JPS62136761A - Manufacture of nickel electrode for alkaline battery - Google Patents

Manufacture of nickel electrode for alkaline battery

Info

Publication number
JPS62136761A
JPS62136761A JP60277152A JP27715285A JPS62136761A JP S62136761 A JPS62136761 A JP S62136761A JP 60277152 A JP60277152 A JP 60277152A JP 27715285 A JP27715285 A JP 27715285A JP S62136761 A JPS62136761 A JP S62136761A
Authority
JP
Japan
Prior art keywords
nickel
electrode
diameter
porous
nickel hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60277152A
Other languages
Japanese (ja)
Other versions
JPH0732013B2 (en
Inventor
Osamu Takahashi
収 高橋
Hideo Kaiya
英男 海谷
Shingo Tsuda
津田 信吾
Minoru Yamaga
山賀 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60277152A priority Critical patent/JPH0732013B2/en
Publication of JPS62136761A publication Critical patent/JPS62136761A/en
Publication of JPH0732013B2 publication Critical patent/JPH0732013B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To secure such an electrode that is very high in capacity, by regulating a grid diameter and a means space diameter of a spongy Ni porous body, and the form and grain size of Ni(OH2) powder or a main active material. CONSTITUTION:Mean grain size of spherical powder of Ni(OH)2 is set to a range of 5-25mu, while mean space diameter of a spongy Ni porous body before this powder is filled up is set to be 10-50 times over the mean grain size of the Ni(OH)2, and a grid diameter is selected to a range of 30-70mu. Paste consisting of the Ni(OH)2 as a main body is filled in this porous body, producing an Ni electrode after being compressed by pressure. This method is more simplified than the conventional sintered type Ni electrode, and on top of very high in capacity, a discharge rate characteristic and a cycle life characteristic are also almost equal to that electrode.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルカリ電池用ニッケル電極の製造法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing nickel electrodes for alkaline batteries.

従来の技術 アルカリ電池に用いられているニッケル電極は、通常多
孔性のニッケル焼結基板に、電解法、化学含浸法等の手
段により、活物質となる水酸ニッケル、水酸化コバルト
等を充填したものが用いられている。また、最近ではス
ポンジ状ニッケル多孔体に、水酸化ニッケルを主体とす
る活物質ペーストを充填した。高容量を有するニッケル
電極も提案されている。
Conventional technology Nickel electrodes used in alkaline batteries are usually made by filling a porous nickel sintered substrate with active materials such as nickel hydroxide or cobalt hydroxide by means such as electrolysis or chemical impregnation. something is being used. Recently, a sponge-like porous nickel body has been filled with an active material paste mainly composed of nickel hydroxide. Nickel electrodes with high capacity have also been proposed.

従来の焼結式ニッケル電極の活物質充填工程は、例えば
化学含浸法のように、含浸9アルカリ処理。
The conventional active material filling process of sintered nickel electrodes is impregnation 9 alkali treatment, such as chemical impregnation method.

水洗、乾燥と数多くの工程が必要であり、高容量の電極
を得るためには、これらの工程の数回にも及ぶ繰返しが
必要であり、非常に煩雑なものであった〇 一方、スポンジ状のニッケル多孔体(多孔度:90〜9
5%)を用いる方法は、孔径の大きいものが選択できる
ことにより、多孔体中にペースト状の活物質が直接充填
でき、しかも充填後、加圧加工を行うだけの簡単な工程
で、高容量を有するニッケル電極の製造が可能である。
Many processes such as washing with water and drying were required, and in order to obtain a high-capacity electrode, these processes had to be repeated several times, making it extremely complicated.On the other hand, sponge Porous nickel body (porosity: 90-9
5%) allows selection of large pore diameters, which allows paste-like active material to be directly filled into the porous body, and allows for high capacity with a simple process of just pressurizing after filling. It is possible to manufacture nickel electrodes with

また、電極の特性としては、容量では、従来の焼結式の
ニッケル電極の単位体積当りの容量が370〜450m
Ah / cA程度であるのに対し、480−520m
Ah / tri程度の高容量が得られ、大電流での放
電特性も焼結式のものと同等のものが得られるようにな
ってきた。
In addition, regarding the characteristics of the electrode, in terms of capacity, the capacity per unit volume of the conventional sintered nickel electrode is 370 to 450 m2.
While it is about Ah/cA, 480-520m
It has become possible to obtain a high capacity on the order of Ah/tri, and to obtain discharge characteristics at large currents that are equivalent to those of the sintered type.

発明が解決しようとする問題点 しかし単に任意のスポンジ状ニッケル多孔体を選んだり
、水酸化ニッケルの形状9粒径を選んだのでは、単位体
積当りの容量や寿命、高率放電や活物質利用率の各特性
において焼結式電極よりはるかに劣ることとなる。
Problems to be Solved by the Invention However, simply selecting an arbitrary sponge-like porous nickel material or selecting a shape of nickel hydroxide with a particle size of 9 will result in problems such as capacity per unit volume, lifespan, high rate discharge, and use of active materials. It is far inferior to sintered electrodes in terms of rate and characteristics.

本発明者らは、検討の結果、スポンジ状ニッケル多孔体
の格子径と平均空間径と生活物質である水酸化ニッケル
粉末の形状1粒子径を規制することにより、各特性にお
いて焼結式に劣らない極めて高容量を有した電極が得ら
れることを見出した。
As a result of study, the present inventors found that by regulating the lattice diameter and average space diameter of the sponge-like porous nickel material, and the shape and particle diameter of the nickel hydroxide powder, which is a living substance, the present inventors found that it is inferior to the sintered type in each characteristic. It has been found that electrodes with extremely high capacitance can be obtained.

問題点を解決するだめの手段 すなわち、本発明は三次元的に連続した構造を有するス
ポンジ状ニッケル多孔体に水酸化ニッケルを主体とする
活物質粉末をペースト状にして充填し、次いで加圧圧縮
してなるニッケル電極の製造法において、前記水酸ニッ
ケルの粉末の形状が球状であり、かつその平均粒径を6
〜25μとし、スポンジ状ニッケル多孔体の平均空間径
が水酸ニッケル粉末の平均粒径の1o〜50倍で格子径
(太さ)を30〜70μとしたものである。
As a means to solve the problem, the present invention is to fill a sponge-like porous nickel body with a three-dimensionally continuous structure with active material powder mainly composed of nickel hydroxide in the form of a paste, and then pressurize and compress the powder. In the method for manufacturing a nickel electrode, the nickel hydroxide powder has a spherical shape and an average particle size of 6.
~25μ, the average space diameter of the sponge-like porous nickel material is 10~50 times the average particle size of the nickel hydroxide powder, and the lattice diameter (thickness) is 30~70μ.

作   用 スポンジ状ニッケル多孔体に直接、活物質粉末をペース
ト状にして充填する方法では、特に生活物質となる水酸
化ニッケルの粉末の粒子構造(形状)が充填特性に大き
な影響をあたえる可能性がある。そこで、第1図に示す
ような球状の粒子構造をもつ水酸化ニッケルと、第2図
に示すような団塊状の粒子構造をもつ水酸化ニッケルと
を用いて、活物質ペーストを作り、スポンジ状ニッケル
多孔体に充填し、乾燥加圧してニッケル電極を作製して
、その充填容量密度を比較したところ表1に示すような
結果を得た。
Function: In the method of directly filling a sponge-like porous nickel body with active material powder in the form of a paste, the particle structure (shape) of the nickel hydroxide powder, which is a living substance, may have a large effect on the filling characteristics. be. Therefore, we made an active material paste using nickel hydroxide with a spherical particle structure as shown in Figure 1 and nickel hydroxide with a nodular particle structure as shown in Figure 2. A nickel electrode was prepared by filling a nickel porous body and drying and pressurizing the material.The filling capacity densities of the nickel electrodes were compared, and the results shown in Table 1 were obtained.

表   1 表1から明らかなように球状の粒子構造をもつ水酸化ニ
ッケルを用いたもののほうが充填容量密度が大きくなる
。すなわち高容量の電極を得られることとなる。この理
由の第1は、第1図にみられるように球状の水酸化ニッ
ケルは表面が平滑なため、活物質を充填する際に、粉末
の粒子どうしのすべ9がよくスムーズに多孔体内部に入
って行くのからであり、第2に充填後に加圧成形したと
きに団塊状の水酸化ニッケルでは粉末の粒子間に大きな
隙間ができてしまうのに対し、球状の水酸化ニッケルで
は活物質が球状であるだめ、密に水酸化ニッケルの粉末
の粒子が配列して隙間が小さくなるためであると考えら
れる。上述の現象は水酸化ニッケルの粒子径の大きさに
かかわらず同様である0次に球状の水酸化ニッケル粉末
の平均粒径と利用率との関係を検討したところ第3図の
ような結果を得た。30程度の高率放電になると粒径に
よる利用率の差が生じ、最適な平均粒径は5〜25μで
あることが判明した。このような平均粒径を有する球状
の水酸化ニッケルを活物質ペーストとして平均空間径を
変えたスポンジ状ニッケル多孔体に充填してサイクル寿
命特性を調べた結果を第4図に示す。スポンジ状ニッケ
ル多孔体の平均空間径が水酸化ニッケルの平均粒径の1
0倍未満および50倍以上のスポンジ状ニッケル多孔体
を用いた電極は劣化が激しいことがわかった。その原因
を解析したところ、スポンジ状多孔体の平均空間径が水
酸化ニッケルの平均粒径の1o倍未満の電極では、充放
電の繰返しによる活物質の膨張によりスポンジ状ニッケ
ル多孔体の格子が所々で寸断されて、電導性が悪くなり
劣化したのに対し、平均空間径が水酸ニッケルの平均粒
径の5Q倍以上の電極では、活物質が脱落して劣化する
ものであった。なお、スポンジ状ニッケル多孔体の平均
空間径が水酸化ニッケルの粒径の10〜5゜培の範囲で
は、充填容量密度の差はみられなかった。またスポンジ
状ニッケル多孔体の格子径について検討したところ30
μ以下では充填時に多孔体が強度、不足で変形する危険
が生じ、30μ以上では導電性において大差なく、70
μ以上では充填容量密度が低下する傾向が大きくなった
Table 1 As is clear from Table 1, those using nickel hydroxide having a spherical particle structure have a higher filling capacity density. In other words, an electrode with high capacity can be obtained. The first reason for this is that, as shown in Figure 1, spherical nickel hydroxide has a smooth surface, so when filling the active material, the surfaces of the powder particles can easily fit inside the porous body. Secondly, when the powder is press-molded after filling, large gaps are created between the powder particles in the case of nodular nickel hydroxide, whereas in the case of spherical nickel hydroxide, the active material is This is thought to be because the nickel hydroxide powder particles are arranged densely and the gaps become smaller since they are not spherical. The above phenomenon is the same regardless of the particle size of the nickel hydroxide.When we investigated the relationship between the average particle size and utilization rate of zero-order spherical nickel hydroxide powder, we found the results shown in Figure 3. Obtained. It was found that at a high rate discharge of about 30 μm, the utilization rate varies depending on the particle size, and the optimum average particle size is 5 to 25 μm. FIG. 4 shows the results of investigating the cycle life characteristics of spherical nickel hydroxide having such an average particle diameter filled as an active material paste into sponge-like nickel porous bodies with different average space diameters. The average space diameter of the sponge-like porous nickel material is 1 of the average particle diameter of nickel hydroxide.
It was found that electrodes using sponge-like porous nickel materials with a ratio of less than 0 times and more than 50 times deteriorated significantly. Analysis of the cause revealed that in electrodes where the average space diameter of the sponge-like porous material is less than 10 times the average particle size of nickel hydroxide, the lattice of the sponge-like porous nickel material may break down in places due to the expansion of the active material due to repeated charging and discharging. In contrast, in electrodes with an average space diameter of 5Q times or more the average particle size of nickel hydroxide, the active material fell off and deteriorated. In addition, when the average space diameter of the sponge-like nickel porous body was in the range of 10 to 5 times the particle size of nickel hydroxide, no difference in the filling capacity density was observed. In addition, when examining the lattice diameter of the sponge-like porous nickel material, 30
If it is less than 30μ, there is a risk that the porous material will be deformed due to lack of strength during filling, and if it is more than 30μ, there will be no significant difference in conductivity,
Above μ, there was a strong tendency for the filling capacity density to decrease.

以上の結果よりスポンジ状ニッケル多孔体に水産化ニッ
ケルを主体とする活物質をペースト状にして充填し、次
いで加圧圧縮してなるニッケル電極の製造法においては
、水酸化ニッケル粉末の粒子の形状は球状であり、その
平均粒径は6〜25μで、スポンジ状ニッケル多孔体内
の平均空間径は水酸化ニッケル粉末の平均粒径の1o〜
50倍を有し、また格子径は30〜70μが好適であっ
た0 実施例 以下本発明の具体的な実施例を説明する。
From the above results, in the manufacturing method of nickel electrodes in which a sponge-like porous nickel body is filled with an active material mainly composed of aquacultured nickel in paste form and then compressed under pressure, the shape of the particles of nickel hydroxide powder is is spherical, and its average particle size is 6 to 25 μm, and the average space diameter within the sponge-like porous nickel body is 10 to 100 μm of the average particle size of the nickel hydroxide powder.
50 times, and the grating diameter was preferably 30 to 70 μm.Examples: Specific examples of the present invention will be described below.

水酸化ニッケル100重量部に対して、ニッケルの金属
粉末10重量部、コバルト金属粉末5重量部、水酸化カ
ドミウム粉末5重量部を加えて粉末混合し、これに水と
カルボキシメチルセルロースを加え練合してペースト状
にし、平均空間径3o○μ、格子径約50μのスポンジ
状ニッケル多孔体に充填し、加圧圧縮して、厚さ約0.
78程度のニッケル電極を得た。ここで用いた水酸化ニ
ッケルは、平均粒径15μの球状水酸化ニッケルA、平
均粒径35μの球状水酸化ニッケルB、平均粒径15μ
の団塊状水酸化ニッケルCである。
To 100 parts by weight of nickel hydroxide, 10 parts by weight of nickel metal powder, 5 parts by weight of cobalt metal powder, and 5 parts by weight of cadmium hydroxide powder were added and mixed, and water and carboxymethyl cellulose were added to this and kneaded. The paste was made into a paste, filled into a sponge-like porous nickel material with an average space diameter of 3o○μ and a lattice diameter of about 50μ, and compressed under pressure to form a paste with a thickness of about 0.0μ.
A nickel electrode of about 78 mm was obtained. The nickel hydroxide used here was spherical nickel hydroxide A with an average particle size of 15μ, spherical nickel hydroxide B with an average particle size of 35μ, and spherical nickel hydroxide B with an average particle size of 15μ.
Nodular nickel hydroxide C.

なお、比較のため通常の焼結式ニッケル電極りも用意し
た。これらのA−Dの電極をニッケル電極に対して十分
容量のあるペースト式カドミウム電極と組み合わせて、
KR−3Cサイズの密閉型アルカリ蓄電池を試作し、電
池容量試験、放電率特性試験、サイクル寿命特性試験を
行なった。
For comparison, a normal sintered nickel electrode was also prepared. By combining these A-D electrodes with paste-type cadmium electrodes that have sufficient capacity for nickel electrodes,
A KR-3C sized sealed alkaline storage battery was prototyped and subjected to battery capacity tests, discharge rate characteristics tests, and cycle life characteristics tests.

電池容量試験は、20°Cの雰囲気温度で、150mA
の電流で16時間充電後、300 mAで放電したとき
の電池容量で評価した。また、放電率特性試験は、20
°Cの雰囲気で150mAで16時間充電後、それぞれ
の電池容量の10および3C相当の電流で放電したとき
の容量を電池容量試験でもとめた電池容量との比率で評
価した。またサイクル寿命試験は、20℃で500mA
で4.5時間充電後、1500mA相当の定抵抗で90
分放電するものであり、1サイクル目の電池電圧が1、
○Vとなるまでの時間全100とし、その放電時間が1
サイクル目の80%以下に劣化したときを寿命としてそ
のサイクル数で評価した。表2に各種特性試験の結果を
示す。
Battery capacity test is 150mA at 20°C ambient temperature.
The battery capacity was evaluated by charging at a current of 16 hours and then discharging at 300 mA. In addition, the discharge rate characteristic test was performed at 20
After charging at 150 mA for 16 hours in an atmosphere of °C, the capacity when discharging at a current equivalent to 10 and 3 C of each battery capacity was evaluated as a ratio to the battery capacity determined in a battery capacity test. In addition, the cycle life test was conducted at 500 mA at 20°C.
After charging for 4.5 hours with a constant resistance equivalent to 1500mA
The battery is discharged in minutes, and the battery voltage in the first cycle is 1,
○The total time to reach V is 100, and the discharge time is 1
The life span was defined as the time when the deterioration reached 80% or less of the number of cycles, and the evaluation was made based on the number of cycles. Table 2 shows the results of various characteristic tests.

表   2 表2で、電池A、B、Cは、平均空間径300 μ。Table 2 In Table 2, batteries A, B, and C have an average space diameter of 300μ.

格子径50μのスポンジ状ニッケル多孔体に、それぞれ
、平均粒径16μの球状水酸化ニッケル、する活物質ペ
ーストを充填して作成したニッケル電極を用いた電池で
あり、電池りは通常の焼結式ニッケル電極を用いたもの
である。表2より明らかなように本発明法によるニッケ
ル電極を用いた電池では、極めて高容量が得られるばか
りでなく、放電率および寿命特性においても焼結式−”
17ケル電極を用いた場合と比較して、はとんど劣らな
いものである。
This battery uses a nickel electrode made by filling a sponge-like porous nickel material with a lattice diameter of 50 μm with an active material paste of spherical nickel hydroxide with an average particle size of 16 μm, and the battery is of the normal sintering type. It uses nickel electrodes. As is clear from Table 2, the battery using the nickel electrode according to the present invention not only has an extremely high capacity, but also has the discharge rate and life characteristics of the sintered type.
This is almost as good as when using a 17 Kel electrode.

発明の効果 以上述べたように本発明によるニッケル電極は、従来の
焼結式ニッケル電極よりも製造が簡易化され、また極め
て高容量であるだけでなく、特性においてもほとんど劣
らないものであり、工業的価値が大である。
Effects of the Invention As described above, the nickel electrode according to the present invention is not only easier to manufacture than the conventional sintered nickel electrode and has an extremely high capacity, but also has almost the same characteristics. It has great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は球状水酸化ニッケルの粒子構造を示す倍率10
00倍の電子顕微鏡写真、第2図は団塊状水酸化ニッケ
ルの粒子構造を示す倍率1000倍の電子顕微鏡写真、
第3図は球状水峻化ニッケル粉末の平均粒径を変えたニ
ッケル電極の利用率を示す図、第4図なスポンジ状ニッ
ケル多孔体の平均空間匝を変えたときの寿命に達するま
での充放電回数を示す図である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名句/
 ■ 第2図 第3図 ニk 4ンにス夛化:・ノヶルの千刈狂’fk  (p
す第4図
Figure 1 shows the particle structure of spherical nickel hydroxide at a magnification of 10
Figure 2 is an electron micrograph at 1000x magnification showing the particle structure of nodular nickel hydroxide.
Figure 3 shows the utilization rate of nickel electrodes with different average particle diameters of spherical aqueous nickel powder, and Figure 4 shows the charging to the end of life when the average cubic capacity of a sponge-like porous nickel body is changed. It is a figure showing the number of times of discharge. Name of agent: Patent attorney Toshio Nakao and 1 other person/
■ Figure 2 Figure 3 Nik 4th addition: Nogaru's Chikari-kyo'fk (p
Figure 4

Claims (1)

【特許請求の範囲】[Claims] 三次元的に連続したスポンジ状ニッケル多孔体に水酸化
ニッケルを主体とする活物質をペースト状で充填し、次
いで加圧圧縮してなるニッケル電極の製造法であって、
前記水酸化ニッケルの粉末が球状で、その平均粒径を5
〜25μとし、活物質充填前の前記スポンジ状ニッケル
多孔体の平均空間径を水酸化ニッケルの平均粒径の10
〜50倍とし、かつ格子径を30〜70μとしたことを
特徴とするアルカリ電池用ニッケル電極の製造法。
A method for producing a nickel electrode in which a three-dimensionally continuous sponge-like porous nickel body is filled with an active material mainly composed of nickel hydroxide in the form of a paste, and then compressed under pressure,
The nickel hydroxide powder is spherical and has an average particle size of 5
~25μ, and the average space diameter of the sponge-like porous nickel material before filling with the active material is 10μ of the average particle size of nickel hydroxide.
A method for producing a nickel electrode for an alkaline battery, characterized in that the nickel electrode is 50 times larger and has a lattice diameter of 30 to 70μ.
JP60277152A 1985-12-10 1985-12-10 Nickel electrode manufacturing method for alkaline batteries Expired - Lifetime JPH0732013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60277152A JPH0732013B2 (en) 1985-12-10 1985-12-10 Nickel electrode manufacturing method for alkaline batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60277152A JPH0732013B2 (en) 1985-12-10 1985-12-10 Nickel electrode manufacturing method for alkaline batteries

Publications (2)

Publication Number Publication Date
JPS62136761A true JPS62136761A (en) 1987-06-19
JPH0732013B2 JPH0732013B2 (en) 1995-04-10

Family

ID=17579523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60277152A Expired - Lifetime JPH0732013B2 (en) 1985-12-10 1985-12-10 Nickel electrode manufacturing method for alkaline batteries

Country Status (1)

Country Link
JP (1) JPH0732013B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0343408A2 (en) * 1988-05-26 1989-11-29 Deutsche Automobilgesellschaft Mbh Aqueous paste of nickel hydroxide with a high fluidity
US6455196B1 (en) 1997-12-26 2002-09-24 Matsushita Electric Industrial Co., Ltd. Non-sintered positive electrode for alkaline storage battery and alkaline storage battery using the same
JP2007265670A (en) * 2006-03-27 2007-10-11 Panasonic Ev Energy Co Ltd Battery
JP2010092721A (en) * 2008-10-08 2010-04-22 Toyota Motor Corp Manufacturing method of battery electrode

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50145833A (en) * 1974-05-11 1975-11-22
JPS54102539A (en) * 1978-01-27 1979-08-13 Matsushita Electric Ind Co Ltd Nickel electrode
US4251603A (en) * 1980-02-13 1981-02-17 Matsushita Electric Industrial Co., Ltd. Battery electrode
JPS6040667A (en) * 1983-08-15 1985-03-04 Tanaka Seisakusho:Kk Method and device for torch type brazing
JPS60131765A (en) * 1983-12-20 1985-07-13 Matsushita Electric Ind Co Ltd Nickel positive electrode for battery
JPS60131766A (en) * 1983-12-20 1985-07-13 Japan Storage Battery Co Ltd Positive plate for alkaline battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50145833A (en) * 1974-05-11 1975-11-22
JPS54102539A (en) * 1978-01-27 1979-08-13 Matsushita Electric Ind Co Ltd Nickel electrode
US4251603A (en) * 1980-02-13 1981-02-17 Matsushita Electric Industrial Co., Ltd. Battery electrode
JPS6040667A (en) * 1983-08-15 1985-03-04 Tanaka Seisakusho:Kk Method and device for torch type brazing
JPS60131765A (en) * 1983-12-20 1985-07-13 Matsushita Electric Ind Co Ltd Nickel positive electrode for battery
JPS60131766A (en) * 1983-12-20 1985-07-13 Japan Storage Battery Co Ltd Positive plate for alkaline battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0343408A2 (en) * 1988-05-26 1989-11-29 Deutsche Automobilgesellschaft Mbh Aqueous paste of nickel hydroxide with a high fluidity
US6455196B1 (en) 1997-12-26 2002-09-24 Matsushita Electric Industrial Co., Ltd. Non-sintered positive electrode for alkaline storage battery and alkaline storage battery using the same
JP2007265670A (en) * 2006-03-27 2007-10-11 Panasonic Ev Energy Co Ltd Battery
JP2010092721A (en) * 2008-10-08 2010-04-22 Toyota Motor Corp Manufacturing method of battery electrode
US8252451B2 (en) 2008-10-08 2012-08-28 Toyota Jidosha Kabushiki Kaisha Battery electrode and battery electrode manufacturing method

Also Published As

Publication number Publication date
JPH0732013B2 (en) 1995-04-10

Similar Documents

Publication Publication Date Title
US5360687A (en) Hydrogen-occulusion electrode
JPH10255790A (en) Positive active material of nickel electrode for alkaline storage battery
JPS62136761A (en) Manufacture of nickel electrode for alkaline battery
US3725129A (en) Method for preparing pasted nickel hydroxide electrode
JP2765029B2 (en) Manufacturing method of nickel hydroxide electrode
JPS6040667B2 (en) Manufacturing method of nickel electrode
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JPH0243308B2 (en)
JP3851180B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery provided with the nickel electrode
JP2918560B2 (en) Manufacturing method of hydrogen storage electrode
JPS62139261A (en) Nickel electrode for alkaline battery
JPH10334899A (en) Manufacture of alkaline storage battery and its electrode
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JP2558624B2 (en) Nickel-hydrogen alkaline storage battery
JPH0773876A (en) Nickel electrode for secondary battery and manufacture thereof
JPS5983343A (en) Manufacture of nickel electrode
JP2525320B2 (en) Positive electrode for alkaline secondary battery
JPH08102322A (en) Active material powder for alkaline storage battery non-sintered nickel electrode, its manufacture, alkaline storage battery non-sintered nickel electrode, and its manufacture
JPH05144438A (en) Electrode for alkaline storage battery
JPH10334902A (en) Alkaline storage battery and manufacture of its electrode
JPH10334898A (en) Alkaline storage battery, its electrode and manufacture thereof
JPH07335210A (en) Electrode for alkaline battery
JPH01239764A (en) Paste type positive plate for alkaline storage battery and manufacture thereof
JPH0757771A (en) Manufacture of metal-hydrogen alkaline storage battery
JPH05151962A (en) Positive electrode plate for alkaline storage battery