JPH0732013B2 - Nickel electrode manufacturing method for alkaline batteries - Google Patents

Nickel electrode manufacturing method for alkaline batteries

Info

Publication number
JPH0732013B2
JPH0732013B2 JP60277152A JP27715285A JPH0732013B2 JP H0732013 B2 JPH0732013 B2 JP H0732013B2 JP 60277152 A JP60277152 A JP 60277152A JP 27715285 A JP27715285 A JP 27715285A JP H0732013 B2 JPH0732013 B2 JP H0732013B2
Authority
JP
Japan
Prior art keywords
nickel
nickel hydroxide
porous body
sponge
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60277152A
Other languages
Japanese (ja)
Other versions
JPS62136761A (en
Inventor
収 高橋
英男 海谷
信吾 津田
実 山賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60277152A priority Critical patent/JPH0732013B2/en
Publication of JPS62136761A publication Critical patent/JPS62136761A/en
Publication of JPH0732013B2 publication Critical patent/JPH0732013B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルカリ電池用ニッケル電極の製造法に関す
るものである。
TECHNICAL FIELD The present invention relates to a method for producing a nickel electrode for an alkaline battery.

従来の技術 アルカリ電池に用いられているニッケル電極は、通常多
孔性のニッケル焼結基板に、電解法,化学含浸法等の手
段により、活物質となる水酸ニッケル,水酸化コバルト
等を充填したものが用いられている。また、最近ではス
ポンジ状ニッケル多孔体に、水酸化ニッケルを主体とす
る活物質ペーストを充填した,高容量を有するニッケル
電極も提案されている。
2. Description of the Related Art Nickel electrodes used in alkaline batteries are usually porous nickel sintered substrates filled with nickel hydroxide, cobalt hydroxide, etc., which are active materials, by means such as electrolysis and chemical impregnation. Things are used. Further, recently, a nickel electrode having a high capacity has been proposed in which a sponge-like nickel porous body is filled with an active material paste containing nickel hydroxide as a main component.

従来の焼結式ニッケル電極の活物質充填工程は、例えば
化学含浸法のように、含浸,アルカリ処理,水洗,乾燥
と数多くの工程が必要であり、高容量の電極を得るため
には、これらの工程の数回にも及び繰返しが必要であ
り、非常に煩雑なものであった。
The conventional sintering type nickel electrode active material filling step requires many steps such as impregnation, alkali treatment, water washing, and drying like the chemical impregnation method. In order to obtain a high capacity electrode, these steps are required. It was necessary to repeat the above process several times, which was very complicated.

一方、スポンジ状のニッケル多孔体(多孔度:90〜95
%)を用いる方法は、孔径の大きいものが選択できるこ
とにより、多孔体中にペースト状の活物質が直接充填で
き、しかも充填後、加圧加工を行うだけの簡単な工程
で、高容量を有するニッケル電極の製造が可能である。
また、電極の特性としては、容量では、従来の焼結式の
ニッケル電極の単位体積当りの容量が370〜450mAh/cm3
程度であるのに対し、480〜520mAh/cm3程度の高容量が
得られ、大電流での放電特性も焼結式のものと同等のも
のが得られるようになってきた。
On the other hand, sponge-like nickel porous body (porosity: 90-95
%), The paste-like active material can be directly filled in the porous body by selecting the one having a large pore size, and the high capacity is obtained by a simple process of performing pressure processing after filling. It is possible to manufacture nickel electrodes.
Also, regarding the characteristics of the electrode, in terms of capacity, the capacity per unit volume of a conventional sintered nickel electrode is 370 to 450 mAh / cm 3
However, a high capacity of about 480 to 520 mAh / cm 3 has been obtained, and discharge characteristics at large currents have become equivalent to those of the sintered type.

発明が解決しようとする問題点 しかし単に任意のスポンジ状ニッケル多孔体を選んだ
り、水酸化ニッケルの形状,粒径を選んだのでは、単位
体積当りの容量や寿命,高率放電や活物質利用率の各特
性において焼結式電極よりはるかに劣ることとなる。
Problems to be Solved by the Invention However, simply selecting an arbitrary sponge-like nickel porous body, or selecting the shape and particle size of nickel hydroxide will lead to a change in capacity and life per unit volume, high rate discharge and active material utilization. It is much inferior to the sintered electrode in each characteristic of the rate.

本発明者らは、検討の結果、スポンジ状ニッケル多孔体
の格子径と平均空間径と主活物質である水酸化ニッケル
粉末の形状,粒子径を規則することにより、各特性にお
いて焼結式に劣らない極めて高容量を有した電極が得ら
れることを見出した。
As a result of the investigation, the inventors of the present invention regulated the lattice diameter and average space diameter of the sponge-like nickel porous body, and the shape and particle diameter of the nickel hydroxide powder, which is the main active material, to obtain a sintering formula for each characteristic. It has been found that an electrode having an extremely high capacity that is not inferior can be obtained.

問題点を解決するための手段 すなわち、本発明は三次元的に連続した構造を有するス
ポンジ状ニッケル多孔体に水酸化ニッケルを主体とする
活物質粉末をペースト状にして充填し、次いで加圧圧縮
してなるニッケル電極の製造法において、前記水酸ニッ
ケルの粉末の形状が球状であり、かつその平均粒径を5
〜25μとし、スポンジ状ニッケル多孔体の平均空間径が
水酸ニッケル粉末の平均粒径の10〜50倍で格子径(太
さ)を30〜70μとしたものである。
Means for Solving the Problems That is, according to the present invention, a sponge-like nickel porous body having a three-dimensionally continuous structure is filled with an active material powder mainly containing nickel hydroxide in a paste form and then compressed under pressure. In the method for producing a nickel electrode as described above, the shape of the nickel hydroxide powder is spherical, and the average particle size thereof is 5
The average space diameter of the sponge-like nickel porous body is 10 to 50 times the average particle diameter of the nickel hydroxide powder, and the lattice diameter (thickness) is 30 to 70 µ.

作用 スポンジ状ニッケル多孔体に直接,活物質粉末をペース
ト状にして充填する方法では、特に主活物質となる水酸
化ニッケルの粉末の粒子構造(形状)が充填特性に大き
な影響をあたえる可能性がある。そこで、第1図に示す
ような球状の粒子構造をもつ水酸化ニッケルと、第2図
に示すような団塊状の粒子構造をもつ水酸化ニッケルと
を用いて、活物質ペーストを作り、スポンジ状ニッケル
多孔体に充填し、乾燥加圧してニッケル電極を作製し
て、その充填容量密度を比較したところ表1に示すよう
な結果を得た。
In the method of directly filling the sponge-like nickel porous body with the active material powder in the form of paste, the particle structure (shape) of the nickel hydroxide powder, which is the main active material, may significantly affect the filling characteristics. is there. Therefore, using nickel hydroxide having a spherical particle structure as shown in FIG. 1 and nickel hydroxide having a nodule-shaped particle structure as shown in FIG. The nickel porous body was filled, dried and pressed to produce a nickel electrode, and the filling capacity densities were compared, and the results shown in Table 1 were obtained.

表1から明らかなように球状の粒子構造をもつ水酸化ニ
ッケルを用いたもののほうが充填容量密度が大きくな
る。すなわち高容量の電極を得られる。こととなる。こ
の理由の第1は、第1図にみられるように球状の水酸化
ニッケルは表面が平滑なため、活物質を充填する際に、
粉末の粒子どうしのすべりがよくスムーズに多孔体内部
に入って行くからであり、第2の理由は充填後に加圧成
形したときに団塊状の水酸化ニッケルでは粉末の粒子間
に大きな隙間ができてしまうのに対し、球状の水酸化ニ
ッケルでは活物質が球状であるため、密に水酸化ニッケ
ルの粉末の粒子が配列して隙間が小さくなるためである
と考えられる。上述の現象は水酸化ニッケルの粒子径の
大きさにかかわらず同様である。次に球状の水酸化ニッ
ケル粉末の平均粒径と利用率との関係を検討したところ
第3図のような結果を得た。3C程度の高率放電になると
粒径による利用率の差が生じ、最適な平均粒径は5〜25
μであることが判明した。このような平均粒径を有する
球状の水酸化ニッケルを活物質ペーストとして平均空間
径を変えたスポンジ状ニッケル多孔体に充填してサイク
ル寿命特性を調べた結果を第4図に示す。スポンジ状ニ
ッケル多孔体の平均空間径が水酸化ニッケルの平均粒径
の10倍未満および50倍以上のスポンジ状ニッケル多孔体
を用いた電極は劣化が厳しいことがわかった。その原因
を解析したところ、スポンジ状多孔体の平均空間径が水
酸化ニッケルの平均粒径の10倍未満の電極では、充放電
の繰返しによる活物質の膨張によりスポンジ状ニッケル
多孔体の格子が所々で寸断されて、電導性が悪くなり劣
化したのに対し、平均空間径が水酸ニッケルの平均粒径
の50倍以上の電極では、活物質が脱落して劣化するもの
であった。なお、スポンジ状ニッケル多孔体の平均空間
径が水酸化ニッケルの粒径の10〜50倍の範囲では、充填
容量密度の差はみられなかった。またスポンジ状ニッケ
ル多孔体の格子径について検討したところ30μ以下では
充填時に多孔体が強度不足で変形する危険が生じ、30μ
以上では導電性において大差なく、70μ以上では充填容
量密度が低下する傾向が大きくなった。
As is clear from Table 1, the packing capacity density is higher when nickel hydroxide having a spherical particle structure is used. That is, a high capacity electrode can be obtained. It will be. The first reason for this is that spherical nickel hydroxide has a smooth surface as shown in FIG.
The reason for this is that the particles of the powder slide well and smoothly enter the inside of the porous body. The second reason is that when pressure molding is performed after filling, a large gap is created between the particles of the agglomerate nickel hydroxide. On the other hand, it is considered that the spherical nickel hydroxide has a spherical active material, so that the particles of the nickel hydroxide powder are densely arranged and the gap becomes small. The above phenomenon is the same regardless of the particle size of nickel hydroxide. Next, the relationship between the average particle size of the spherical nickel hydroxide powder and the utilization rate was examined, and the results shown in FIG. 3 were obtained. At a high rate discharge of about 3C, there is a difference in the utilization factor depending on the particle size, and the optimum average particle size is 5 to 25
It turned out to be μ. FIG. 4 shows the results of examining the cycle life characteristics by filling spherical nickel hydroxide having such an average particle diameter as an active material paste into a sponge-like nickel porous body having a different average space diameter. It was found that the electrode using the sponge-like nickel porous body whose average space diameter of the sponge-like nickel porous body is less than 10 times and 50 times or more of the average particle diameter of nickel hydroxide is severely deteriorated. Analysis of the cause revealed that in electrodes with an average space diameter of the sponge-like porous body less than 10 times the average particle size of nickel hydroxide, the lattice of the sponge-like nickel porous body was occasionally scattered due to expansion of the active material due to repeated charging and discharging. However, in the electrode having an average space diameter of 50 times or more the average particle diameter of nickel hydroxide, the active material fell off and deteriorated. In addition, in the range where the average space diameter of the sponge-like nickel porous body was 10 to 50 times the particle diameter of nickel hydroxide, no difference in the packing volume density was observed. In addition, when the lattice diameter of the sponge-like nickel porous body was examined, if it was less than 30μ, there was a risk that the porous body would be deformed due to insufficient strength during filling.
Above, there was no great difference in conductivity, and above 70 μ, the filling capacity density tended to decrease.

以上の結果よりスポンジ状ニッケル多孔体に水酸化ニッ
ケルを主体とする活物質をペースト状にして充填し、次
いで加圧圧縮してなるニッケル電極の製造法において
は、水酸化ニッケル粉末の粒子の形状は球状であり、そ
の平均粒径は5〜25μで、スポンジ状ニッケル多孔体内
の平均空間径は水酸化ニッケル粉末の平均粒径の10〜50
倍を有し、また格子径は30〜70μが好適であった。
From the above results, in the method of manufacturing the nickel electrode, which is obtained by filling the sponge-like nickel porous body with the active material mainly containing nickel hydroxide in the form of a paste and then compressing it under pressure, the shape of the particles of the nickel hydroxide powder Is spherical and has an average particle size of 5 to 25 μ, and the average space diameter in the sponge-like nickel porous body is 10 to 50 of the average particle size of the nickel hydroxide powder.
And the lattice diameter of 30 to 70μ was suitable.

実施例 以下本発明の具体的な実施例を説明する。Examples Specific examples of the present invention will be described below.

水酸化ニッケル100重量部に対して、ニッケルの金属粉
末10重量部、コバルト金属粉末5重量部、水酸化カドミ
ウム粉末5重量部を加えて粉末混合し、これに水とカル
ボキシメチルセルロースを加え練合してペースト状に
し、平均空間径300μ,格子径約50μのスポンジ状ニッ
ケル多孔体に充填し、加圧圧縮して、厚さ約0.7mm程度
のニッケル電極を得た。ここで用いた水酸化ニッケル
は、平均粒径15μの球状水酸化ニッケルA,平均粒径35μ
の球状水酸化ニッケルB、平均粒径15μの団塊状水酸化
ニッケルCである。なお、比較のため通常の焼結式ニッ
ケル電極Dも用意した。これらのA〜Dの電極をニッケ
ル電極に対して十分容量のあるペースト式カドミウム電
極と組み合わせて、KR−SCサイズの密閉型アルカリ蓄電
池を試作し、電池容量試験,放電率特性試験,サイクル
寿命特性試験を行なった。
To 100 parts by weight of nickel hydroxide, 10 parts by weight of nickel metal powder, 5 parts by weight of cobalt metal powder, and 5 parts by weight of cadmium hydroxide powder were added and mixed with powder, and water and carboxymethyl cellulose were added and kneaded. To form a paste, and it was filled in a sponge-like nickel porous body having an average space diameter of 300 μ and a lattice diameter of about 50 μ, and compressed under pressure to obtain a nickel electrode having a thickness of about 0.7 mm. The nickel hydroxide used here is spherical nickel hydroxide A with an average particle size of 15μ and an average particle size of 35μ.
Of spherical nickel hydroxide B and agglomerate nickel hydroxide C having an average particle size of 15 μm. A normal sintered nickel electrode D was also prepared for comparison. Combining these electrodes A to D with a paste type cadmium electrode having a sufficient capacity for a nickel electrode, we prototyped a sealed alkaline storage battery of KR-SC size, and conducted a battery capacity test, discharge rate characteristic test, cycle life characteristic. The test was conducted.

電池容量試験は、20℃の雰囲気温度で、150mAの電流で1
6時間充電後、300mAで放電したときの電池容量で評価し
た。また、放電率特性試験は、20℃の雰囲気で150mAで1
6時間充電後、それぞれの電池容量の1Cおよび3C相当の
電流で放電したときの容量を電池容量試験でもとめた電
池容量との比率で評価した。またサイクル寿命試験は、
20℃で500mAで4.5時間充電後、1500mA相当の定抵抗で90
分放電するものであり、1サイクル目の電池電圧が1.0V
となるまでの時間を100とし、その放電時間が1サイク
ル目の80%以下に劣化したときを寿命としてそのサイク
ル数で評価した。表2に各種特性試験の結果を示す。
The battery capacity test is performed at an ambient temperature of 20 ° C and a current of 150mA.
After charging for 6 hours, the battery capacity when discharged at 300 mA was evaluated. In addition, the discharge rate characteristic test was performed at 150 mA in a 20 ° C atmosphere.
After charging for 6 hours, the capacity when discharged at a current equivalent to 1 C and 3 C of each battery capacity was evaluated by the ratio with the battery capacity determined in the battery capacity test. The cycle life test
After charging at 500mA for 4.5 hours at 20 ℃, the constant resistance equivalent to 1500mA is 90
The battery voltage for the first cycle is 1.0V.
When the discharge time deteriorates to 80% or less of the first cycle, the life is evaluated as the number of cycles. Table 2 shows the results of various characteristic tests.

表2で、電池A,B,Cは、平均空間径300μ,格子径50μの
スポンジ状ニッケル多孔体に、それぞれ、平均粒径15μ
の球状水酸化ニッケル、平均粒径35μの球状水酸化ニッ
ケル,平均粒径15μの団塊状水酸化ニッケルを主体とす
る活物質ペーストを充填して作成したニッケル電極を用
いた電池であり、電池Dは通常の焼結式ニッケル電極を
用いたものである。表2より明らかなように本発明法に
よるニッケル電極を用いた電池では、極めて高容量が得
られるばかりでなく、放電率および寿命特性においても
焼結式ニッケル電極を用いた場合と比較して、ほとんど
劣らないものである。
In Table 2, the batteries A, B, and C have sponge-like nickel porous bodies with an average space diameter of 300 μ and a lattice diameter of 50 μ, and have an average particle diameter of 15 μ, respectively.
A battery using a nickel electrode prepared by filling an active material paste mainly composed of spherical nickel hydroxide of No. 3, spherical nickel hydroxide having an average particle diameter of 35μ, and nodular nickel hydroxide having an average particle diameter of 15μ Is an ordinary sintered nickel electrode. As is clear from Table 2, in the battery using the nickel electrode according to the method of the present invention, not only a very high capacity is obtained, but also in the discharge rate and the life characteristics, compared with the case of using the sintered nickel electrode, It is almost inferior.

発明の効果 以上述べたように本発明によるニッケル電極は、従来の
焼結式ニッケル電極よりも製造が簡易化され、また極め
て高容量であるだけでなく、特性においてもほとんど劣
らないものであり、工業的価値が大である。
EFFECTS OF THE INVENTION As described above, the nickel electrode according to the present invention is simpler to manufacture than the conventional sintered nickel electrode, and not only has an extremely high capacity, but is also inferior in characteristics. It has great industrial value.

【図面の簡単な説明】[Brief description of drawings]

第1図は球状水酸化ニッケルの粒子構造を示す倍率1000
倍の電子顕微鏡写真、第2図は団塊状水酸化ニッケルの
粒子構造を示す倍率1000倍の電子顕微鏡写真、第3図は
球状水酸化ニッケル粉末の平均粒径を変えたニッケル電
極の利用率を示す図、第4図はスポンジ状ニッケル多孔
体の平均空間径を変えたときの寿命に達するまでの充放
電回数を示す図である。
Figure 1 shows the particle structure of spherical nickel hydroxide at a magnification of 1000.
2 times electron micrograph, FIG. 2 is an electron micrograph showing the particle structure of nodular nickel hydroxide at a magnification of 1000 times, and FIG. 3 is the utilization rate of nickel electrodes in which the average particle size of spherical nickel hydroxide powder is changed. FIG. 4 and FIG. 4 are views showing the number of times of charge and discharge until the life is reached when the average space diameter of the sponge-like nickel porous body is changed.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】三次元的に連続したスポンジ状ニッケル多
孔体に水酸化ニッケルを主体とする活物質をペースト状
で充填し、次いで加圧圧縮してなるニッケル電極の製造
法であって、前記水酸化ニッケルの粉末が球状で、その
平均粒径を5〜25μとし、活物質充填前の前記スポンジ
状ニッケル多孔体の平均空間径を水酸化ニッケルの平均
粒径の10〜50倍とし、かつ格子径を30〜70μとしたこと
を特徴とするアルカリ電池用ニッケル電極の製造法。
1. A method for producing a nickel electrode, which comprises filling a three-dimensionally continuous sponge-like nickel porous body with a paste-like active material containing nickel hydroxide as a paste, and then compressing and compressing the same. The nickel hydroxide powder is spherical and has an average particle diameter of 5 to 25μ, and the average space diameter of the sponge-like nickel porous body before filling the active material is 10 to 50 times the average particle diameter of nickel hydroxide, and A method for manufacturing a nickel electrode for an alkaline battery, characterized in that the grid diameter is 30 to 70μ.
JP60277152A 1985-12-10 1985-12-10 Nickel electrode manufacturing method for alkaline batteries Expired - Lifetime JPH0732013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60277152A JPH0732013B2 (en) 1985-12-10 1985-12-10 Nickel electrode manufacturing method for alkaline batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60277152A JPH0732013B2 (en) 1985-12-10 1985-12-10 Nickel electrode manufacturing method for alkaline batteries

Publications (2)

Publication Number Publication Date
JPS62136761A JPS62136761A (en) 1987-06-19
JPH0732013B2 true JPH0732013B2 (en) 1995-04-10

Family

ID=17579523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60277152A Expired - Lifetime JPH0732013B2 (en) 1985-12-10 1985-12-10 Nickel electrode manufacturing method for alkaline batteries

Country Status (1)

Country Link
JP (1) JPH0732013B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3817826A1 (en) * 1988-05-26 1989-11-30 Deutsche Automobilgesellsch AQUEOUS NUCLEAR HYDROXIDE PASTE
JP2947284B2 (en) 1997-12-26 1999-09-13 松下電器産業株式会社 Non-sintered positive electrode for alkaline storage battery and alkaline storage battery using the same
JP5247989B2 (en) * 2006-03-27 2013-07-24 プライムアースEvエナジー株式会社 battery
JP4911155B2 (en) * 2008-10-08 2012-04-04 トヨタ自動車株式会社 Battery electrode manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50145833A (en) * 1974-05-11 1975-11-22
JPS54102539A (en) * 1978-01-27 1979-08-13 Matsushita Electric Ind Co Ltd Nickel electrode
US4251603A (en) * 1980-02-13 1981-02-17 Matsushita Electric Industrial Co., Ltd. Battery electrode
JPS6040667A (en) * 1983-08-15 1985-03-04 Tanaka Seisakusho:Kk Method and device for torch type brazing
JPS60131765A (en) * 1983-12-20 1985-07-13 Matsushita Electric Ind Co Ltd Nickel positive electrode for battery
JPS60131766A (en) * 1983-12-20 1985-07-13 Japan Storage Battery Co Ltd Positive plate for alkaline battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50145833A (en) * 1974-05-11 1975-11-22
JPS54102539A (en) * 1978-01-27 1979-08-13 Matsushita Electric Ind Co Ltd Nickel electrode
US4251603A (en) * 1980-02-13 1981-02-17 Matsushita Electric Industrial Co., Ltd. Battery electrode
JPS6040667A (en) * 1983-08-15 1985-03-04 Tanaka Seisakusho:Kk Method and device for torch type brazing
JPS60131765A (en) * 1983-12-20 1985-07-13 Matsushita Electric Ind Co Ltd Nickel positive electrode for battery
JPS60131766A (en) * 1983-12-20 1985-07-13 Japan Storage Battery Co Ltd Positive plate for alkaline battery

Also Published As

Publication number Publication date
JPS62136761A (en) 1987-06-19

Similar Documents

Publication Publication Date Title
JPH10255790A (en) Positive active material of nickel electrode for alkaline storage battery
JPH11273672A (en) Nickel positive electrode for alkaline storage battery
JPH0732013B2 (en) Nickel electrode manufacturing method for alkaline batteries
JP3736842B2 (en) Electrode for alkaline electrolyte battery and alkaline electrolyte battery using the same
US6274270B1 (en) Non-sintered nickel electrode for an alkaline electrolyte secondary electrochemical cell
JP4358322B2 (en) Paste type nickel electrode
US3725129A (en) Method for preparing pasted nickel hydroxide electrode
JPH0221098B2 (en)
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JPH02262245A (en) Manufacture of nickel hydroxide electrode
JPS64787B2 (en)
JP2733231B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3851180B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery provided with the nickel electrode
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JPH0773876A (en) Nickel electrode for secondary battery and manufacture thereof
JP3685726B2 (en) Method for producing sintered cadmium negative electrode
JP2631191B2 (en) Method for producing active material slurry for hydrogen storage alloy electrode
JPH0412455A (en) Electrode for alkaline storage battery
JPH10270017A (en) Non-aqueous electrolytic battery positive pole plate and non-aqueous electrolytic battery therewith
JPH07335210A (en) Electrode for alkaline battery
JPH06101350B2 (en) Nickel cadmium alkaline storage battery
JPH0760681B2 (en) Method for producing nickel positive electrode
JPH09259875A (en) Manufacture of hydrogen absorbing alloy electrode, and metal hydroxide storage battery
JPH09139207A (en) Nickel hydroxide electrode for alkaline storage battery
JPH05299081A (en) Positive electrode plate for alkaline storage battery