JPH09153519A - Structure for mounting semiconductor - Google Patents

Structure for mounting semiconductor

Info

Publication number
JPH09153519A
JPH09153519A JP7312356A JP31235695A JPH09153519A JP H09153519 A JPH09153519 A JP H09153519A JP 7312356 A JP7312356 A JP 7312356A JP 31235695 A JP31235695 A JP 31235695A JP H09153519 A JPH09153519 A JP H09153519A
Authority
JP
Japan
Prior art keywords
solder
chip
solder bump
circuit board
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7312356A
Other languages
Japanese (ja)
Inventor
Tetsuo Sato
哲夫 佐藤
Toshio Kato
俊夫 加藤
Yoshio Iinuma
芳夫 飯沼
Yoshihiro Ishida
芳弘 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP7312356A priority Critical patent/JPH09153519A/en
Publication of JPH09153519A publication Critical patent/JPH09153519A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Abstract

PROBLEM TO BE SOLVED: To provide a structure for mounting a semiconductor with excellent reliability and productivity. SOLUTION: In a semiconductor device 14 with which solder bumps 8 arranged on an IC chip 5 are connected by face-down bonding to the IC connecting electrodes 2 of a circuit board 1, the shapes of the solder bump connecting parts are without the shape of lands but long and narrow with fixed width. The surface of it is electroless plated with Au and formed with porous flash Au plating layer 7a. By applying no cleansing type flux 13 with the chlorine content of 0.05% or less on the side of the solder bump 8 partially and reflowing the solder bump 8 in the atmosphere, the solder is held inside the solder bump connecting part and the distance between the IC chip 5 and the surface of the circuit board 1 is kept constant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体の実装構造に
係わり、更に詳しくはICチップを直接フェースダウン
で回路基板上に実装するフリップチップボンディングし
た半導体の実装構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor mounting structure, and more particularly to a flip chip bonding semiconductor mounting structure for mounting an IC chip directly on a circuit board face down.

【0002】[0002]

【従来の技術】近年、ICチップの高密度実装に伴い、
多数の電極を有する樹脂封止型半導体装置が開発されて
いる。その代表的なものとしては、PGA(ピングリッ
ドアレイ)があるが、PGAはマザーボードに対して着
脱可能であるという利点があるものの、ピンがあるので
大型となり小型化が難しいという問題があった。
2. Description of the Related Art In recent years, with the high-density mounting of IC chips,
A resin-sealed semiconductor device having a large number of electrodes has been developed. As a typical example thereof, there is a PGA (pin grid array). Although the PGA has an advantage that it can be attached to and detached from a mother board, it has a problem that it has a large size because it has a pin and it is difficult to miniaturize it.

【0003】そこで、このPGAに代わる小型化、高密
度化したBGA(ボールグリッドアレイ)が開発され
た。更にそのBGAにおいては、従来のワイヤーボンデ
ィングの信頼性及び生産性を改良した技術として、IC
チップを直接回路基板上に実装するフリップチップボン
ディングの技術が特開平6−349893号公報に開示
されている。以下図面に基づいてその概要を説明する。
Therefore, a BGA (ball grid array) which is smaller and has a higher density has been developed in place of the PGA. Furthermore, in the BGA, as a technique for improving reliability and productivity of conventional wire bonding, IC
A flip chip bonding technique for mounting a chip directly on a circuit board is disclosed in JP-A-6-349983. The outline will be described below with reference to the drawings.

【0004】図3、図4は従来のフェースダウンボンデ
ィング(以下FDBと略記する)BGAの実装構造を示
し図3は要部断面図、図4はその部分平面図である。図
3、4において、回路基板1は略四角形でガラスエポキ
シ樹脂等よりなる上下両面に銅箔張りの樹脂基板で、該
樹脂基板には複数のスルーホールが切削ドリル等の手段
により加工される。前記スルーホールの壁面を含む基板
面を洗浄した後、前記樹脂基板の全表面に無電解メッキ
及び電解メッキにより銅メッキ層を形成し、前記スルー
ホール内まで施される。
3 and 4 show a mounting structure of a conventional face-down bonding (hereinafter abbreviated as FDB) BGA, FIG. 3 is a cross-sectional view of a main portion, and FIG. 4 is a partial plan view thereof. In FIGS. 3 and 4, the circuit board 1 is a substantially rectangular resin board made of glass epoxy resin or the like with copper foils on both upper and lower surfaces, and a plurality of through holes are formed in the resin board by means such as a cutting drill. After cleaning the substrate surface including the wall surface of the through hole, a copper plating layer is formed on the entire surface of the resin substrate by electroless plating and electrolytic plating, and the copper plating layer is applied to the inside of the through hole.

【0005】更に、メッキレジストをラミネートし、露
光現像してパターンマスクを形成した後、エッチング液
を用いてパターンエッチングを行うことにより、上面側
にはIC接続用電極2を、下面側にはマトリックス状に
外部接続用電極3を形成する。前記IC接続用電極2と
なるリード電極の先端の半田バンプ接続部は、円形状の
ランド部2aが形成される。次にソルダーレジスト処理
を行い、所定の部分にレジスト膜4を形成することによ
り、前記樹脂基板の上面側にはICチップ5が搭載され
る部分よりも若干大きめの開口部を形成し、リード電極
先端近傍が露呈するようにレジスト膜4が形成され、前
記露呈したリード電極の表面には2〜5μm程度のNi
メッキ層6を施し、更に前記Niメッキ層6の上に0.
5μm程度のAuメッキ層7を施すNi−Auメッキ層
を形成する。下面側には外部接続用電極3を露呈するよ
うに、マトリックス状に多数の同一形状の半田付け可能
な表面であるレジスト膜開口部を形成することにより回
路基板1が完成される。
Further, a plating resist is laminated, exposed and developed to form a pattern mask, and then pattern etching is performed using an etching solution to form the IC connection electrodes 2 on the upper surface side and the matrix on the lower surface side. The external connection electrode 3 is formed in a shape. A circular land portion 2a is formed at the solder bump connecting portion at the tip of the lead electrode that becomes the IC connecting electrode 2. Next, a solder resist process is performed to form a resist film 4 on a predetermined portion, thereby forming an opening on the upper surface side of the resin substrate, which is slightly larger than the portion on which the IC chip 5 is mounted, and the lead electrode. The resist film 4 is formed so that the vicinity of the tip is exposed, and the exposed lead electrode has a surface of Ni of about 2 to 5 μm.
The plating layer 6 is applied, and the Ni plating layer 6 is coated with 0.
A Ni-Au plated layer having an Au plated layer 7 of about 5 μm is formed. The circuit board 1 is completed by forming a large number of resist film openings which are solderable surfaces of the same shape in a matrix so as to expose the external connection electrodes 3 on the lower surface side.

【0006】前記ICチップ5には予め半田バンプ8が
形成されており、前記半田バンプ8はIC接続用電極2
のリード電極のランド部2aにフラックスを介して位置
決めされ、リフローにより半田バンプ8を溶融し、前記
リード電極のランド部2aにICチップ5を固着する。
Solder bumps 8 are formed on the IC chip 5 in advance, and the solder bumps 8 are used for the IC connecting electrodes 2.
Is positioned on the land portion 2a of the lead electrode via flux, the solder bump 8 is melted by reflow, and the IC chip 5 is fixed to the land portion 2a of the lead electrode.

【0007】前記半田バンプ8はリード電極のランド部
2aの形状にくびれ部2cを形成したので、その形状効
果により溶融した半田バンプ8の流れが抑制され、ラン
ド部2a外に流れ出すことがない。前記半田バンプ8は
ランド部2aで一定の高さに盛り上がり、ICチップ5
と回路基板1の表面との距離を一定の間隔に保つことが
できる。
Since the solder bump 8 has the constricted portion 2c formed in the shape of the land portion 2a of the lead electrode, the flow of the melted solder bump 8 is suppressed by the shape effect and does not flow out of the land portion 2a. The solder bump 8 rises to a certain height on the land 2a,
The distance between the surface of the circuit board 1 and the surface of the circuit board 1 can be kept constant.

【0008】図3に示すように、ICチップ5の上面側
を露出した状態で、ICチップ5と回路基板1との隙間
を封止樹脂9で充填して、レジスト膜4の開口部を覆う
ようにサイドポッティングすることにより、前記レジス
ト膜4の開口部の側壁は封止樹脂9の流れを防止する。
前記ICチップ5は回路基板1に一体的に固定される。
As shown in FIG. 3, with the upper surface side of the IC chip 5 exposed, the gap between the IC chip 5 and the circuit board 1 is filled with a sealing resin 9 to cover the opening of the resist film 4. By side potting as described above, the side wall of the opening of the resist film 4 prevents the sealing resin 9 from flowing.
The IC chip 5 is integrally fixed to the circuit board 1.

【0009】前記回路基板1の下面側に形成された外部
接続用電極4の位置に、半田の融点が、前記ICチップ
5側のフリップチップの半田バンプ8の融点より低い半
田組成の半田ボール10を配置する。前記半田組成は、
例えば、フリップチップの半田バンプ8はPb:90
%、Sn:10%、融点301°Cの所謂9/1半田
で、半田ボール電極10を構成する半田ボールは、S
n:60%、Pb:40%、融点183°Cの所謂6/
4半田で、それぞれ融点の異なる半田が使用されている
のが一般的である。前記半田ボール電極10の形成は、
例えば、210〜230°C程度の低い温度で再度リフ
ローすればよい。従って、前記ICチップ5側の半田バ
ンプ8は前記半田ボール電極10の融点より高いので溶
けることはない。以上によりFDBした半導体装置11
が完成される。
At the position of the external connection electrode 4 formed on the lower surface side of the circuit board 1, a solder ball 10 having a solder composition whose melting point is lower than that of the flip chip solder bump 8 on the IC chip 5 side. To place. The solder composition is
For example, the solder bump 8 of the flip chip has Pb: 90.
%, Sn: 10%, so-called 9/1 solder having a melting point of 301 ° C., and the solder ball forming the solder ball electrode 10 is S
n: 60%, Pb: 40%, melting point 183 ° C, so-called 6 /
It is general that four solders each having a different melting point are used. The solder ball electrode 10 is formed by
For example, reflow may be performed again at a low temperature of 210 to 230 ° C. Therefore, the solder bumps 8 on the IC chip 5 side are higher than the melting point of the solder ball electrodes 10 and do not melt. The semiconductor device 11 which is FDB by the above
Is completed.

【0010】上述した半導体装置11では、リード電極
のランド部2aの形状にくびれ部2cを形成することに
より、半田の濡れ広がりを制限し、これによって半田バ
ンプ8の高さを制御することが可能であるが、ICチッ
プ5の小型化及び高密度実装に伴い、各半田バンプ8間
のピッチを狭くしたピン数の多いICチップ5に対応し
てリード電極の数を増加することが要求されるが、ラン
ド部2aの形状が円形のため単純にリード電極を増加さ
せることが困難であった。即ち、ランド部2aは半田の
濡れ広がりを制限するために、リード電極の引出し部の
幅よりもある程度の径を大きくした円形状に形成しなけ
ればならず。例え引出し部同志の幅を狭くしてリード電
極の数を増加したとしても、単位長さにおけるリード電
極の数は前記ランド部2aの大きさに制約されてしまう
ので、要求される狭いピッチのICチップ5を単純にF
DBすることは困難であった。
In the semiconductor device 11 described above, the constriction 2c is formed in the shape of the land 2a of the lead electrode to limit the wetting and spreading of the solder, and thereby the height of the solder bump 8 can be controlled. However, with the miniaturization and high-density mounting of the IC chip 5, it is required to increase the number of lead electrodes corresponding to the IC chip 5 having a large number of pins with a narrow pitch between the solder bumps 8. However, it was difficult to simply increase the number of lead electrodes because the land 2a had a circular shape. That is, the land portion 2a must be formed in a circular shape having a diameter larger than the width of the lead-out portion of the lead electrode in order to limit the spread of the solder. Even if the number of lead electrodes is increased by narrowing the width of the lead-out portions, the number of lead electrodes in a unit length is limited by the size of the land portion 2a. Chip F is simply F
It was difficult to make a DB.

【0011】そこで、上記問題点を解決する従来のFD
B構造として提示された半導体装置を図3に示す。図5
は要部断面図、図6はその平面図である。図5、6にお
いて、前記IC接続用電極2となるリード電極の先端の
半田バンプ接続部は、引出し部と同じ幅で形成されてい
る。回路基板1の上面にはリード電極の半田バンプ接続
部2bのみ露呈するように、ソルダーレジスト処理を行
い第1のレジスト膜4aを形成して、後述する半田バン
プ8の半田流れを制限する。また、半田流れ防止機能を
有する前記第1のレジスト膜4aの上に、更にICチッ
プ5が搭載される部分よりも若干大きめの開口部を有
し、封止樹脂9の流れ防止とパターンを保護する第2の
レジスト膜4を形成する。前記露呈したリード電極の表
面にはNiメッキ層6及びAuメッキ層7を施すNi−
Auメッキ層を形成することは前述の従来技術と同様で
ある。
Therefore, a conventional FD that solves the above problems
A semiconductor device presented as a B structure is shown in FIG. FIG.
Is a sectional view of a main part, and FIG. 6 is a plan view thereof. 5 and 6, the solder bump connecting portion at the tip of the lead electrode which becomes the IC connecting electrode 2 is formed with the same width as the lead portion. The first resist film 4a is formed by performing a solder resist process so that only the solder bump connecting portions 2b of the lead electrodes are exposed on the upper surface of the circuit board 1 to limit the solder flow of the solder bumps 8 described later. Further, on the first resist film 4a having a solder flow preventing function, there is an opening slightly larger than the portion where the IC chip 5 is mounted, so that the flow of the sealing resin 9 is prevented and the pattern is protected. A second resist film 4 is formed. On the surface of the exposed lead electrode, a Ni-plated layer 6 and an Au-plated layer 7 are formed.
The formation of the Au plating layer is the same as in the above-mentioned conventional technique.

【0012】次に、前述と同様に、ICチップ5には予
め半田バンプ8が形成され、前記半田バンプ8はリード
電極の半田バンプ接続部2bにフラックスを介して位置
決めされ、リフローにより半田バンプ8を溶融し、前記
半田バンプ接続部2bにICチップ5を固着する。半田
バンプ8は前記第1のレジスト膜4aによりリード電極
の先端部外へは流れ出すことなく、先端部で一定の高さ
に盛り上がり、ICチップ5と回路基板1の表面と一定
の間隔を保つことができる。更にICチップ5の樹脂封
止及び回路基板1の下面に半田ボール電極10を形成し
てFDB構造の半導体装置12が完成される。
Next, similarly to the above, the solder bumps 8 are formed on the IC chip 5 in advance, the solder bumps 8 are positioned on the solder bump connecting portions 2b of the lead electrodes through the flux, and the solder bumps 8 are reflowed. Is melted and the IC chip 5 is fixed to the solder bump connecting portion 2b. The solder bump 8 does not flow out of the tip portion of the lead electrode due to the first resist film 4a, but rises to a certain height at the tip portion and keeps a constant distance between the IC chip 5 and the surface of the circuit board 1. You can Further, the IC chip 5 is sealed with resin and the solder ball electrode 10 is formed on the lower surface of the circuit board 1 to complete the semiconductor device 12 having the FDB structure.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、前述し
た半導体装置には次のような問題点がある。即ち、IC
接続用電極2のリード電極同志の間隔が狭められる限度
までの範囲で、狭いピッチのICチップ5をFDBする
ことができ、ICチップの小型化、高密度化の要求に対
応できるが、しかし前記半田バンプ8の流れ止め防止の
ための第1のレジスト膜4aの形成工程が増加するため
に工程が煩雑で、コストアップになるという問題があっ
た。
However, the above-mentioned semiconductor device has the following problems. That is, IC
The IC chip 5 with a narrow pitch can be FDB within a range where the distance between the lead electrodes of the connection electrode 2 can be narrowed, and the demand for miniaturization and high density of the IC chip can be met. Since the step of forming the first resist film 4a for preventing the flow of the solder bumps 8 is increased, the steps are complicated and the cost is increased.

【0014】本発明は上記従来の課題に鑑みなされたも
のであり、その目的は、半導体の実装構造の信頼性及び
生産性の優れた半導体の実装構造を提供するものであ
る。
The present invention has been made in view of the above conventional problems, and an object of the present invention is to provide a semiconductor mounting structure which is excellent in reliability and productivity of the semiconductor mounting structure.

【0015】[0015]

【課題を解決するための手段】上記目的を達成するため
に、本発明における半導体装置は、回路基板の上面に形
成されたIC接続用電極に、ICチップに設けられた半
田バンプをフェースダウンボンディングする半導体装置
において、前記IC接続用電極の半田バンプ接続部の形
状はランド形状を有しない、略一定幅を有する細長い形
状で、前記IC接続用電極上に無電解置換Auメッキ処
理を施すことにより、ポーラスなAuメッキ層を形成す
るとともに、無洗浄型フラックスを用い、大気中にて前
記半田バンプを加熱溶融して接続したことを特徴とする
ものである。
To achieve the above object, in a semiconductor device according to the present invention, a solder bump provided on an IC chip is face-down bonded to an IC connecting electrode formed on an upper surface of a circuit board. In the semiconductor device described above, the shape of the solder bump connecting portion of the IC connecting electrode is an elongated shape having a substantially constant width without a land shape, and electroless displacement Au plating is performed on the IC connecting electrode. In addition to forming a porous Au plating layer, the solder bumps are heated and melted in the atmosphere and connected by using a non-cleaning type flux.

【0016】また、前記無洗浄型フラックスは塩素含有
量が0.05重量%以下のフラックスであることを特徴
とするものである。
The non-cleaning type flux is characterized in that the chlorine content is 0.05 wt% or less.

【0017】また、前記フラックスは半田バンプ側に部
分的に付着したことを特徴とするものである。
The flux is partially adhered to the solder bump side.

【0018】従って、本発明により得られる半導体の実
装構造において、前述したように、前記IC接続用電極
の半田バンプ接続部の形状はランド形状を有しない、略
一定幅を有する細長い形状で、半田バンプ間のピッチを
狭くしピン数の多いICチップに対応して、IC接続用
電極のリード電極同志の間隔を狭められる限度までの範
囲に狭いピッチにすることができる。更に、前記IC接
続用電極上に無電解置換金メッキ処理を施すことによ
り、ポーラスな金メッキ層を形成することにより、半田
の濡れ広がりを抑制することができる。また、同時に塩
素含有量が0.05%以下の無洗浄型フラックスを半田
バンプ側に部分的に付着して、大気中にて前記半田バン
プをリフローすることにより、フラックスの塩素含有量
が少ないため溶融半田の流れを抑制して、ICチップと
回路基板表面との距離を一定の間隔に保持することがで
きる。
Therefore, in the semiconductor mounting structure obtained by the present invention, as described above, the shape of the solder bump connecting portion of the IC connecting electrode does not have a land shape but is an elongated shape having a substantially constant width, The pitch between the bumps can be narrowed to correspond to an IC chip having a large number of pins, so that the pitch between the lead electrodes of the IC connection electrodes can be narrowed to a limit that can be narrowed. Further, the electroless substitution gold plating treatment is performed on the IC connection electrode to form a porous gold plating layer, so that the wetting and spreading of the solder can be suppressed. At the same time, the chlorine content of the flux is small by partially adhering the non-cleaning type flux having a chlorine content of 0.05% or less to the solder bump side and reflowing the solder bump in the atmosphere. The flow of the molten solder can be suppressed and the distance between the IC chip and the surface of the circuit board can be maintained at a constant interval.

【0019】[0019]

【発明の実施の形態】以下図面に基づいて本発明におけ
る半導体の実装構造について説明する。図1は本発明の
好適な実施例で、図1及び図2(a)はFDB構造のB
GAの要部断面図及びその平面図、図2(b)はICチ
ップの断面図である。従来技術と同一部材は同一符号で
示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A semiconductor mounting structure according to the present invention will be described below with reference to the drawings. FIG. 1 is a preferred embodiment of the present invention, and FIG. 1 and FIG.
FIG. 2B is a sectional view of a main part of the GA and a plan view thereof, and FIG. 2B is a sectional view of the IC chip. The same members as those in the prior art are denoted by the same reference numerals.

【0020】先ず図1において、前記回路基板1の上面
に前記IC接続用電極2の半田バンプ接続部の形状はラ
ンド形状を有しない、略一定幅を有する細長い形状で、
半田バンプ間のピッチを狭くしピン数の多いICチップ
5に対応して、IC接続用電極2のリード電極同志の間
隔を狭められる限度までの範囲に狭いピッチにすること
は前述と同様である。次にソルダーレジスト処理を行
い、所定の部分にレジスト膜4を形成する。即ち、前記
樹脂基板の上面側にはICチップ5が搭載される部分よ
りも若干大きめの開口部を形成し、リード電極先端近傍
が露呈するようにレジスト膜4が形成される。前記露呈
したリード電極の半田バンプ接続部2bの表面にはNi
メッキ層6aを施し、更に前記Niメッキ層6aの上に
導通性を良くするために、無電解置換Auメッキ処理に
より、0.05μm程度のフラッシュAuメッキ層7a
を形成する。ここで、無電解置換Auメッキとは、Au
イオン溶液中の金属Niは、AuとNiのイオン化傾向
の違いからお互いに電子を授受して、Au粒子がNi表
面に析出し、Niはイオンとなって溶液中に溶出する。
従って、析出したAu表面は本質的にポーラスでNiが
顔を出している。Au粒子がNi表面に析出する場所は
全くランダムであり、必ずNiが溶出するポーラスな面
が存在する。
First, in FIG. 1, the shape of the solder bump connecting portion of the IC connecting electrode 2 on the upper surface of the circuit board 1 is not a land shape but an elongated shape having a substantially constant width.
The pitch between the solder bumps is narrowed to correspond to the IC chip 5 having a large number of pins, and the pitch between the lead electrodes of the IC connection electrode 2 is narrowed to the limit that can be narrowed, as in the above case. . Next, a solder resist process is performed to form a resist film 4 on a predetermined portion. That is, an opening slightly larger than the portion where the IC chip 5 is mounted is formed on the upper surface side of the resin substrate, and the resist film 4 is formed so that the vicinity of the tip of the lead electrode is exposed. Ni is formed on the surface of the exposed solder bump connecting portion 2b of the lead electrode.
The flash Au plating layer 7a having a thickness of about 0.05 μm is formed by applying the plating layer 6a, and further by electroless displacement Au plating in order to improve conductivity on the Ni plating layer 6a.
To form Here, the electroless displacement Au plating means Au.
The metallic Ni in the ionic solution exchanges electrons with each other due to the difference in the ionization tendency between Au and Ni, Au particles are deposited on the surface of Ni, and Ni becomes ions and is eluted in the solution.
Therefore, the deposited Au surface is essentially porous and Ni is exposed. The locations where the Au particles are deposited on the Ni surface are completely random, and there is always a porous surface into which Ni is eluted.

【0021】次に、図2(b)において、ICチップ5
には予め複数の半田バンプ8が形成され、前記ICチッ
プ5をハンドリングして複数の半田バンプ8側に部分的
に適量の無洗浄型フラックス13を同時に塗布する。フ
ラックスを塗布する際ICチップ5の半田バンプ8側に
フラックスを塗布する方が、回路基板1のIC接続用電
極2側に塗布するよりも極めて容易で、かつ一定量を塗
布できることは言うまでもない。前記無洗浄型フラック
ス13は塩素含有量が0.05%以下のフラックスであ
る。
Next, referring to FIG. 2B, the IC chip 5
In this case, a plurality of solder bumps 8 are formed in advance, and the IC chip 5 is handled to partially apply an appropriate amount of the non-cleaning type flux 13 to the plurality of solder bumps 8 at the same time. It goes without saying that applying the flux to the solder bump 8 side of the IC chip 5 is much easier than applying it to the IC connecting electrode 2 side of the circuit board 1 and can apply a fixed amount. The non-cleaning type flux 13 has a chlorine content of 0.05% or less.

【0022】前記ICチップ5の半田バンプ8を無洗浄
型フラックス13を介して回路基板1のIC接続用電極
2の半田バンプ接続部2bに位置決めして、大気中でリ
フローすることにより半田バンプ8を溶融し、前記半田
バンプ接続部2bにICチップ5を固着する。この際、
不活性ガスの雰囲気中でなく、大気中でリフローするこ
とにより、半田の流れを抑制すると同時に、前記無洗浄
型フラックス13で塩素含有量が0.05%以下に少な
くすることにより半田の流れを抑制することができ、半
田バンプ8を加熱溶融した際、前述したAu粒子がNi
表面に析出したポーラスな面を有する半田バンプ接続部
2bの外へ流れ出すことがなく、ICチップ5と回路基
板1の表面との距離を一定の間隔に保つことができる。
更に、塩素含有量が少ないためにICチップ5を回路基
板1に固着後に洗浄工程を必要としない。なお、フラッ
クスの塩素含有量が0.05%以上になると、半田の流
れがよくなり、溶融半田は半田バンプ接続部2bの表面
がポーラスであったとしても流れ出し、ICチップ5と
回路基板1とを一定な間隔に保ことはできない。
The solder bumps 8 of the IC chip 5 are positioned on the solder bump connecting portions 2b of the IC connecting electrodes 2 of the circuit board 1 through the non-cleaning type flux 13 and reflowed in the atmosphere, so that the solder bumps 8 are formed. Is melted and the IC chip 5 is fixed to the solder bump connecting portion 2b. On this occasion,
By reflowing in the atmosphere instead of in the atmosphere of an inert gas, the flow of solder is suppressed, and at the same time, the chlorine content is reduced to 0.05% or less in the non-cleaning type flux 13 to reduce the flow of solder. When the solder bumps 8 are heated and melted, the Au particles described above can be suppressed to Ni.
It is possible to keep the distance between the IC chip 5 and the surface of the circuit board 1 at a constant distance without flowing out of the solder bump connecting portion 2b having a porous surface deposited on the surface.
Furthermore, since the chlorine content is low, a cleaning process is not required after the IC chip 5 is fixed to the circuit board 1. It should be noted that when the chlorine content of the flux is 0.05% or more, the flow of the solder is improved, and the molten solder flows out even if the surface of the solder bump connection portion 2b is porous. Cannot be kept at regular intervals.

【0023】更に、前述と同様に、ICチップ5の樹脂
封止及び回路基板1の下面に半田ボール電極10を形成
してFDB構造の半導体装置14が完成される。
Further, similarly to the above, the FDB structure semiconductor device 14 is completed by sealing the IC chip 5 with resin and forming the solder ball electrode 10 on the lower surface of the circuit board 1.

【0024】上述の如く、本実施の形態の特徴とすると
ころは、半田バンプ間のピッチを狭くしピン数の多いI
Cチップ5に対応して、回路基板1のIC接続用電極2
のリード電極同志の間隔を狭められる限度までの範囲に
狭いピッチにして、レジスト膜4により露呈したリード
電極表面を無電解置換AuメッキによりポーラスなAu
メッキ層7a形成し、半田バンプ8側に無洗浄型フラッ
クス13を塗布して、大気中でリフローして接続したも
のである。本実施の形態ではICチップをFDBで回路
基板上に実装するBGAで説明したがPGAにも適用で
きることは言うまでもない。
As described above, the feature of this embodiment is that the pitch between solder bumps is narrowed and the number of pins is large.
Corresponding to the C chip 5, the IC connection electrode 2 of the circuit board 1
The lead electrode surface exposed by the resist film 4 is made into a porous Au plate by electroless displacement Au plating with a narrow pitch within a range where the space between the lead electrode members can be narrowed.
The plating layer 7a is formed, the non-cleaning type flux 13 is applied to the solder bump 8 side, and the reflow is performed in the atmosphere for connection. In this embodiment, the BGA in which the IC chip is mounted on the circuit board by the FDB has been described, but it goes without saying that it can be applied to the PGA.

【0025】[0025]

【発明の効果】以上説明したように、本発明によれば、
小型化及び高密度化の要求に対して、回路基板のIC接
続用電極の同志の間隔を狭められる限度までの範囲に狭
いピッチにして、単位長さ当たりのリード電極の数の増
加をはかり、半田バンプ接続部に形成したポーラスな表
面に、塩素含有量が極小のフラックスを半田バンプ側に
塗布して、大気中でリフローする等の半田流れを抑制す
る条件にすることにより、IC接続用電極の半田バンプ
接続部から溶融半田は流れ出すことはない。従って、半
田は一定の高さに盛り上がり、ICチップと回路基板の
表面との距離を一定の間隔に保ち接続できる。更に、フ
ラックスの塩素含有量が少ないために、ICチップを回
路基板に固着後に洗浄工程を必要としない。また、従来
技術で説明したように溶融した半田バンプの流れ止め防
止のための第1のレジスト膜の形成工程も不要になる。
また前記フラックスの塗布は半田バンプ側であること、
及びリフローする雰囲気も大気中であるので、共に作業
効率よい。以上により、ICの小型化、高速化に対応
し、信頼性及び生産性の優れた半導体の実装構造を提供
することが可能である。
As described above, according to the present invention,
In order to meet the demand for miniaturization and high density, the pitch of the IC connecting electrodes of the circuit board is set to a narrow pitch to the limit so that the number of lead electrodes per unit length is increased, An electrode for IC connection is formed by applying a flux having a minimum chlorine content to the solder bump side on the porous surface formed in the solder bump connection portion to make the solder flow condition such as reflow in the atmosphere suppressed. The molten solder does not flow out from the solder bump connection portion of. Therefore, the solder rises to a constant height, and the IC chip and the surface of the circuit board can be connected while maintaining a constant distance. Further, since the chlorine content of the flux is small, a cleaning process is not required after fixing the IC chip to the circuit board. Further, the step of forming the first resist film for preventing the flow of the melted solder bumps as described in the prior art becomes unnecessary.
Also, the application of the flux should be on the solder bump side,
Also, since the atmosphere for reflow is in the atmosphere, both work efficiency is good. As described above, it is possible to provide a semiconductor mounting structure that is compatible with downsizing and speeding up of an IC and has excellent reliability and productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係わるフェースダウンボ
ンディングBGAの実装構造を示す要部断面図である。
FIG. 1 is a cross-sectional view of essential parts showing a mounting structure of a face-down bonding BGA according to an embodiment of the present invention.

【図2】(a)は本発明の実施の形態に係わるフェース
ダウンボンディングBGAの実装構造を示す平面図
(b)はICチップの断面図である。
FIG. 2A is a plan view showing a mounting structure of a face-down bonding BGA according to the embodiment of the present invention, and FIG. 2B is a sectional view of an IC chip.

【図3】従来例のフェースダウンボンディングBGAの
実装構造を示す要部断面図である。
FIG. 3 is a cross-sectional view of essential parts showing a mounting structure of a face-down bonding BGA of a conventional example.

【図4】従来例のフェースダウンボンディングBGAの
実装構造を示す平面図である。
FIG. 4 is a plan view showing a mounting structure of a conventional face-down bonding BGA.

【図5】従来技術のフェースダウンボンディングBGA
の実装構造を示す要部断面図である。
FIG. 5: Prior art face down bonding BGA
FIG. 3 is a cross-sectional view of an essential part showing the mounting structure of FIG.

【図6】従来技術のフェースダウンボンディングBGA
の実装構造を示す平面図である。
FIG. 6 is a conventional face-down bonding BGA.
3 is a plan view showing the mounting structure of FIG.

【符号の説明】[Explanation of symbols]

1 回路基板 2 IC接続用電極 2b 半田バンプ接続部 2c くびれ部 3 外部接続用電極 4 レジスト膜 5 ICチップ 6a Niメッキ層 7a フラッシュAuメッキ層 8 半田バンプ 9 封止樹脂 13 無洗浄型フラックス 14 フェースダウンボンディングBGA DESCRIPTION OF SYMBOLS 1 Circuit board 2 IC connection electrode 2b Solder bump connection part 2c Constriction part 3 External connection electrode 4 Resist film 5 IC chip 6a Ni plating layer 7a Flash Au plating layer 8 Solder bump 9 Encapsulating resin 13 Non-cleaning type flux 14 Face Down bonding BGA

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石田 芳弘 東京都田無市本町6丁目1番12号 シチズ ン時計株式会社田無製造所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshihiro Ishida 6-12 Hommachi Honmachi, Tanashi City, Tokyo Citizen Watch Co., Ltd. Tanashi Factory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 回路基板の上面に形成されたIC接続用
電極に、ICチップに設けられた半田バンプをフェース
ダウンボンディングする半導体装置において、前記IC
接続用電極の半田バンプ接続部の形状はランド形状を有
さない、略一定幅を有する細長い形状で、前記IC接続
用電極上に無電解置換Auメッキ処理を施すことによ
り、ポーラスなAuメッキ層を形成するとともに、無洗
浄型フラックスを用い、大気中にて前記半田バンプを加
熱溶融して接続したことを特徴とする半導体の実装構
造。
1. A semiconductor device in which a solder bump provided on an IC chip is face-down bonded to an IC connecting electrode formed on an upper surface of a circuit board, wherein the IC
The solder bump connection portion of the connection electrode has an elongated shape having a substantially constant width without a land shape, and a porous Au plating layer is obtained by subjecting the IC connection electrode to electroless displacement Au plating. And the solder bumps are heated and melted in the air and connected by using a non-cleaning type flux.
【請求項2】 前記無洗浄型フラックスは塩素含有量が
0.05重量%以下のフラックスであることを特徴とす
る請求項1記載の半導体の実装構造。
2. The semiconductor mounting structure according to claim 1, wherein the non-cleaning type flux has a chlorine content of 0.05 wt% or less.
【請求項3】 前記フラックスは半田バンプ側に部分的
に付着したことを特徴とする請求項2記載の半導体の実
装構造。
3. The semiconductor mounting structure according to claim 2, wherein the flux partially adheres to the solder bump side.
JP7312356A 1995-11-30 1995-11-30 Structure for mounting semiconductor Pending JPH09153519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7312356A JPH09153519A (en) 1995-11-30 1995-11-30 Structure for mounting semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7312356A JPH09153519A (en) 1995-11-30 1995-11-30 Structure for mounting semiconductor

Publications (1)

Publication Number Publication Date
JPH09153519A true JPH09153519A (en) 1997-06-10

Family

ID=18028267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7312356A Pending JPH09153519A (en) 1995-11-30 1995-11-30 Structure for mounting semiconductor

Country Status (1)

Country Link
JP (1) JPH09153519A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001097277A1 (en) * 2000-06-16 2001-12-20 Matsushita Electric Industrial Co., Ltd. Electronic parts packaging method and electronic parts package
JP2007266316A (en) * 2006-03-28 2007-10-11 Matsushita Electric Works Ltd Stainless transfer base having plated circuit layer, circuit board, and component built-in module
JP2010067742A (en) * 2008-09-10 2010-03-25 Fujitsu Ltd Mounting circuit board and semiconductor device
JP2010278480A (en) * 2010-09-14 2010-12-09 Rohm Co Ltd Semiconductor device
US20100323518A1 (en) * 2007-11-14 2010-12-23 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Method for producing a nanoporous layer
JP2011216160A (en) * 2010-03-31 2011-10-27 Nhk Spring Co Ltd Electronic apparatus and disk drive suspension
US8405227B2 (en) 2004-09-28 2013-03-26 Rohm Co., Ltd. Semiconductor device with a semiconductor chip connected in a flip chip manner
JP2013191898A (en) * 2013-07-04 2013-09-26 Rohm Co Ltd Semiconductor device
JP2014067782A (en) * 2012-09-25 2014-04-17 Toyoda Gosei Co Ltd Led chip mounting method
US11842972B2 (en) 2004-09-28 2023-12-12 Rohm Co., Ltd. Semiconductor device with a semiconductor chip connected in a flip chip manner

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7355126B2 (en) 2000-06-16 2008-04-08 Matsushita Electric Industrial Co., Ltd. Electronic parts packaging method and electronic parts package
WO2001097277A1 (en) * 2000-06-16 2001-12-20 Matsushita Electric Industrial Co., Ltd. Electronic parts packaging method and electronic parts package
US10818628B2 (en) 2004-09-28 2020-10-27 Rohm Co., Ltd. Semiconductor device with a semiconductor chip connected in a flip chip manner
US11842972B2 (en) 2004-09-28 2023-12-12 Rohm Co., Ltd. Semiconductor device with a semiconductor chip connected in a flip chip manner
US11355462B2 (en) 2004-09-28 2022-06-07 Rohm Co., Ltd. Semiconductor device with a semiconductor chip connected in a flip chip manner
US9117774B2 (en) 2004-09-28 2015-08-25 Rohm Co., Ltd. Semiconductor device with a semiconductor chip connected in a flip chip manner
US10522494B2 (en) 2004-09-28 2019-12-31 Rohm Co., Ltd. Semiconductor device with a semiconductor chip connected in a flip chip manner
US8405227B2 (en) 2004-09-28 2013-03-26 Rohm Co., Ltd. Semiconductor device with a semiconductor chip connected in a flip chip manner
US9831204B2 (en) 2004-09-28 2017-11-28 Rohm Co., Ltd. Semiconductor device with a semiconductor chip connected in a flip chip manner
US9721865B2 (en) 2004-09-28 2017-08-01 Rohm Co., Ltd. Semiconductor device with a semiconductor chip connected in a flip chip manner
US8754535B2 (en) 2004-09-28 2014-06-17 Rohm Co., Ltd. Semiconductor device with a semiconductor chip connected in a flip chip manner
JP4508140B2 (en) * 2006-03-28 2010-07-21 パナソニック電工株式会社 Built-in module
JP2007266316A (en) * 2006-03-28 2007-10-11 Matsushita Electric Works Ltd Stainless transfer base having plated circuit layer, circuit board, and component built-in module
US8673773B2 (en) * 2007-11-14 2014-03-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for producing a nanoporous layer
US20100323518A1 (en) * 2007-11-14 2010-12-23 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Method for producing a nanoporous layer
JP2010067742A (en) * 2008-09-10 2010-03-25 Fujitsu Ltd Mounting circuit board and semiconductor device
JP2011216160A (en) * 2010-03-31 2011-10-27 Nhk Spring Co Ltd Electronic apparatus and disk drive suspension
JP2010278480A (en) * 2010-09-14 2010-12-09 Rohm Co Ltd Semiconductor device
JP2014067782A (en) * 2012-09-25 2014-04-17 Toyoda Gosei Co Ltd Led chip mounting method
JP2013191898A (en) * 2013-07-04 2013-09-26 Rohm Co Ltd Semiconductor device

Similar Documents

Publication Publication Date Title
JP4660643B2 (en) Semiconductor package substrate for forming pre-solder structure, semiconductor package substrate on which pre-solder structure is formed, and manufacturing method thereof
US6627824B1 (en) Support circuit with a tapered through-hole for a semiconductor chip assembly
KR100239406B1 (en) Surface mounted semiconductor package and method of manufacturing the same
TWI549204B (en) Manufacturing method of semiconductor device
US20040232562A1 (en) System and method for increasing bump pad height
JP3060896B2 (en) Structure of bump electrode
JPH08330358A (en) Electronic module provided with many solder dams inside window of solder mask
TW200525666A (en) Bump-on-lead flip chip interconnection
JP2003037133A (en) Semiconductor device, method of manufacturing the same, and electronic device
KR20110064471A (en) Package substrate and fabricating method of the same
KR20080038028A (en) Method for mounting electronic component on substrate and method for forming solder surface
JPH09153519A (en) Structure for mounting semiconductor
US6455355B1 (en) Method of mounting an exposed-pad type of semiconductor device over a printed circuit board
KR100234694B1 (en) Manufacturing method of bga package
JP2006351950A (en) Semiconductor device and method for manufacturing the same
JP2001060760A (en) Circuit electrode and formation process thereof
JP2000040713A (en) Manufacture of semiconductor package
JPH11163024A (en) Semiconductor device and lead frame for assembling the same, and manufacture of the device
KR20000008347A (en) Method for manufacturing flip chip bga package
JP3563170B2 (en) Method for manufacturing semiconductor device
JP2001267452A (en) Semiconductor device
JPH1116947A (en) Semiconductor package and manufacture thereof
KR20020028018A (en) Multi chip package
JP2004014568A (en) Semiconductor device
JPH11307585A (en) Semiconductor device