。そして、時刻t+jにおける半径yM
(t+j)を時刻tにおける半径yM (t)からの変動
としてモデル化して、次の式の応答関数を採用した。
That is, first, as shown in FIG. 2 (a), by heating the heater 13 at a temperature set in steps,
It is assumed that the radius of the single crystal 21 responds stepwise as shown in FIG. Then, the radius y M at time t + j
(T + j) was modeled as a variation from the radius y M (t) at time t, and the response function of the following equation was adopted.

【0018】[0018]

【数1】 [Equation 1]

【0019】なお、この式中の第2項は未来の加熱によ
る寄与分であり、第3項は過去の加熱による寄与分つま
り加熱の履歴である。また、本具体例では、M=3、s
=100、j=10〜14を採用したが、サンプリング
間隔つまり1区間の時間を2分にしたので、M=6分、
s=200分、j=20〜28分になる。
The second term in this equation is the contribution due to future heating, and the third term is the contribution due to past heating, that is, the heating history. In this specific example, M = 3, s
= 100, j = 10 to 14, but since the sampling interval, that is, the time for one section is set to 2 minutes, M = 6 minutes,
It becomes s = 200 minutes and j = 20 to 28 minutes.

【0020】一方、重量測定装置22によって求めた単
位時間当たりの単結晶21の重量増加量dWと、結晶引
上軸16による引上速度から求めた単位時間当たりの単
結晶21の育成長さLと、単結晶21の密度ρとから、
下記の換算式によって、演算回路23が単結晶21の半
径rを求める。 dW=πr2 Lρ
On the other hand, the weight increase amount dW of the single crystal 21 per unit time obtained by the weight measuring device 22 and the growth length L of the single crystal 21 per unit time obtained from the pulling rate by the crystal pulling shaft 16. And the density ρ of the single crystal 21,
The arithmetic circuit 23 calculates the radius r of the single crystal 21 by the following conversion formula. dW = πr 2

【0021】この様にして求めた単結晶21の半径rが
上述の応答関数におけるyM (t)に相当しているの
で、この応答関数を用いて、演算回路23が、t+10
〜t+14における予測値yM (t+10)〜yM (t
+14)を求め、これらの予測値とt+10〜t+14
における目標値との差の2乗の和が最小になるヒータ1
3の温度Δu(t+0)〜Δu(t+2)を求める。
Since the radius r of the single crystal 21 thus obtained corresponds to y M (t) in the above-mentioned response function, the arithmetic circuit 23 uses this response function to calculate t + 10.
Predicted values at t + 14 y M (t + 10) to y M (t
+14), and these predicted values and t + 10 to t + 14
Heater 1 that minimizes the sum of squares of the difference from the target value at
The temperatures Δu (t + 0) to Δu (t + 2) of 3 are obtained.

【0022】そして、ヒータ制御装置24は演算回路2
3からヒータ13の温度Δu(t+0)〜Δu(t+
2)を入力して、ヒータ13の温度をこれらの温度Δu
(t+0)〜Δu(t+2)に制御する。この様なヒー
タ13の温度の制御は、各区間毎つまり2分毎に行う。
The heater control device 24 is connected to the arithmetic circuit 2
3 to the temperature of the heater 13 Δu (t + 0) to Δu (t +
2) and input the temperature of the heater 13 to these temperatures Δu
Control from (t + 0) to Δu (t + 2). Such control of the temperature of the heater 13 is performed every section, that is, every two minutes.

【0023】ところで、本具体例では、上述の応答関数
中の時定数Tの式からも明らかな様に、この時定数Tは
融液14の残量の減少に伴って一次関数的に小さくなっ
ている。従って、融液14の残量の減少に伴って融液1
4の熱容量が減少するにも拘らず、ヒータ13の温度に
対する単結晶21の径の応答性が速くなることはない。
この結果、図3に示す様に、半径の偏差が4mm以下で
長さが250mmであるGaAsの単結晶21を育成す
ることができた。
By the way, in this example, as is clear from the expression of the time constant T in the above-mentioned response function, this time constant T decreases linearly as the remaining amount of the melt 14 decreases. ing. Therefore, as the remaining amount of the melt 14 decreases, the melt 1
Despite the decrease in the heat capacity of No. 4, the responsiveness of the diameter of the single crystal 21 to the temperature of the heater 13 does not increase.
As a result, as shown in FIG. 3, a GaAs single crystal 21 having a radius deviation of 4 mm or less and a length of 250 mm could be grown.

【0024】これに対して、上述の形の応答関数を用い
ても、従来例の様にその中の時定数Tが例えば15とい
う一定値であれば、図4に示す様に、目標半径からのば
らつきが大きい単結晶しか育成することができなかっ
た。
On the other hand, even if the response function of the above-mentioned form is used, if the time constant T therein is a constant value of, for example, 15 as in the conventional example, as shown in FIG. It was possible to grow only a single crystal with a large variation.

【0025】ところで、以上の具体例では、時定数T中
の融液残量に対する係数を1にしているが、この係数が
大きくて時定数Tの減少の度合いが大きいと、ヒータ1
3の温度の制御に対して単結晶21の径の制御が遅れ、
逆に、この係数が小さくて時定数Tの減少の度合いが小
さいと、ヒータ13の温度の制御に対して単結晶21の
径の制御が速過ぎて、何れの場合も、目標径からの変動
が大きくなる。
In the above specific example, the coefficient for the remaining amount of melt in the time constant T is set to 1. However, if this coefficient is large and the degree of decrease of the time constant T is large, the heater 1
The control of the diameter of the single crystal 21 is delayed with respect to the control of the temperature of 3,
On the contrary, if this coefficient is small and the degree of decrease of the time constant T is small, the control of the diameter of the single crystal 21 is too fast with respect to the control of the temperature of the heater 13, and in any case, fluctuations from the target diameter will occur. Grows larger.

【0026】なお、この係数は、ヒータ13の配置、ヒ
ータ13の大きさ及び育成炉11の大きさ等の育成炉1
1の特性や、育成すべき単結晶21に依存する値であ
る。
Note that this coefficient is determined by the arrangement of the heater 13, the size of the heater 13, the size of the growing furnace 11, etc.
It is a value depending on the characteristics of 1 and the single crystal 21 to be grown.

【0027】また、上述の具体例では、単結晶21の直
胴部の育成開始時点からヒータ13の温度の自動制御を
開始しているが、直胴部の育成開始後で直胴部が100
mm程度に育成するまでの間にヒータ13の温度の自動
制御を開始してもよい。
Further, in the above-mentioned specific example, the automatic control of the temperature of the heater 13 is started from the time when the straight body portion of the single crystal 21 is grown, but the straight body portion is heated to 100 after the straight body portion is grown.
You may start the automatic control of the temperature of the heater 13 until it grows up to about mm.

【0028】また、上述の具体例では、応答関数中の時
定数Tの式からも明らかな様に、この時定数Tを決定す
るに当たって融液14の残量しか考慮していないが、単
結晶21の育成に伴うヒータ13と融液14との相対位
置の変化をも考慮すれば、単結晶21の径の制御性が更
に向上することが見込まれる。
Further, in the above-mentioned specific example, as is clear from the expression of the time constant T in the response function, only the remaining amount of the melt 14 is taken into consideration in determining the time constant T, but the single crystal Considering the change in the relative position between the heater 13 and the melt 14 due to the growth of 21, the controllability of the diameter of the single crystal 21 is expected to be further improved.

【0029】また、上述の具体例では、応答関数中の時
定数Tを一次関数的に小さくしているが、時定数Tは単
調的に小さくなっていればよく必ずしも一次関数的に小
さくなっている必要はない。更に、上述の具体例では、
単結晶21の育成に伴って応答関数中の時定数Tを小さ
くしているが、応答関数中の利得Kを小さくしてもよ
く、時定数Tと利得Kとの両方を小さくしてもよい。
Further, in the above-described specific example, the time constant T in the response function is made small as a linear function, but it is sufficient that the time constant T is made monotonically small, and it becomes not necessarily a linear function. You don't have to be. Further, in the above specific example,
Although the time constant T in the response function is made smaller with the growth of the single crystal 21, the gain K in the response function may be made smaller, or both the time constant T and the gain K may be made smaller. .

【0030】また、上述の具体例は液体封止引上げ法に
よるGaAs単結晶の育成に本発明を適用したものであ
るが、液体による封止を行わない元素単結晶等の育成に
も本発明を当然に適用することができる。
Further, although the present invention is applied to the growth of a GaAs single crystal by the liquid sealing pulling method in the above-mentioned specific example, the present invention is also applied to the growth of an element single crystal which is not sealed by a liquid. Of course it can be applied.

【0031】[0031]

【発明の効果】本発明による単結晶の育成方法では、融
液の残量が減少したり、加熱の手段と融液との相対位置
が変化したりしても、加熱の温度に対する単結晶の径の
応答性が速くなることはないので、長尺でも径が一定の
値に制御された単結晶を育成することができて、単結晶
を高い歩留りで育成することができる。
In the method for growing a single crystal according to the present invention, even if the remaining amount of the melt is reduced or the relative position between the heating means and the melt is changed, the single crystal can be grown with respect to the heating temperature. Since the responsiveness of the diameter does not increase, it is possible to grow a single crystal in which the diameter is controlled to a constant value even with a long length, and the single crystal can be grown with a high yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一具体例を実施するための装置の概略
図である。
FIG. 1 is a schematic diagram of an apparatus for practicing one embodiment of the present invention.

【図2】一具体例で用いる応答関数を示すグラフであ
る。
FIG. 2 is a graph showing a response function used in a specific example.

【図3】一具体例で育成した単結晶の側面図である。FIG. 3 is a side view of a single crystal grown in a specific example.

【図4】本発明の一従来例で育成した単結晶の側面図で
ある。
FIG. 4 is a side view of a single crystal grown in a conventional example of the present invention.

【符号の説明】[Explanation of symbols]

13 ヒータ 14 融液 15 種結晶 21 単結晶 22 重量測定装置 23 演算回路 24 ヒータ制御装置 13 heater 14 melt 15 seed crystal 21 single crystal 22 weight measuring device 23 arithmetic circuit 24 heater control device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 原料を加熱して形成した融液に種結晶を
接触させ、この種結晶を前記融液から引き上げることに
よって単結晶を育成するに際して、 前記加熱の温度に対する前記単結晶の径の応答関数を予
め求めておき、 前記育成中における前記加熱の履歴と前記径とから所定
時間経過後における前記径の予測値を前記応答関数から
求め、この予測値が前記所定時間経過後における前記径
の目標値に一致する様に前記加熱の温度を制御する単結
晶の育成方法において、 前記単結晶の直胴部の育成時間が経過するに連れて前記
応答関数の時定数または利得の少なくとも一方が単調的
に小さくなっていることを特徴とする単結晶の育成方
法。
1. When growing a single crystal by bringing a seed crystal into contact with a melt formed by heating a raw material and pulling the seed crystal out of the melt, the diameter of the single crystal with respect to the heating temperature is controlled. The response function is obtained in advance, the predicted value of the diameter after a predetermined time has elapsed from the heating history and the diameter during the growth is obtained from the response function, and the predicted value is the diameter after the predetermined time has elapsed. In the single crystal growth method of controlling the heating temperature so as to match the target value, at least one of the time constant or the gain of the response function as the growth time of the straight body portion of the single crystal elapses. A method for growing a single crystal, which is characterized by being monotonically small.
【請求項2】 前記融液の残量が減少するに連れて前記
時定数または前記利得の少なくとも一方が単調的に小さ
くなっていることを特徴とする請求項1記載の単結晶の
育成方法。
2. The method for growing a single crystal according to claim 1, wherein at least one of the time constant and the gain monotonically decreases as the remaining amount of the melt decreases.
【請求項3】 前記加熱の手段と前記融液との相対位置
が変化するに連れて前記時定数または前記利得の少なく
とも一方が単調的に小さくなっていることを特徴とする
請求項1記載の単結晶の育成方法。
3. The method according to claim 1, wherein at least one of the time constant and the gain monotonically decreases as the relative position between the heating means and the melt changes. Single crystal growth method.
【請求項4】 前記時定数または前記利得の少なくとも
一方が一次関数的に小さくなっていることを特徴とする
請求項1〜3の何れか1項に記載の単結晶の育成方法。
4. The method for growing a single crystal according to claim 1, wherein at least one of the time constant and the gain is reduced in a linear function.
JP34781395A 1995-12-15 1995-12-15 Growing method for single crystal Pending JPH09165293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34781395A JPH09165293A (en) 1995-12-15 1995-12-15 Growing method for single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34781395A JPH09165293A (en) 1995-12-15 1995-12-15 Growing method for single crystal

Publications (1)

Publication Number Publication Date
JPH09165293A true JPH09165293A (en) 1997-06-24

Family

ID=18392766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34781395A Pending JPH09165293A (en) 1995-12-15 1995-12-15 Growing method for single crystal

Country Status (1)

Country Link
JP (1) JPH09165293A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8150784B2 (en) 2005-08-12 2012-04-03 Sumco Techxiv Corporation Control system and method for controlled object in time variant system with dead time, such as single crystal production device by czochralski method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8150784B2 (en) 2005-08-12 2012-04-03 Sumco Techxiv Corporation Control system and method for controlled object in time variant system with dead time, such as single crystal production device by czochralski method
DE112006002130B4 (en) * 2005-08-12 2012-04-19 Sumco Techxiv Corporation Method and apparatus for producing a single crystal block of a specific substance by the Czochralski method

Similar Documents

Publication Publication Date Title
US6241818B1 (en) Method and system of controlling taper growth in a semiconductor crystal growth process
EP0068021A1 (en) The method and apparatus for forming and growing a single crystal of a semiconductor compound.
EP0482438B1 (en) Single crystal conical portion growth control method and apparatus
EP1252375A1 (en) Method for controlling growth of a silicon crystal to minimize growth rate and diameter deviations
EP1068375B1 (en) Open-loop method and system for controlling growth of semiconductor crystal
JPS63242991A (en) Method for controlling crystal diameter
WO1995022643A1 (en) Method of growing single crystal
EP1616343A2 (en) Apparatus and method for balanced pressure growth of group iii-v monocrystalline semiconductor compounds
JPH09165293A (en) Growing method for single crystal
JPS6337080B2 (en)
JPH01212291A (en) Method and apparatus for growing crystal
JP3991400B2 (en) Single crystal growth method and apparatus
JPH01317188A (en) Production of single crystal of semiconductor and device therefor
JPH07133187A (en) Method for growing semiconductor single crystal
JP2543449B2 (en) Crystal growth method and apparatus
JPH04108687A (en) Controlling method for outside diameter of single crystal
JP3154351B2 (en) Single crystal growth method
JPH03228893A (en) Method for growing crystal
JPS59227797A (en) Method for pulling up single crystal
JPH09235181A (en) Pulling of single crystal and single crystal pull apparatus
JP2726887B2 (en) Method for manufacturing compound semiconductor single crystal
JPH07206584A (en) Production of compound semiconductor single crystal
JP3551270B2 (en) Single crystal manufacturing method
JPH0940492A (en) Production of single crystal and apparatus for production therefor
JPH07300386A (en) Method for growing semiconductor crystal