JPH09147847A - Electrode of alkaline secondary battery - Google Patents

Electrode of alkaline secondary battery

Info

Publication number
JPH09147847A
JPH09147847A JP7310440A JP31044095A JPH09147847A JP H09147847 A JPH09147847 A JP H09147847A JP 7310440 A JP7310440 A JP 7310440A JP 31044095 A JP31044095 A JP 31044095A JP H09147847 A JPH09147847 A JP H09147847A
Authority
JP
Japan
Prior art keywords
electrode
sponge
secondary battery
pores
alkaline secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7310440A
Other languages
Japanese (ja)
Inventor
Koji Hoshino
孝二 星野
Yoshiyuki Mayuzumi
良享 黛
Toru Kono
通 河野
Kiichi Komada
紀一 駒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP7310440A priority Critical patent/JPH09147847A/en
Priority to DE69619179T priority patent/DE69619179T2/en
Priority to PCT/JP1996/000911 priority patent/WO1996031306A1/en
Priority to EP96907766A priority patent/EP0764489B1/en
Priority to US08/737,931 priority patent/US5848351A/en
Publication of JPH09147847A publication Critical patent/JPH09147847A/en
Priority to US09/066,530 priority patent/US6117592A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase a filling quantity of active materials to an electrode, and attain high capacity of a battery by making pores and micropores exist in a sponge-like porous metallic base body of the electrode, and filling the active materials in both pore parts. SOLUTION: An electrode of an alkaline secondary battery is composed of pore parts 1 and a skeletal part 2 composed of microporous sintered metal having micropores 11 finer than these pore parts 1. Active materials 3 are filled in the pore parts 1 of this sponge-like porous metallic base body and the micropores 11 of the skeletal part 2. The sponge-like porous metallic base body is composed of pore parts having an average pore diameter of 200 to 700μm, micropores whose average micropore diameter is 0.5 to 20μm and microporous sintered metal whose porosity is 10 to 50-%. The content of the active materials contained in this electrode is about 75 to 85g/cm<3> , and is more remarkably excellent than about 65g/cm<3> of the conventional content.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、ニッケル−カド
ミウム電池、ニッケル−水素電池などのアルカリ二次電
池の電極に関するものである。
TECHNICAL FIELD The present invention relates to an electrode of an alkaline secondary battery such as a nickel-cadmium battery or a nickel-hydrogen battery.

【0002】[0002]

【従来の技術】一般に、ニッケル−カドミウム電池、ニ
ッケル−水素電池などのアルカリ二次電池の電極は、図
2に示されるように、Ni金属からなる骨格部分2が網
目状に連続的に三次元的につながって構成した空孔部分
1を有するスポンジ状多孔質金属基体に活物質3を充填
した構造を有している。この従来のアルカリ二次電池の
電極を製造するための空孔部分1と骨格部分2からなる
スポンジ状多孔質金属基体は、発泡ウレタンにNiメッ
キしたのち、発泡ウレタンを燃焼させて得られる。この
発泡ウレタンを燃焼させて得られたスポンジ状多孔質金
属基体は、通常、平均孔径:200〜700μm、気孔
率:93〜97%、比表面積:40cm2/cm3 を有
する。
2. Description of the Related Art Generally, in an electrode of an alkaline secondary battery such as a nickel-cadmium battery or a nickel-hydrogen battery, as shown in FIG. 2, a skeleton portion 2 made of Ni metal is continuously three-dimensionally meshed. The active material 3 is filled in a sponge-like porous metal substrate having pores 1 that are continuously connected. The sponge-like porous metal substrate comprising the void portion 1 and the skeleton portion 2 for manufacturing the electrode of this conventional alkaline secondary battery is obtained by burning Ni foam on urethane foam and then burning the urethane foam. The sponge-like porous metal substrate obtained by burning this urethane foam usually has an average pore diameter: 200 to 700 μm, a porosity: 93 to 97%, and a specific surface area: 40 cm 2 / cm 3 .

【0003】従来のアルカリ二次電池の電極は、この様
にして得られたスポンジ状多孔質金属基体に、活物質粉
末:1〜2%とCMC(カルボキシメチルセルロース)
およびPTFE(ポリテトラフルオロエチレン)を含む
粘性水溶液とを混練したペースト状のものを含浸させ、
乾燥後、圧延することにより製造されていた。
The electrode of a conventional alkaline secondary battery has a sponge-like porous metal substrate thus obtained, active material powder: 1 to 2% and CMC (carboxymethyl cellulose)
And a viscous aqueous solution containing PTFE (polytetrafluoroethylene) are kneaded into a paste-like material,
It was manufactured by rolling after drying.

【0004】アルカリ二次電池のうち、ニッケル−カド
ミウム電池では正極活物質として水酸化ニッケル粉が、
負極活物質として水酸化カドミウム粉が使用され、一
方、ニッケル−水素電池では正極活物質として水酸化ニ
ッケル粉が、負極活物質として水素吸蔵合金粉末が一般
に使用されている。
Among the alkaline secondary batteries, nickel-cadmium batteries contain nickel hydroxide powder as the positive electrode active material.
Cadmium hydroxide powder is used as the negative electrode active material, while nickel hydroxide powder is generally used as the positive electrode active material and hydrogen storage alloy powder as the negative electrode active material in nickel-hydrogen batteries.

【0005】[0005]

【発明が解決しようとする課題】電極を内蔵した密閉型
アルカリ二次電池は、電極に含有する活物質の量が多い
ほど容量は大きくなることは知られているが、従来の図
2に示されるようなNi金属からなる骨格部分2が網目
状に連続的に三次元的につながって構成した空孔部分1
を有するスポンジ状多孔質金属基体電極では活物質3の
含有量に限界があり、なお一層多量の活物質を含んだ電
極が求められている。
It is known that the sealed alkaline secondary battery having a built-in electrode has a larger capacity as the amount of the active material contained in the electrode increases. The void portion 1 is formed by continuously connecting the skeleton portion 2 made of Ni metal like a mesh in a three-dimensional manner.
In the sponge-like porous metal substrate electrode having the above, the content of the active material 3 is limited, and an electrode containing a still larger amount of active material is required.

【0006】[0006]

【課題を解決するための手段】本発明者らは、従来より
も活物質の含有量が多い電極を開発し、従来よりも大容
量の密閉型アルカリ二次電池を得るべく研究を行った結
果、図1に示すように、空孔部分1と、空孔部分1の孔
径よりも微細な空孔(以下、微細空孔という)11を有
する骨格部分2からなるスポンジ状多孔質金属基体の空
孔部分1および微細空孔11の双方に活物質を充填して
電極を製造すると、従来よりも活物質の含有量が多く均
一分散した電極を得ることができ、この電極を組み込む
ことにより従来よりも大容量のアルカリ二次電池を製造
することができるという知見を得たのである。
Means for Solving the Problems The present inventors have developed an electrode having a higher content of active material than before and conducted research to obtain a sealed alkaline secondary battery having a larger capacity than before. As shown in FIG. 1, a void of a sponge-like porous metal substrate composed of a pore portion 1 and a skeleton portion 2 having pores 11 (hereinafter referred to as fine pores) that are finer than the pore diameter of the pore portion 1. When an electrode is manufactured by filling both the hole portion 1 and the fine pores 11 with an active material, an electrode having a larger content of the active material and uniformly dispersed can be obtained. It was found that it is possible to manufacture a large capacity alkaline secondary battery.

【0007】この発明は、かかる知見にもとづいて成さ
れたものであって、空孔部分1と、前記空孔部分1に比
べてさらに微細な微細空孔11を有する微細多孔質焼結
金属からなる骨格部分2とで構成されたスポンジ状多孔
質金属基体の前記空孔部分1および骨格部分2の微細空
孔11に活物質3が充填されているアルカリ二次電池の
電極、に特徴を有するものである。
The present invention has been made based on such knowledge, and is made of a fine porous sintered metal having pores 1 and fine pores 11 finer than the pores 1. And an electrode of an alkaline secondary battery in which the active material 3 is filled in the pores 1 of the sponge-like porous metal substrate and the fine pores 11 of the skeleton portion 2. It is a thing.

【0008】この発明のアルカリ二次電池の電極を構成
する骨格部分が微細多孔質焼結金属からなるスポンジ状
多孔質金属基体の空孔部分の平均空孔径は200〜70
0μmを有し、従来とほぼ同じであるが、比表面積は3
00〜1500cm2 /cm 3 であって、従来の発泡ニ
ッケルによるスポンジ状多孔質金属基体の比表面積がせ
いぜい40cm2 /cm3 であるに比べると格段に優れ
ており、さらに活物質の含有量もこの発明のアルカリ二
次電池の電極に含まれる活物質の含有量は75〜85m
g/cm3 であるに比べて、従来のアルカリ二次電池の
電極に含まれる活物質の含有量はせいぜい65g/cm
3 であるのに比べると格段に優れている。
The electrode of the alkaline secondary battery of the present invention is constructed
The skeletal part is made of sponge made of fine porous sintered metal
The average pore diameter of the pores of the porous metal substrate is 200 to 70.
0 μm, which is almost the same as the conventional one, but the specific surface area is 3
00-1500 cmTwo/ Cm ThreeHowever, conventional foaming
The specific surface area of the sponge-like porous metal substrate
40 cm at mostTwo/ CmThreeIs far superior to
In addition, the content of the active material is also the alkali content of this invention.
The content of the active material contained in the electrode of the secondary battery is 75 to 85 m
g / cmThreeCompared with the conventional alkaline secondary battery
The content of the active material contained in the electrode is at most 65 g / cm
ThreeIt is much better than that.

【0009】この発明のアルカリ二次電池の電極を構成
するスポンジ状多孔質金属基体の骨格部分の平均微細孔
径が0.5μm未満では孔径が小さすぎて活物質を十分
に充填することができず、一方、平均微細孔径が20μ
mを越えると、スポンジ状多孔質金属基体としての強度
が不足するので好ましくない。また、骨格部分の微細多
孔質焼結金属の気孔率が10%未満では活物質の含有保
持量が不十分であり、一方、55%を越えると、スポン
ジ状多孔質金属基体としての強度が不足するので好まし
くない。したがって、この発明のアルカリ二次電池の電
極の骨格部分を微細多孔質焼結金属で構成したスポンジ
状多孔質金属基体の骨格部分の平均微細孔径は0.5〜
20μm(一層好ましくは、1〜5μm)、気孔率は1
0〜55%(一層好ましくは、15〜35%)に定め
た。
If the average fine pore diameter of the skeleton of the sponge-like porous metal substrate constituting the electrode of the alkaline secondary battery of the present invention is less than 0.5 μm, the pore diameter is too small to sufficiently fill the active material. On the other hand, the average micropore size is 20μ
If it exceeds m, the strength of the sponge-like porous metal substrate becomes insufficient, which is not preferable. Further, if the porosity of the fine porous sintered metal in the skeleton portion is less than 10%, the content retention of the active material is insufficient, while if it exceeds 55%, the strength as a sponge-like porous metal substrate is insufficient. Is not preferred. Therefore, the average fine pore diameter of the skeleton portion of the sponge-like porous metal substrate in which the skeleton portion of the electrode of the alkaline secondary battery of the present invention is made of fine porous sintered metal is 0.5 to
20 μm (more preferably 1 to 5 μm), porosity is 1
It is set to 0 to 55% (more preferably 15 to 35%).

【0010】この発明のアルカリ二次電池の電極を構成
する骨格部分が微細多孔質焼結金属からなるスポンジ状
多孔質金属基体は、通常、Niが使用されるが、特にN
iに限定されるものではなく、耐食性および導電性に優
れた金属または合金であればいかなる組成のものでもよ
い。またこの発明のアルカリ二次電池の電極を構成する
骨格部分が微細多孔質焼結金属からなるスポンジ状多孔
質金属基体全体の気孔率は90〜98%(一層好ましく
は、95〜97%)、比表面積は300〜1500cm
2 /cm3 (一層好ましくは、400〜800cm2
cm3 )であることが好ましい。
Ni is usually used for the sponge-like porous metal substrate whose skeleton constituting the electrode of the alkaline secondary battery of the present invention is made of fine porous sintered metal, but especially N is used.
The composition is not limited to i, and may be any composition as long as it is a metal or alloy having excellent corrosion resistance and conductivity. Further, the porosity of the entire sponge-like porous metal substrate whose skeleton constituting the electrode of the alkaline secondary battery of the present invention is made of fine porous sintered metal is 90 to 98% (more preferably 95 to 97%), Specific surface area is 300-1500 cm
2 / cm 3 (more preferably 400 to 800 cm 2 /
cm 3 ) is preferable.

【0011】[0011]

【発明の実施の形態】平均粒径:9μmの純Ni粉末、
水溶性メチルセルロース、グリセリン、界面活性剤、ヘ
キサン、および水を表1に示す配合組成に混合してスラ
リーとし、ドクターブレード法により厚さ:0.4mm
に成形し、ついで温度:40℃、湿度:95%の雰囲気
中、表1に示す時間保持して発泡処理を行ったのち、ヒ
ーター温度:150℃に設定した遠赤外線乾燥機中で水
分を乾燥してグリーンシートを製造し、ついでグリーン
シートを空気中、500℃に30分間保持して脱バイン
ダー処理を行った後、H2 −N2 (5〜95%)の混合
ガス雰囲気中、表1に示す温度、時間に保持して焼結
し、微細多孔質焼結金属からなる骨格部分を有するスポ
ンジ状多孔質金属基体a〜jを製造した。得られたスポ
ンジ状多孔質金属基体a〜jの空孔部分の平均空孔径、
骨格部分の平均微細孔径および気孔率、並びにスポンジ
状多孔質金属基体全体の比表面積を測定し、その結果を
表1に示した。ここで空孔部分の平均空孔径、骨格部分
の平均微細孔径および気孔率は試料断面を画像解析して
測定し、スポンジ状多孔質金属基体全体の比表面積はB
ET法で測定し、体積当たり数値に換算した(BET法
では重量当たりの比表面積値が得られる。)。
BEST MODE FOR CARRYING OUT THE INVENTION Pure Ni powder having an average particle size of 9 μm,
Water-soluble methyl cellulose, glycerin, surfactant, hexane, and water were mixed into the composition shown in Table 1 to form a slurry, and the thickness was 0.4 mm by the doctor blade method.
Then, after foaming treatment by holding for the time shown in Table 1 in an atmosphere of temperature: 40 ° C., humidity: 95%, moisture is dried in a far infrared dryer set to a heater temperature of 150 ° C. To produce a green sheet, and then the green sheet is held in air at 500 ° C. for 30 minutes to perform a binder removal treatment, and then in a mixed gas atmosphere of H 2 —N 2 (5 to 95%). Sintering was carried out while maintaining the temperature and time shown in Table 1 to produce sponge-like porous metal substrates a to j having a skeleton portion made of fine porous sintered metal. The average pore diameter of the pores of the obtained sponge-like porous metal substrates a to j,
The average fine pore diameter and porosity of the skeleton portion and the specific surface area of the entire sponge-like porous metal substrate were measured, and the results are shown in Table 1. Here, the average pore diameter of the pore portion, the average fine pore diameter of the skeleton portion and the porosity were measured by image analysis of the sample cross section, and the specific surface area of the entire sponge-like porous metal substrate was B.
It was measured by the ET method and converted into a numerical value per volume (the BET method gives a specific surface area value per weight).

【0012】比較のために、平均孔径:500μmの発
泡ウレタンに、厚さ:20μmのNiを無電解メッキ
し、ついで空気中、500℃に0.5時間保持した後、
2 −N2 (5〜95%)の混合ガス雰囲気中、950
℃に1時間に保持してウレタン成分を燃焼させ、従来発
泡ニッケルを製造し、得られた従来発泡ニッケルの空孔
部分の平均空孔径および全体の比表面積を表1に示し
た。
For comparison, urethane foam having an average pore size of 500 μm was electrolessly plated with Ni having a thickness of 20 μm, and then kept in air at 500 ° C. for 0.5 hour,
950 in a mixed gas atmosphere of H 2 —N 2 (5 to 95%)
The conventional foamed nickel was manufactured by maintaining the temperature at 1 ° C. for 1 hour to burn the urethane component, and Table 1 shows the average pore diameter of the pores and the specific surface area of the obtained conventional foamed nickel.

【0013】[0013]

【表1】 [Table 1]

【0014】次に、スポンジ状多孔質金属基体a〜jを
温度:25℃における飽和硝酸ニッケル水溶液中に10
分間浸漬し、取り出した後、温度:110℃の乾燥機中
に30分間保持して乾燥し、ついで温度:50℃の25
%水酸化カリウム水溶液中に10分間浸漬し、取り出し
た後、水洗し、温度:110℃の乾燥機中に30分間保
持して乾燥することによって、前記スポンジ状多孔質金
属基体a〜jの空孔部分および骨格部分の微細空孔に水
酸化ニッケルを転化させて充填した。
Next, the sponge-like porous metal substrates a to j were immersed in a saturated aqueous solution of nickel nitrate at a temperature of 25 ° C. for 10 times.
After soaking for 1 minute and taking out, it is kept in a dryer at a temperature of 110 ° C. for 30 minutes to dry, and then at a temperature of 50 ° C. for 25 minutes.
% Aqueous potassium hydroxide solution for 10 minutes, and after taking it out, it was washed with water and kept in a dryer at a temperature of 110 ° C. for 30 minutes to dry the spongy porous metal substrates a to j. Nickel hydroxide was converted and filled in the fine pores in the pores and the skeleton.

【0015】かかる処理を行ったスポンジ状多孔質金属
基体a〜jの骨格部分の微細空孔には水酸化ニッケルが
充満したが、スポンジ状多孔質金属基体a〜jの大きな
空孔部分にはその内壁に水酸化ニッケル膜が形成された
だけで十分な充填がなされいないところから、さらに下
記の処理を行って空孔部分に水酸化ニッケルを充満さ
せ、本発明アルカリ二次電池の正極電極(以下、本発明
電極という)1〜10を製造した。
Nickel hydroxide was filled in the fine pores of the skeleton portion of the sponge-like porous metal substrates a to j that had been subjected to such treatment, but the large pores of the sponge-like porous metal substrate a to j were filled. Since the nickel hydroxide film was only formed on the inner wall and sufficient filling was not made, the following treatment was further performed to fill the pores with nickel hydroxide, and the positive electrode of the alkaline secondary battery of the present invention ( Hereinafter, the electrodes of the present invention) 1 to 10 were manufactured.

【0016】すなわち、前記処理したスポンジ状多孔質
金属基体a〜jの表面に、さらに平均粒径:10μmの
水酸化Ni粉末、平均粒径:18μmの水酸化Co粉
末、カルボキシメチルセルロース、テフロン粉末、およ
び水を重量比で100:5:0.5:4:41の割合で
混合してなるペースト状混合物を塗布して浸透させ、大
気中、温度:105℃に2時間保持して乾燥した後、プ
レス圧延して厚さ:0.5mmとし、ついで10cm×
4cmに切り出して、本発明電極1〜10を製造した。
That is, on the surface of the treated sponge-like porous metal substrates a to j, Ni hydroxide powder having an average particle diameter of 10 μm, Co hydroxide powder having an average particle diameter of 18 μm, carboxymethyl cellulose, Teflon powder, And a paste-like mixture prepared by mixing water and water in a weight ratio of 100: 5: 0.5: 4: 41, applied and allowed to infiltrate, and kept at a temperature of 105 ° C. for 2 hours in the air and dried. , Press-rolled to thickness: 0.5 mm, then 10 cm x
It was cut into 4 cm to manufacture the electrodes 1 to 10 of the present invention.

【0017】このようにして得られた本発明電極1〜1
0に含まれる水酸化Ni粉末の充填量を測定し、その結
果を表2に示した。さらに比較のために、表1に示した
従来発泡ニッケルを用い、同様にして従来アルカリ二次
電池の正極電極(以下、従来電極という)を製造し、水
酸化Ni粉末の充填量を測定し、その結果を表2に示し
た。
The electrodes 1 to 1 of the present invention thus obtained
The filling amount of Ni hydroxide powder contained in 0 was measured, and the results are shown in Table 2. Further, for comparison, using the conventional foamed nickel shown in Table 1, a positive electrode (hereinafter referred to as a conventional electrode) of a conventional alkaline secondary battery was manufactured in the same manner, and the filling amount of Ni hydroxide powder was measured, The results are shown in Table 2.

【0018】これら本発明電極1〜10および従来電極
を正極とし、所定の位置に端子をスポット溶接し、公知
のカドミウム負極と公知のセパレータを介して倦回し、
35%水酸化カリウム水溶液電解液とともに封缶して単
三型サイズのニッケル−カドミウム二次電池を製造し
た。
These electrodes 1 to 10 of the present invention and the conventional electrode are used as positive electrodes, terminals are spot-welded at predetermined positions, and the electrodes are rotated through a known cadmium negative electrode and a known separator.
A single size AA nickel-cadmium secondary battery was manufactured by encapsulating with a 35% aqueous potassium hydroxide electrolyte solution.

【0019】得られた全てのニッケル−カドミウム二次
電池について、まず、10時間充電、2時間放電の条件
の充放電を5回繰り返すことによって初期活性化を施
し、ついで、ついで5時間充電−2時間放電の条件の完
全充放電を500回繰り返し、第1回目、第250回
目、および第500回目の放電容量をそれぞれ測定し、
それらの結果を表2に示した。
All the nickel-cadmium secondary batteries obtained were subjected to initial activation by repeating charge / discharge under the conditions of 10 hours of charging and 2 hours of discharging 5 times, and then 5 hours of charging-2. Complete charging / discharging under the condition of time discharge is repeated 500 times, and the discharge capacities of the 1st time, the 250th time, and the 500th time are measured,
The results are shown in Table 2.

【0020】[0020]

【表2】 [Table 2]

【0021】表2に示される結果から、本発明電極1〜
10は従来電極に比べて水酸化Niの充填量が多く、充
填量の多いこれら本発明電極1〜10を組み込んだニッ
ケル−カドミウム二次電池は、従来電極を組み込んだニ
ッケル−カドミウム二次電池に比べて、高容量になるこ
とが分かる。
From the results shown in Table 2, the electrodes of the present invention 1 to
The nickel-cadmium secondary battery 10 in which the filling amount of Ni hydroxide is larger than that of the conventional electrode and the filling amount of the electrodes 1 to 10 of the present invention is larger than that of the conventional electrode is a nickel-cadmium secondary battery in which the conventional electrode is incorporated. In comparison, it can be seen that the capacity is high.

【0022】なお、この発明の実施の形態では、本発明
電極1〜10をニッケル−カドミウム二次電池に組み立
てて容量試験を行ったが、表2のスポンジ状多孔質金属
基体a〜jからなる本発明電極1〜10をニッケル−水
素二次電池に組み込んで高容量化し、さらに表1のスポ
ンジ状多孔質金属基体a〜jに水酸化ニッケル以外の活
物質を充填しても高容量化を達成できることが分かっ
た。
In the embodiment of the present invention, the electrodes 1 to 10 of the present invention were assembled into a nickel-cadmium secondary battery and a capacity test was conducted. However, the sponge-like porous metal substrates a to j shown in Table 2 were used. Even if the electrodes 1 to 10 of the present invention are incorporated into a nickel-hydrogen secondary battery to increase the capacity, and the sponge-like porous metal substrates a to j shown in Table 1 are filled with an active material other than nickel hydroxide, the capacity can be increased. I found that I could achieve it.

【0023】[0023]

【発明の効果】上述のように、この発明のアルカリ二次
電池の電極を用いると、電極への活物質充填量を多くす
ることができ、電池の高容量化を促進することができる
というすぐれた効果をもたらすものである。
As described above, when the electrode of the alkaline secondary battery of the present invention is used, the amount of the active material filled in the electrode can be increased, and the high capacity of the battery can be promoted. It brings about the effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明のアルカリ二次電池の電極の断面構造
を示す説明図である。
FIG. 1 is an explanatory view showing a cross-sectional structure of an electrode of an alkaline secondary battery of the present invention.

【図2】従来のアルカリ二次電池の電極の断面構造を示
す説明図である。
FIG. 2 is an explanatory diagram showing a cross-sectional structure of an electrode of a conventional alkaline secondary battery.

【符号の説明】[Explanation of symbols]

1 空孔部分 2 骨格部分 3 活物質 11 微細空孔 1 Void part 2 Skeleton part 3 Active material 11 Micropore

───────────────────────────────────────────────────── フロントページの続き (72)発明者 駒田 紀一 埼玉県大宮市北袋町1−297 三菱マテリ アル株式会社総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kiichi Komada 1-297 Kitabukuro-cho, Omiya-shi, Saitama Mitsubishi Materials Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 空孔部分と、前記空孔部分に比べてさら
に微細な空孔(以下、微細空孔という)を有する微細多
孔質焼結金属からなる骨格部分とで構成されたスポンジ
状多孔質金属基体の前記空孔部分および骨格部分の微細
空孔に活物質が充填されていることを特徴とするアルカ
リ二次電池の電極。
1. A sponge-like porous structure composed of a pore portion and a skeleton portion made of a fine porous sintered metal having finer pores (hereinafter referred to as fine pores) than the pore portion. An electrode of an alkaline secondary battery, wherein an active material is filled in the pores and fine pores of the skeleton of the porous metal substrate.
【請求項2】 前記スポンジ状多孔質金属基体は、平均
空孔径:200〜700μmを有する空孔部分、並びに
平均微細孔径:0.5〜20μmの微細空孔および気孔
率:10〜55%を有する微細多孔質焼結金属からなる
骨格部分とで構成されていることを特徴とする請求項1
記載のアルカリ二次電池の電極。
2. The sponge-like porous metal substrate has pores having an average pore diameter of 200 to 700 μm, fine pores having an average fine pore diameter of 0.5 to 20 μm, and a porosity of 10 to 55%. And a skeleton portion made of a fine porous sintered metal having the same.
The electrode of the alkaline secondary battery described.
JP7310440A 1995-04-03 1995-11-29 Electrode of alkaline secondary battery Pending JPH09147847A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP7310440A JPH09147847A (en) 1995-11-29 1995-11-29 Electrode of alkaline secondary battery
DE69619179T DE69619179T2 (en) 1995-04-03 1996-04-02 POROUS METALLIC BODY WITH A HIGH SPECIFIC SURFACE, METHOD FOR THE PRODUCTION THEREOF, POROUS METAL MATERIAL AND ELECTRODE FOR ALKALINE SECONDARY BATTERY
PCT/JP1996/000911 WO1996031306A1 (en) 1995-04-03 1996-04-02 Porous metallic body with large specific surface area, process for producing the same, porous metallic platy material, and electrode of alkaline secondary battery
EP96907766A EP0764489B1 (en) 1995-04-03 1996-04-02 Porous metallic body with large specific surface area, process for producing the same, porous metallic platy material, and electrode of alkaline secondary battery
US08/737,931 US5848351A (en) 1995-04-03 1996-04-02 Porous metallic material having high specific surface area, method of producing the same, porous metallic plate material and electrode for alkaline secondary battery
US09/066,530 US6117592A (en) 1995-04-03 1998-04-27 Porus metallic material having high specific surface area, method of producing the same, porus metallic plate material and electrode for alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7310440A JPH09147847A (en) 1995-11-29 1995-11-29 Electrode of alkaline secondary battery

Publications (1)

Publication Number Publication Date
JPH09147847A true JPH09147847A (en) 1997-06-06

Family

ID=18005279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7310440A Pending JPH09147847A (en) 1995-04-03 1995-11-29 Electrode of alkaline secondary battery

Country Status (1)

Country Link
JP (1) JPH09147847A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106994512A (en) * 2017-04-18 2017-08-01 中南大学 A kind of composite bore diameter copper sintered porous material and its preparation method and application

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106994512A (en) * 2017-04-18 2017-08-01 中南大学 A kind of composite bore diameter copper sintered porous material and its preparation method and application

Similar Documents

Publication Publication Date Title
EP0764489B1 (en) Porous metallic body with large specific surface area, process for producing the same, porous metallic platy material, and electrode of alkaline secondary battery
JP4772185B2 (en) Positive electrode plate for alkaline storage battery, method for producing the same, and alkaline storage battery using the same
JPH09147847A (en) Electrode of alkaline secondary battery
JP6443725B2 (en) Porous aluminum sintered body, method for producing the same, and method for producing an electrode
JP2765029B2 (en) Manufacturing method of nickel hydroxide electrode
JP3417164B2 (en) Electrodes for alkaline secondary batteries
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JPS64787B2 (en)
JP2981538B2 (en) Electrodes for alkaline batteries
US12009501B2 (en) Fabrication of porous electrodes by fusion of silver particles
JPH06302319A (en) Manufacture of hydrogen storage electrode and metal oxide-hydrogen storage battery having electrode
JP2981537B2 (en) Negative electrode for alkaline batteries
JPH0773876A (en) Nickel electrode for secondary battery and manufacture thereof
JPS62136761A (en) Manufacture of nickel electrode for alkaline battery
JP3182228B2 (en) Method for producing non-sintered positive electrode plate for alkaline storage battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JPS63266766A (en) Manufacture of nickel electrode for battery
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JP2003288901A (en) Manufacturing method of sintered substrate for alkaline storage battery
JPS62222567A (en) Nonsintered type nickel positive electrode
JPH06215764A (en) Manufacture of hydrogen absorbing electrode and metal oxide-hydrogen storage battery with hydrogen absorbing electrode
JPH07335224A (en) Electrode substrate for alkaline battery
JPH06243865A (en) Positive electrode for alkaline secondary battery
JPH0982334A (en) Electrode substrate for battery
JP2000058048A (en) Manufacture of non-sintered cadmium negative electrode for alkaline storage battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030506