JPH06302319A - Manufacture of hydrogen storage electrode and metal oxide-hydrogen storage battery having electrode - Google Patents

Manufacture of hydrogen storage electrode and metal oxide-hydrogen storage battery having electrode

Info

Publication number
JPH06302319A
JPH06302319A JP5091107A JP9110793A JPH06302319A JP H06302319 A JPH06302319 A JP H06302319A JP 5091107 A JP5091107 A JP 5091107A JP 9110793 A JP9110793 A JP 9110793A JP H06302319 A JPH06302319 A JP H06302319A
Authority
JP
Japan
Prior art keywords
electrode
hydrogen storage
alloy
hydrogen
storage electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5091107A
Other languages
Japanese (ja)
Inventor
Gohei Suzuki
剛平 鈴木
Hiroshi Kawano
博志 川野
Nobuyuki Yanagihara
伸行 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5091107A priority Critical patent/JPH06302319A/en
Publication of JPH06302319A publication Critical patent/JPH06302319A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a metal oxide-hydrogen storage battery which has higher capacity than that using a sheet type electrode by eliminating the expansion of an electrode producing after immerssion in an alkaline solution to enhance the current collecting capability within the electrode. CONSTITUTION:An electrode element assembled by holding each porous metal base plate which serves as a current collector 3a, 3b, 3c and also acts as an electrode supporter between two hydrogen storage alloy sheets 1a, 1b formed by kneading a mixture of hydrogen storge alloy powder and a fluororesin binder used as a binder, and by press-molding them. The electrode element is then immersed in an alkaline aqueous solution for washing and dried, and pressed again with a roller press or the like or press-united by sandwiching the electrode element between two metal base plates to prepare a sheet type electrode. A metal oxide-hydrogen storage battery is fabricated with this electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電解液中で水素を可逆
的に吸蔵・放出する水素吸蔵電極の製造法、およびこの
電極を負極に用いた金属酸化物−水素蓄電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hydrogen storage electrode capable of reversibly storing and releasing hydrogen in an electrolytic solution, and a metal oxide-hydrogen storage battery using this electrode as a negative electrode.

【0002】[0002]

【従来の技術】可逆的に水素を吸蔵・放出する水素吸蔵
合金粉末と、結着剤であるフッ素樹脂を混練して形成し
た合金シートと、パンチングメタルのような2次元多孔
構造を有する集電体で構成される水素吸蔵電極(以下シ
ート式電極と略記する)は、発泡状金属多孔体を集電体
とした水素吸蔵電極(以下発泡式電極と略記する)に比
べて廉価となる可能性を有している。
2. Description of the Related Art A hydrogen absorbing alloy powder that reversibly absorbs and desorbs hydrogen, an alloy sheet formed by kneading a fluororesin as a binder, and a current collector having a two-dimensional porous structure such as punching metal. A hydrogen storage electrode composed of a body (hereinafter abbreviated as a sheet electrode) may be less expensive than a hydrogen storage electrode having a foamed metal porous body as a current collector (hereinafter abbreviated as a foam electrode). have.

【0003】このシート式電極は、一般的に次の方法に
よって製造されていた。即ち、合金組成に合うように各
種金属を秤量し、アーク溶解炉などを用いて高温アーク
放電によって各種金属の混合物を溶解させて、所期の組
成を有する合金を製造し、この合金をさらに粉砕して3
00メッシュ以下の粒径を有する粉末とする。この粉末
を結着剤などと均一状態になるように混練し、シート状
に形成する。そしてシート状の混練物を、例えばパンチ
ングメタルなどの電極支持体と加圧一体化して水素吸蔵
電極体としていた。
This sheet electrode was generally manufactured by the following method. That is, various metals are weighed to suit the alloy composition, a mixture of various metals is melted by high temperature arc discharge using an arc melting furnace, etc. to produce an alloy having a desired composition, and the alloy is further crushed. Then 3
The powder has a particle size of 00 mesh or less. This powder is kneaded with a binder or the like so as to be in a uniform state, and formed into a sheet. Then, the sheet-like kneaded product was pressed and integrated with an electrode support such as punching metal to form a hydrogen storage electrode.

【0004】この水素吸蔵電極体は、構成する合金粉末
の脱落を防止するために結着剤であるフッ素樹脂が適量
添加されており、しかもその上、電極体をローラプレス
により加圧成型して電極の構成要素間の結着力をより強
固にしていた。しかし、結着剤であるフッ素樹脂は疎水
性が高いため、電池作製に先立ってシート式電極をアル
カリ水溶液中に浸漬(以下アルカリ浸漬と略記する)
し、浸漬中に起こる合金中の可溶成分の溶出に伴って、
電極上の余分な結着剤(フッ素樹脂)を除去し、電極の
親水性を高める工程を採っていた。
In this hydrogen storage electrode body, an appropriate amount of a fluororesin which is a binder is added to prevent the constituent alloy powders from falling off. Moreover, the electrode body is pressure-molded by a roller press. The binding force between the components of the electrode was made stronger. However, since the fluororesin, which is the binder, is highly hydrophobic, the sheet-type electrode is immersed in an aqueous alkaline solution (hereinafter abbreviated as alkaline immersion) prior to battery production.
However, with the elution of soluble components in the alloy that occurs during immersion,
The step of removing the excess binder (fluororesin) on the electrode to increase the hydrophilicity of the electrode has been adopted.

【0005】[0005]

【発明が解決しようとする課題】ところが、前記工程を
経て得られたシート式電極の放電容量は、同量の合金粉
末を用いて作製した既知の発泡式電極の容量に比べて、
初期から約10〜20%程度小さくなる。これはアルカ
リ浸漬中に合金シートがアルカリ水溶液を吸収して膨張
し、主に合金シートと集電体との接続が悪化するためで
あり、このような電極を金属酸化物−水素蓄電池の負極
として実用に供するのは困難であった。つまり、従来の
シート式電極の問題点は、アルカリ浸漬後電極が膨張し
た状態で電池作製に供してきたことであった。
However, the discharge capacity of the sheet-type electrode obtained through the above-mentioned steps is higher than that of a known foam-type electrode produced by using the same amount of alloy powder.
It becomes about 10 to 20% smaller from the beginning. This is because the alloy sheet absorbs the alkaline aqueous solution during the immersion in alkali and expands, so that the connection between the alloy sheet and the current collector is deteriorated, and such an electrode is used as a negative electrode of a metal oxide-hydrogen storage battery. It was difficult to put it to practical use. In other words, the problem with the conventional sheet-type electrode is that it has been used for battery fabrication in a state where the electrode expanded after immersion in alkali.

【0006】本発明は、この従来の問題点を解決して、
合金シートと集電体との接続のよいシート式電極の製造
法を提供することを目的とし、さらに前記シート式電極
を負極として備えた高容量の金属酸化物−水素蓄電池を
実現しようとするものである。
The present invention solves this conventional problem,
An object of the present invention is to provide a method for producing a sheet-type electrode having a good connection between an alloy sheet and a current collector, and further to realize a high-capacity metal oxide-hydrogen storage battery including the sheet-type electrode as a negative electrode. Is.

【0007】[0007]

【課題を解決するための手段】本発明は前記の課題を解
決するために、電気化学的に水素を吸蔵・放出する水素
吸蔵合金粉末に結着剤としてフッ素樹脂を混練して形成
した合金シート2枚で、集電体と電極支持体とを兼ねる
多孔性金属基板1枚を挟み加圧一体化した電極体を、ア
ルカリ水溶液に浸漬して洗浄・乾燥した後に、ローラー
プレスなどにより再度加圧するか、或いは2枚の多孔性
金属基板で電極体を挟み加圧一体化するという方法で水
素吸蔵電極を製造し、そのシート式電極を負極として用
いることにより高容量の金属酸化物−水素蓄電池を提供
するものである。
In order to solve the above problems, the present invention is an alloy sheet formed by kneading a fluororesin as a binder with a hydrogen storage alloy powder that electrochemically stores and releases hydrogen. The electrode body, which is press-integrated by sandwiching one porous metal substrate that also serves as a collector and an electrode support with two sheets, is immersed in an alkaline aqueous solution, washed and dried, and then pressed again by a roller press or the like. Alternatively, a hydrogen storage electrode is manufactured by a method in which an electrode body is sandwiched between two porous metal substrates and integrated under pressure, and a high capacity metal oxide-hydrogen storage battery is manufactured by using the sheet type electrode as a negative electrode. It is provided.

【0008】[0008]

【作用】本発明は前記したように、電極体をアルカリ浸
漬した後に、この電極体に対して再度加圧したものであ
って、この再加圧により、アルカリ浸漬により膨張した
電極中に存在するアルカリ水溶液の痕跡である空孔が潰
される。このため、再加圧後は、合金シートと集電体と
の接続が再加圧前に比べて向上し、電極反応がスムーズ
に行われ、発泡式電極と同等のエネルギー密度や寿命特
性を有するようになる。
According to the present invention, as described above, the electrode body is immersed in an alkali and then re-pressurized to the electrode body. By this re-pressurization, the electrode body is present in the electrode expanded by the alkali immersion. The holes that are the traces of the alkaline aqueous solution are crushed. Therefore, after re-pressurization, the connection between the alloy sheet and the current collector is improved compared to before re-pressurization, the electrode reaction is performed smoothly, and it has the same energy density and life characteristics as the foamed electrode. Like

【0009】本発明は、このような利点のあるシート式
電極の製造法を、再加圧という簡単な手段によって確立
したものであり、さらに、このシート式電極を備えた金
属酸化物−水素蓄電池は、従来のシート式電極を備えた
電池に比べて高容量にできる。
The present invention has established a method of manufacturing a sheet type electrode having such an advantage by a simple means of repressurization, and further, a metal oxide-hydrogen storage battery provided with this sheet type electrode. Can have a higher capacity than a battery having a conventional sheet electrode.

【0010】[0010]

【実施例】以下、本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0011】(実施例1)純度99.5%以上のランタ
ン(La)を20重量%含むミッシュメタル(Mm)、
ニッケル(Ni)、マンガン(Mn)、アルミニウム
(Al)、コバルト(Co)を所定の割合で混合し、ア
ーク溶解炉にて溶解してMmNi4.0Mn0.2Al0.4
0.4合金を製造した。この合金を不活性雰囲気中で粉
砕し、粒度300メッシュ以下の粉末とした。この合金
粉末8g(2Ah相当)に対してフッ素樹脂であるポリ
テトラフルオロエチレン(PTFE)を合金に対して5
重量%加えて2枚の合金シート1a,1bを作製した。
この合金シート2枚でリード2を取りつけた集電体(パ
ンチングメタル)3aを挟み込み、ローラープレス法に
て加圧一体化して電極体とした。この電極体を水酸化カ
リウム水溶液(水酸化物イオン濃度6モル/l、80
℃)に12時間浸漬(アルカリ浸漬)した後に水洗・乾
燥し、再度ローラープレスにより加圧したシート式電極
をBとする。さらに、水洗・乾燥後の電極体の両外側に
集電体3b、3cを配し、加圧一体化した図1に示す構
造のシート式電極をCとする。また比較例として、水洗
・乾燥後の電極体を再度加圧せずそのまま用いたシート
式電極をAとする。
Example 1 A misch metal (Mm) containing 20% by weight of lanthanum (La) having a purity of 99.5% or more,
Nickel (Ni), manganese (Mn), aluminum (Al), and cobalt (Co) are mixed at a predetermined ratio and melted in an arc melting furnace to obtain MmNi 4.0 Mn 0.2 Al 0.4 C.
o 0.4 alloy was produced. This alloy was crushed in an inert atmosphere to obtain a powder having a particle size of 300 mesh or less. Polytetrafluoroethylene (PTFE), which is a fluororesin, was added to the alloy powder 8 g (corresponding to 2 Ah), and
Two alloy sheets 1a and 1b were manufactured by adding the weight%.
A current collector (punching metal) 3a to which the lead 2 was attached was sandwiched between the two alloy sheets, and pressure integration was performed by a roller press method to form an electrode body. An aqueous solution of potassium hydroxide (hydroxide ion concentration 6 mol / l, 80
The sheet-type electrode was immersed in an alkali solution for 12 hours (° C.), washed with water, dried, and again pressed by a roller press to be B. Further, the sheet-type electrode having the structure shown in FIG. 1 in which the current collectors 3b and 3c are arranged on both outer sides of the electrode body after being washed and dried and which is integrated under pressure is designated as C. In addition, as a comparative example, a sheet-type electrode which is used as it is without pressurizing the electrode body after being washed and dried is referred to as A.

【0012】また、A〜Cのシート式電極と同じ合金粉
末8g(2Ah相当)に対して、PTFEおよび導電材
としてのカーボン微粉末を表1に示すように量を変えて
加えるとともに、親水性高分子であるカルボキシメチル
セルロース(CMC)0.3重量%を加えた複数種類の
組成が異なる合金シート1a,1bを用いて、Cと同じ
構造のD〜Lのシート式電極を作製した。
Further, to 8 g (corresponding to 2 Ah) of the same alloy powder as in the sheet type electrodes A to C, PTFE and carbon fine powder as a conductive material were added in varying amounts as shown in Table 1, and the hydrophilic property was obtained. Sheet electrodes of D to L having the same structure as C were produced using a plurality of types of alloy sheets 1a and 1b having different compositions to which 0.3 wt% of carboxymethyl cellulose (CMC) which is a polymer was added.

【0013】[0013]

【表1】 [Table 1]

【0014】上記のようにして作製した負極であるA〜
Lのシート式電極1枚を袋状にしたセパレータの中に挿
入し、公知のニッケル正極(2Ah相当)2枚と組合わ
せて電極群とし、比重1.25の水酸化カリウム水溶液
200mlを電解液として、それぞれニッケル−水素蓄
電池A〜Lを組立てた。
The negative electrodes A to A produced as described above
Insert one sheet-type electrode of L into a bag-shaped separator and combine it with two known nickel positive electrodes (corresponding to 2 Ah) to form an electrode group. 200 ml of an aqueous potassium hydroxide solution with a specific gravity of 1.25 is used as an electrolytic solution. As a result, nickel-hydrogen storage batteries A to L were assembled.

【0015】これら電池各1個について1Aの定電流で
充放電を行った。充電時間は2.4時間とし、放電終止
電圧は1Vとして300サイクルの充放電試験を行っ
た。本実施例の電池の合金重量当たりの放電容量の変化
を、比較の電池Aの結果とともに併せて表1に示す。
Each of these batteries was charged and discharged at a constant current of 1A. The charging time was set to 2.4 hours, the final discharge voltage was set to 1 V, and a 300-cycle charge / discharge test was performed. The change in discharge capacity per alloy weight of the battery of this example is shown in Table 1 together with the result of comparative battery A.

【0016】表1に示すように、アルカリ浸漬後に再加
圧を行わなかった比較の電池Aに対し、再加圧を行った
本実施例の電池Bは、2サイクルで4%程度、300サ
イクルでは8%程度の容量増加が見られた。これは再加
圧により合金シート内に存在していたアルカリ水溶液の
痕跡である空孔が潰されて、合金シート内の合金粉末と
集電体との接続(集電性)が向上したためであり、実
際、電池Aと電池Bの合金シートとリードとの間の抵抗
値を測定したところ、電池Aの値が10mΩであるのに
対し電池Bの値は約3mΩと、集電性は著しく向上して
いた。
As shown in Table 1, the recharged battery B of this example, compared with the comparative battery A which was not repressurized after the alkali immersion, was about 4% in 2 cycles and 300 cycles. In, a capacity increase of about 8% was observed. This is because the re-pressurization crushed the pores that were the traces of the alkaline aqueous solution that were present in the alloy sheet, and improved the connection (current collection) between the alloy powder in the alloy sheet and the current collector. Actually, when the resistance value between the alloy sheet of the battery A and the battery B and the lead was measured, the value of the battery A was 10 mΩ, whereas the value of the battery B was about 3 mΩ, and the current collecting property was remarkably improved. Was.

【0017】また、再加圧時に電極体の両外側にパンチ
ングメタルをあてがった電池Cでは、電池Bに対して、
さらに2サイクルで8%程度の容量増加が見られた。こ
れは再加圧時に電極の両外側に集電体を配することによ
り、アルカリ水溶液の痕跡の解消に加え、さらに電極内
の集電体が向上したためであり、実際、合金シートとリ
ードとの間の抵抗値は約1mΩと、電池Bに比べさらに
低い値を示した。
Further, in the battery C in which punching metal is applied to both outer sides of the electrode body at the time of repressurization,
Furthermore, a capacity increase of about 8% was observed in two cycles. This is because by disposing current collectors on both outer sides of the electrode during re-pressurization, in addition to eliminating traces of the alkaline aqueous solution, the current collector in the electrode was further improved. The resistance value between them was about 1 mΩ, which was lower than that of the battery B.

【0018】結着剤であるPTFE量に関しては、添加
量を合金に対して0.5重量%とした電池Cは、2サイ
クルの容量は他の電池に比べてよいものの、300サイ
クル経過時には180mAh/合金g程度まで放電容量
が低下した。また、添加量が20重量%の電池Gは、初
期から放電容量が低いままであった。この2つの電池を
300サイクル後に分解したところ、電池Cの負極は合
金シートが集電体から剥離しかけているのが確認でき
た。また、電池Gの負極の水滴との接触角は他の電池の
それに比べて著しく大きかった。即ち、シート式電極の
表面で電解液を介した電池反応がスムーズに行われてい
なかったと考えられる。従って、PTFEの添加量は、
合金に対して1〜10重量%の範囲内であるのが望まし
い。なお、本実施例ではフッ素樹脂としてPTFEを用
いたが、他にテトラフルオロエチレン−ヘキサフルオロ
プロピレン共重合体、ポリヘキサフルオロプロピレンな
どが使用できる。
Regarding the amount of PTFE as a binder, the battery C having an added amount of 0.5% by weight with respect to the alloy has a capacity of 2 cycles which is better than other batteries, but 180 mAh after 300 cycles. / Discharge capacity decreased to about alloy g. In addition, the discharge capacity of the battery G with the addition amount of 20% by weight remained low from the initial stage. When these two batteries were disassembled after 300 cycles, it was confirmed that the alloy sheet of the negative electrode of battery C was about to peel from the current collector. Further, the contact angle of the negative electrode of the battery G with the water droplet was significantly larger than that of the other batteries. That is, it is considered that the battery reaction via the electrolytic solution was not smoothly performed on the surface of the sheet electrode. Therefore, the amount of PTFE added is
It is preferably in the range of 1 to 10% by weight with respect to the alloy. Although PTFE was used as the fluororesin in this example, tetrafluoroethylene-hexafluoropropylene copolymer, polyhexafluoropropylene, or the like may be used instead.

【0019】導電材であるカーボンの添加に関しては、
その添加量が多い電池の方が放電容量が大きいという結
果が得られた。しかし、添加量が20重量%の場合、カ
ーボンを水素吸蔵合金の重量に加えて換算すると、例え
ば300サイクル時では240mAh/合金gとなり、
もはやカーボン添加の優位性は見られない。従って、電
極の単位重量当たりの放電容量を考慮し、導電材添加量
は0.1〜10重量%の範囲内とすることが望ましい。
なお、本実施例では耐アルカリ性導電材としてカーボン
を用いたが、他に白金、銀、パラジウム、ニッケル、コ
バルトなどから1種或いは数種を選択して添加しても、
同様の効果が得られる。
Regarding the addition of carbon as a conductive material,
It was found that the discharge capacity of the battery having a larger amount of addition was larger. However, when the addition amount is 20% by weight, when the carbon is added to the weight of the hydrogen storage alloy and converted, for example, it becomes 240 mAh / alloy g at 300 cycles,
The superiority of carbon addition can no longer be seen. Therefore, considering the discharge capacity per unit weight of the electrode, it is desirable that the amount of the conductive material added be within the range of 0.1 to 10% by weight.
Although carbon is used as the alkali-resistant conductive material in the present embodiment, one or more selected from platinum, silver, palladium, nickel, cobalt and the like may be added.
The same effect can be obtained.

【0020】親水性高分子であるCMCの添加に関して
は(電池L)、疎水性結着剤であるPTFEのみを用い
た場合に比べて電解液との親和性が高くなるため、電解
液を介した電池反応が潤滑に行われやすくなり、従っ
て、PTFEのみを用いた電池Dに比べて3〜4%程度
放電容量が伸長した。このように結着力の強いフッ素樹
脂系結着剤と親水性結着剤を併用することは、電池特性
の向上に効果があることがわかった。なお、本実施例で
は親水性結着剤としてCMCを用いたが、他にポリビニ
ルアルコール、ポリエチレンオキシドなどが使用でき
る。
Regarding the addition of CMC, which is a hydrophilic polymer (Battery L), the affinity for the electrolytic solution is higher than that when only PTFE, which is the hydrophobic binder, is used, and therefore the electrolytic solution is used. The battery reaction was easily performed for lubrication, and therefore, the discharge capacity was extended by about 3 to 4% as compared with the battery D using only PTFE. It was found that the combined use of the fluororesin-based binder having a strong binding force and the hydrophilic binder in this manner is effective in improving the battery characteristics. Although CMC was used as the hydrophilic binder in this example, polyvinyl alcohol, polyethylene oxide or the like may be used instead.

【0021】(実施例2)実施例1と同じ合金粉末8g
(2Ah相当)に対してPTFEを5重量%加えて2枚
の合金シート1a,1bを作製した。この合金シート2
枚で集電体3aを挟み込み、ローラープレス法にて加圧
一体化して電極体とした。この電極体を表2に示すよう
に、水酸化物イオン濃度および温度を変えて水酸化カリ
ウム水溶液に12時間浸漬(アルカリ浸漬)した後に水
洗・乾燥し、この電極体の両外側に集電体として2枚の
パンチングメタル3b,3cを配し、ローラープレス法
にて加圧一体化し、実施例1の電池Cと同様のM〜Rの
シート式電極を作製した。
(Example 2) 8 g of the same alloy powder as in Example 1
5% by weight of PTFE was added to (corresponding to 2 Ah) to prepare two alloy sheets 1a and 1b. This alloy sheet 2
The current collector 3a was sandwiched between the sheets and pressure-integrated by a roller press method to obtain an electrode body. As shown in Table 2, this electrode body was immersed in an aqueous solution of potassium hydroxide for 12 hours (alkaline immersion) while changing the hydroxide ion concentration and temperature, washed with water and dried. As a result, two punching metals 3b and 3c were arranged, and they were pressure-integrated by a roller press method to prepare sheet electrodes M to R similar to the battery C of Example 1.

【0022】[0022]

【表2】 [Table 2]

【0023】上記のようにして作製したシート式電極を
用いて実施例1と同様のニッケル−水素蓄電池M〜Rを
組み立てた。これら各1個について1Aの定電流で充放
電を行った。充電時間は2.4時間とし、放電終止電圧
は1Vとして300サイクルの充放電試験を行った。こ
の試験における、合金重量当たりの電池の放電容量の変
化を表2に併せて示す。
The same nickel-hydrogen storage batteries M-R as in Example 1 were assembled using the sheet-type electrodes produced as described above. Each one of these was charged and discharged at a constant current of 1A. The charging time was set to 2.4 hours, the final discharge voltage was set to 1 V, and a 300-cycle charge / discharge test was performed. The change in discharge capacity of the battery per alloy weight in this test is also shown in Table 2.

【0024】水酸化カリウム水溶液の水酸化物イオン濃
度に関しては、電池C、N(水酸化物イオン濃度=1、
6モル/l)に比べて、電池M(水酸化物イオン濃度=
0.1モル/l)の放電容量が著しく小さかった。これ
は水酸化物イオン濃度が低すぎると、合金中の可溶成分
の溶出が不十分となるため、これに伴って電極表面の余
剰フッ素樹脂の脱落も不十分となり、電極が十分に親水
化されなかったためと考えられる。従って、アルカリ浸
漬に用いる水酸化物イオン濃度は、1モル/l以上とす
ることが望ましい。
Regarding the hydroxide ion concentration of the aqueous potassium hydroxide solution, the batteries C and N (hydroxide ion concentration = 1,
Battery M (hydroxide ion concentration = 6 mol / l)
The discharge capacity of 0.1 mol / l) was remarkably small. This is because if the hydroxide ion concentration is too low, elution of the soluble components in the alloy will be insufficient, and along with this, the excess fluororesin on the electrode surface will be insufficiently removed, making the electrode sufficiently hydrophilic. Probably because it was not done. Therefore, it is desirable that the hydroxide ion concentration used for the alkali immersion is 1 mol / l or more.

【0025】アルカリ浸漬の温度条件に関しては、電池
P、C、Q(60、80、90℃)に比べて、電池O
(45℃)の放電容量が著しく小さかったが、これは上
記の電池Mと同様、温度が低すぎると、合金中の可溶成
分の溶出が不十分となるため、シート式電極が十分に親
水化されなかったためと考えられる。また電池R(95
℃)の容量低下が大きかったが、これは高温下では合金
成分の溶出が過剰に起こり、合金の劣化が早く進んだた
めであると考えられる。従って、アルカリ浸漬に用いる
水酸化カリウム水溶液の温度は、60〜90℃の範囲内
とすることが望ましい。
Regarding the temperature condition of the alkali immersion, the battery O was compared with the batteries P, C, Q (60, 80, 90 ° C.).
The discharge capacity at (45 ° C.) was remarkably small. However, like the battery M, if the temperature is too low, the soluble components in the alloy will be insufficiently eluted, so that the sheet electrode is sufficiently hydrophilic. It is thought that it was not converted. Battery R (95
The decrease in capacity at (° C.) Was large, but this is considered to be because the elution of the alloy components excessively occurred at high temperatures and the deterioration of the alloy proceeded quickly. Therefore, it is desirable that the temperature of the potassium hydroxide aqueous solution used for the alkali immersion is in the range of 60 to 90 ° C.

【0026】[0026]

【発明の効果】以上のように本発明によれば、シート式
電極の集電性が従来より高くなるため電極反応がスムー
ズにおこり、高容量の水素吸蔵電極、およびこの電極を
備えた金属酸化物−水素蓄電池を提供することができ
る。
As described above, according to the present invention, since the sheet type electrode has a higher current collecting property than the conventional one, the electrode reaction occurs smoothly, and a high capacity hydrogen storage electrode and a metal oxide provided with this electrode are obtained. A thing-hydrogen storage battery can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による電極の概略図FIG. 1 is a schematic view of an electrode according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1a 合金シート 1b 合金シート 2 リード 3a 集電体 3b 集電体 3c 集電体 1a Alloy sheet 1b Alloy sheet 2 Lead 3a Current collector 3b Current collector 3c Current collector

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 電気化学的に水素を吸蔵・放出する水素
吸蔵合金粉末に結着剤としてフッ素樹脂を混練して形成
した合金シート2枚と、集電体と電極支持体とを兼ねる
多孔性金属基板1枚とを交互に組み合わせる水素吸蔵電
極の製造法であって、前記合金シート2枚で多孔性金属
基板1枚を挟み加圧一体化して電極体とした後に、アル
カリ水溶液に浸漬して洗浄・乾燥し、ついでこの電極体
を再度加圧することを特徴とする水素吸蔵電極の製造
法。
1. Two alloy sheets formed by kneading a fluorine-containing resin as a binder into a hydrogen-absorbing alloy powder that electrochemically absorbs and releases hydrogen, and porosity that also serves as a current collector and an electrode support. A method of manufacturing a hydrogen storage electrode, wherein one metal substrate is alternately combined, wherein one porous metal substrate is sandwiched between the two alloy sheets to form an electrode body, which is then immersed in an alkaline aqueous solution. A method of manufacturing a hydrogen storage electrode, which comprises washing and drying, and then repressurizing the electrode body.
【請求項2】 電気化学的に水素を吸蔵・放出する水素
吸蔵合金粉末に結着剤としてフッ素樹脂を混練して形成
した合金シート2枚と、集電体と電極支持体とを兼ねる
多孔性金属基板1枚とを交互に組み合わせる水素吸蔵電
極の製造法であって、前記合金シート2枚で多孔性金属
基板1枚を挟み加圧一体化して電極体とした後に、アル
カリ水溶液に浸漬して洗浄・乾燥し、ついで2枚の多孔
性金属基板で前記電極体を挟んで加圧一体化することを
特徴とする水素吸蔵電極の製造法。
2. Two alloy sheets formed by kneading a hydrogen storage alloy powder that electrochemically stores and releases hydrogen with a fluororesin as a binder, and porosity that also serves as a current collector and an electrode support. A method of manufacturing a hydrogen storage electrode, wherein one metal substrate is alternately combined, wherein one porous metal substrate is sandwiched between the two alloy sheets to form an electrode body, which is then immersed in an alkaline aqueous solution. A method for producing a hydrogen storage electrode, comprising washing and drying, and then pressing and integrating the electrode body with two porous metal substrates.
【請求項3】 前記フッ素樹脂が水素吸蔵合金粉末に対
して1〜10重量%である請求項1または2記載の水素
吸蔵電極の製造法。
3. The method for producing a hydrogen storage electrode according to claim 1, wherein the fluororesin is 1 to 10% by weight based on the hydrogen storage alloy powder.
【請求項4】 前記混練工程中に、水素吸蔵合金粉末に
対して0.1〜10重量%の耐アルカリ性導電材を添加
する請求項1または2記載の水素吸蔵電極の製造法。
4. The method for producing a hydrogen storage electrode according to claim 1, wherein 0.1-10 wt% of an alkali-resistant conductive material is added to the hydrogen storage alloy powder during the kneading step.
【請求項5】 前記混練工程中に、親水性高分子を添加
する請求項1または2記載の水素吸蔵電極の製造法。
5. The method for producing a hydrogen storage electrode according to claim 1, wherein a hydrophilic polymer is added during the kneading step.
【請求項6】 前記アルカリ水溶液の水酸化物イオン濃
度が1モル/l以上である請求項1または2記載の水素
吸蔵電極の製造法。
6. The method for producing a hydrogen storage electrode according to claim 1, wherein a hydroxide ion concentration of the alkaline aqueous solution is 1 mol / l or more.
【請求項7】 前記アルカリ水溶液の温度が60〜90
℃である請求項1または2記載の水素吸蔵電極の製造
法。
7. The temperature of the alkaline aqueous solution is 60 to 90.
The method for producing a hydrogen storage electrode according to claim 1 or 2, which is at a temperature of ° C.
【請求項8】 請求項1または2記載の水素吸蔵電極を
負極に用いた金属酸化物−水素蓄電池
8. A metal oxide-hydrogen storage battery using the hydrogen storage electrode according to claim 1 or 2 as a negative electrode.
JP5091107A 1993-04-19 1993-04-19 Manufacture of hydrogen storage electrode and metal oxide-hydrogen storage battery having electrode Pending JPH06302319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5091107A JPH06302319A (en) 1993-04-19 1993-04-19 Manufacture of hydrogen storage electrode and metal oxide-hydrogen storage battery having electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5091107A JPH06302319A (en) 1993-04-19 1993-04-19 Manufacture of hydrogen storage electrode and metal oxide-hydrogen storage battery having electrode

Publications (1)

Publication Number Publication Date
JPH06302319A true JPH06302319A (en) 1994-10-28

Family

ID=14017308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5091107A Pending JPH06302319A (en) 1993-04-19 1993-04-19 Manufacture of hydrogen storage electrode and metal oxide-hydrogen storage battery having electrode

Country Status (1)

Country Link
JP (1) JPH06302319A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2763427A1 (en) * 1997-05-15 1998-11-20 Alsthom Cge Alcatel METAL-HYDRIDE NEGATIVE ELECTRODE IN COATED PERFORATED STRIP
CN101820077A (en) * 2010-04-16 2010-09-01 广州市云通磁电有限公司 Method for manufacturing supporting body special for coiled square battery
KR101386678B1 (en) * 2012-05-09 2014-04-21 한국기계연구원 A Current Collector for a battery comprising a Metal Mesh
KR101386676B1 (en) * 2012-05-09 2014-04-21 한국기계연구원 A Fabricating Method A Current Collector for a battery comprising a Metal Mesh
US10276873B2 (en) 2012-05-09 2019-04-30 Korea Institute Of Machinery & Materials Current collector for battery comprising metal mesh layer and manufacturing method therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2763427A1 (en) * 1997-05-15 1998-11-20 Alsthom Cge Alcatel METAL-HYDRIDE NEGATIVE ELECTRODE IN COATED PERFORATED STRIP
EP0884793A1 (en) * 1997-05-15 1998-12-16 Alcatel Metal hydride negative electrode comprising a coated perforated sheet
CN101820077A (en) * 2010-04-16 2010-09-01 广州市云通磁电有限公司 Method for manufacturing supporting body special for coiled square battery
KR101386678B1 (en) * 2012-05-09 2014-04-21 한국기계연구원 A Current Collector for a battery comprising a Metal Mesh
KR101386676B1 (en) * 2012-05-09 2014-04-21 한국기계연구원 A Fabricating Method A Current Collector for a battery comprising a Metal Mesh
US10276873B2 (en) 2012-05-09 2019-04-30 Korea Institute Of Machinery & Materials Current collector for battery comprising metal mesh layer and manufacturing method therefor

Similar Documents

Publication Publication Date Title
EP0506084B1 (en) A hydrogen storage alloy and an electrode using the same
JP2020087554A (en) Electrolyte solution for zinc battery and zinc battery
JP3104230B2 (en) Hydrogen storage electrode, method for producing the same, and metal oxide-hydrogen storage battery using the same
JPH06302319A (en) Manufacture of hydrogen storage electrode and metal oxide-hydrogen storage battery having electrode
JPH05205746A (en) Collector for electrode, and manufacture thereof hydrogen occlusion electrode using this collector, and nickel-hydrogen storage battery
JP4772185B2 (en) Positive electrode plate for alkaline storage battery, method for producing the same, and alkaline storage battery using the same
JPS5937667A (en) Metal oxide-hydrogen battery
JPH04284354A (en) Hydrogen storage electrode, its manufacture, and metal-oxide-hydrogen storage battery using the electrode
JPH11162468A (en) Alkaline secondary battery
JP2579072B2 (en) Hydrogen storage alloy electrode
JPH05287422A (en) Hydrogen occluding alloy electrode
JP2563638B2 (en) Hydrogen storage alloy electrode
JPH06215764A (en) Manufacture of hydrogen absorbing electrode and metal oxide-hydrogen storage battery with hydrogen absorbing electrode
JPH087896A (en) Alkaline secondary battery
JP2566912B2 (en) Nickel oxide / hydrogen battery
JPH073365A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH088100B2 (en) Method for manufacturing hydrogen storage electrode
JP3306058B2 (en) Hydrogen storage alloy electrode and nickel metal hydride secondary battery
JP3464717B2 (en) Manufacturing method of metal oxide / hydrogen secondary battery
JPH11111280A (en) Hydride secondary battery
JPH0810591B2 (en) Hydrogen storage alloy electrode
JPH0582125A (en) Hydrogen occluding alloy electrode
JPH04280066A (en) Hydrogen storage electrode and manufacture thereof
JPH05166506A (en) Hydrogen storage electrode and its manufacture and metal oxide-hydrogen storage battery provided with same
JPH0513075A (en) Hydrogen storage alloy electrode and manufacture thereof