JPH09143635A - Composite magnetic member and its production - Google Patents

Composite magnetic member and its production

Info

Publication number
JPH09143635A
JPH09143635A JP7323751A JP32375195A JPH09143635A JP H09143635 A JPH09143635 A JP H09143635A JP 7323751 A JP7323751 A JP 7323751A JP 32375195 A JP32375195 A JP 32375195A JP H09143635 A JPH09143635 A JP H09143635A
Authority
JP
Japan
Prior art keywords
magnetic
austenite
composite magnetic
magnetic member
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7323751A
Other languages
Japanese (ja)
Other versions
JP4015712B2 (en
Inventor
Atsushi Sunakawa
淳 砂川
Shinya Sugiura
慎也 杉浦
Yoshihiro Tanimura
圭宏 谷村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, Denso Corp filed Critical Hitachi Metals Ltd
Priority to JP32375195A priority Critical patent/JP4015712B2/en
Publication of JPH09143635A publication Critical patent/JPH09143635A/en
Application granted granted Critical
Publication of JP4015712B2 publication Critical patent/JP4015712B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/0302Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions
    • H01F1/0306Metals or alloys, e.g. LAVES phase alloys of the MgCu2-type

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Articles (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the magnetic properties of a composite magnetic member having a martensitic part and an austenitic part and to produce a new composite magnetic member improved also in the stability of a non-magnetic part. SOLUTION: This member is a composite magnetic member having a ferromagnetic body part, containing Fe, Ni, and Cr as essential components and composed of martensitic structure, and a non-magnetic body part, composed of recrystallized austenitic structure of grains finer than grain size number 8, and also having 20-500ppm nitrogen content. Further, it is preferable that this member has a composition in which Hirayama's equivalent, represented by Heq=[Ni%]+1.05[Mn%]+-0.65[Cr%]+0.35[Si%]+-12.6[C%], is regulated to 20-23% and also nickel equivalent, represented by Nieq=[Ni%]+30[C %]+-0.5[Mn%]+30[N%], and chromium equivalent, represented by Creq=[Cr%]+[Mo%]+-1.5[Si%]+0.5[Nb%], are regulated to 9-12% and 16-19%, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば磁気スケー
ルや電磁弁等に利用される非磁性であるオーステナイト
組織部と強磁性であるマルテンサイト組織部を有する複
合磁性部材とその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite magnetic member having a non-magnetic austenite structure part and a ferromagnetic martensite structure part used in, for example, a magnetic scale or a solenoid valve, and a method for manufacturing the same. is there.

【0002】[0002]

【従来の技術】例えば、強磁性体に等間隔で非磁性体部
を形成した複合磁性部材を用い、この複合磁性部材に近
接したセンサにより、非磁性部あるいは強磁性体部を検
出して、位置決めを行なう磁気スケール等においては、
特開昭62−161146号に記載されるように、素材
を塑性加工により加工誘起マルテンサイト化して強磁性
体化した後、レーザー加熱等の局部加熱手段を用いて、
マルテンサイトの一部を非磁性のオーステナイト組織と
することにより、所定の位置を非磁性化した複合磁性部
材が用いられている。このような、加工誘起マルテンサ
イト化した後、一部をオーステナイト化するのに適した
素材としては、オーステナイト系のステンレス鋼や高マ
ンガン鋼が知られている。
2. Description of the Related Art For example, a composite magnetic member in which a nonmagnetic material portion is formed in a ferromagnetic material at equal intervals is used, and a sensor close to the composite magnetic material detects a nonmagnetic portion or a ferromagnetic material portion, For positioning magnetic scales, etc.,
As described in Japanese Patent Laid-Open No. 62-161146, after the material is plastically worked into a work-induced martensite to be a ferromagnetic material, a local heating means such as laser heating is used.
A composite magnetic member in which a predetermined position is made non-magnetic by using a part of martensite as a non-magnetic austenite structure is used. Austenitic stainless steels and high manganese steels are known as materials suitable for partially austenitizing after such work-induced martensite.

【0003】[0003]

【発明が解決しようとする課題】前述したように、複合
磁性部材を得ようとすると、素材を塑性加工によって、
マルテンサイト化し、次いで一部を加熱しオーステナイ
ト化する必要がある。そして、複合磁性部材としては、
形成するオーステナイト部およびマルテンサイト部が安
定して存在することが求められている。マルテンサイト
の安定度とオーステナイトの安定度は、相反する特性で
あり、組成に大きく依存する。従来は、マルテンサイト
とオーステナイトの複合相からなる複合磁性体は知られ
てはいたが、両相を安定にするための組織条件や最適な
組成は知られていなかった。
As described above, when an attempt is made to obtain a composite magnetic member, the material is
It is necessary to convert it to martensite, and then heat a part of it to austenite it. And as a composite magnetic member,
It is required that the austenite portion and martensite portion to be formed exist stably. The stability of martensite and the stability of austenite are contradictory properties and greatly depend on the composition. Conventionally, a composite magnetic material composed of a composite phase of martensite and austenite was known, but the structural conditions and the optimum composition for stabilizing both phases were not known.

【0004】すなわち、マルテンサイト化しやすい組成
を選択すれば、塑性加工後に加熱してもオーステナイト
化しなかったり、もしくは一度オーステナイトに相変態
しても容易にマルテンサイトに戻るため、非磁性部が得
られにくいという問題が生じる。反対にオーステナイト
化しやすい組成を選択すれば、塑性加工してもマルテン
サイト変態が起こらなかったり、極めて高い加工率が必
要であるという問題が生じる。このような問題に対し
て、本発明者等は、特開平6−140216号で提案す
るように、次に示すオーステナイトの安定度の指標であ
る平山の当量を20〜23とし、ニッケル当量を9〜1
2およびクロム当量を16〜19とすることで一応の特
性を得ている。 Heq(平山の当量)=〔Ni%〕+1.05〔Mn
%〕+0.65〔Cr%〕+0.35〔Si%〕+1
2.6〔C%〕 Nieq(ニッケルの当量)=〔Ni%〕+30〔C
%〕+0.5〔Mn%〕 Creq(クロム当量)=〔Cr%〕+〔Mo%〕+
1.5〔Si%〕+0.5〔Nb%〕
That is, if a composition that easily forms martensite is selected, it does not become austenite even if it is heated after plastic working, or it easily returns to martensite even if it once undergoes a phase transformation to austenite, so that a nonmagnetic portion is obtained. The problem of difficulty arises. On the other hand, if a composition that easily transforms into austenite is selected, there arises a problem that martensite transformation does not occur even if plastic working is performed, or an extremely high working rate is required. With respect to such a problem, the inventors of the present invention set the equivalent of Hirayama, which is an index of stability of austenite, as shown below to 20 to 23 and set the nickel equivalent to 9 as proposed in JP-A-6-140216. ~ 1
2 and chromium equivalents are set to 16 to 19 to obtain tentative characteristics. Heq (Hirayama equivalent) = [Ni%] + 1.05 [Mn
%] + 0.65 [Cr%] + 0.35 [Si%] + 1
2.6 [C%] Nieq (equivalent of nickel) = [Ni%] + 30 [C
%] + 0.5 [Mn%] Creq (chromium equivalent) = [Cr%] + [Mo%] +
1.5 [Si%] + 0.5 [Nb%]

【0005】しかし、現状では、非磁性が要求されるオ
ーステナイト部および強磁性が要求されるマルテンサイ
ト部の両方に対する磁気特性のさらなる向上および非磁
性部の安定性が求められるようになってきている。本発
明の目的は、マルテンサイト部とオーステナイト部を有
する複合磁性部材の磁気特性をさらに向上し、非磁性部
の安定性も向上した新規の複合磁性部材およびその製造
方法を提供することである。より具体的には、従来知ら
れていなかったマルテンサイトとオーステナイトの複合
相からなる磁性体において両相を安定にするための組織
条件と最適な組成、およびそれを達成するための具体的
な製造方法を提供することである。
However, under the present circumstances, further improvement in magnetic characteristics and stability of the non-magnetic portion are required for both the austenite portion requiring non-magnetism and the martensite portion requiring ferromagnetism. . An object of the present invention is to provide a novel composite magnetic member having further improved magnetic characteristics of a composite magnetic member having a martensite part and an austenite part and improved stability of a non-magnetic part, and a method for producing the same. More specifically, in a magnetic material composed of a composite phase of martensite and austenite that has not been known hitherto, a structural condition and an optimal composition for stabilizing both phases, and a specific production for achieving it. Is to provide a method.

【0006】[0006]

【課題を解決するための手段】本発明の複合磁性部材に
おいては、強磁性部には高い磁束密度が要求され、かつ
非磁性部は比透磁率が1にできるだけ近いことが要求さ
れる。本発明者らは、オーステナイト化元素として、窒
素〔N〕を追加した ニッケルの当量 Nieq=〔Ni%〕+30〔C%〕
+0.5〔Mn%〕+30〔N%〕 で複合磁性部材の磁気特性の最適化を試みた。ところ
が、窒素の含有量を増加すると、Ni当量にはさほど大
きな影響を与えるものではないにも係わらず、複合磁性
部材として形成した強磁性部の磁気特性を大きく劣化す
ることが認められた。そのため、複合磁性部材として
は、窒素量は制限しなければならない。
In the composite magnetic member of the present invention, the ferromagnetic portion is required to have a high magnetic flux density, and the nonmagnetic portion is required to have a relative magnetic permeability as close to 1 as possible. The present inventors have added nitrogen [N] as an austenitizing element. Nickel equivalent Nieq = [Ni%] + 30 [C%]
An attempt was made to optimize the magnetic characteristics of the composite magnetic member by +0.5 [Mn%] + 30 [N%]. However, it has been found that increasing the nitrogen content significantly deteriorates the magnetic properties of the ferromagnetic part formed as the composite magnetic member, although it does not significantly affect the Ni equivalent. Therefore, the amount of nitrogen must be limited in the composite magnetic member.

【0007】一方、上述した非磁性部を構成するオース
テナイト組織においては、Ms点が高いと、マルテンサ
イト組織に変態する可能性が高くなる。したがって、非
磁性部のMs点が低い材料が非磁性部の安定性のために
は有効である。本発明者が非磁性部のMs点と窒素量の
関係を調査したところ、オーステナイト化のための加熱
によっても窒素量の変動はほとんどなく、窒素はオース
テナイト組織中に残留し、Ms点を下げ、オーステナイ
ト組織を低温域まで安定するのに有効であることを見出
した。
On the other hand, in the above-mentioned austenite structure constituting the non-magnetic part, if the Ms point is high, the possibility of transformation into a martensite structure increases. Therefore, a material having a low Ms point in the non-magnetic portion is effective for the stability of the non-magnetic portion. When the present inventor investigated the relationship between the Ms point of the non-magnetic part and the nitrogen content, there was almost no change in the nitrogen content even by heating for austenitization, and nitrogen remained in the austenite structure, lowering the Ms point, It was found that it is effective to stabilize the austenite structure in the low temperature range.

【0008】また、窒素は複合磁性部材の非磁性部の透
磁率を下げる有効な元素であり、非磁性特性の確保に必
要な元素である。また窒素の添加は非磁性部のMs点
(マルテンサイトが発生し始める温度)を大きく低下
し、非磁性組織であるオーステナイト組織をより安定化
ができることが認められた。つまり、窒素を極度に低下
したのでは、複合磁性部材の強磁性部と非磁性部の両特
性を満足させることはできないため、両特性を満足する
最適範囲に窒素量をコントロールする必要がある。
Nitrogen is an effective element for reducing the magnetic permeability of the non-magnetic portion of the composite magnetic member, and is an element necessary for ensuring the non-magnetic characteristics. It was also confirmed that the addition of nitrogen significantly lowered the Ms point (the temperature at which martensite starts to be generated) in the non-magnetic portion, and the austenite structure, which is a non-magnetic structure, could be further stabilized. That is, if nitrogen is extremely reduced, it is not possible to satisfy both the characteristics of the ferromagnetic portion and the non-magnetic portion of the composite magnetic member, so it is necessary to control the nitrogen amount within the optimum range that satisfies both characteristics.

【0009】また、本発明者がMs点とオーステナイト
組織の関係について検討したところ、オーステナイト化
のための加熱によって得られる組織において、再結晶が
不完全であると、透磁率が高くなってしまい、一方、高
温に加熱すると結晶粒が粗大化し、透磁率は低いもの
の、Ms点が上昇し、オーステナイト組織の安定化を害
することが判明した。そして、結晶粒度をオーステナイ
ト結晶粒度番号8番より細粒にすることで、Ms点を低
く保つことができることを見出した。上述した知見によ
り、本発明は見出されたものである。すなわち、本発明
はFe,NiおよびCrを主成分とし、マルテンサイト
組織でなる強磁性体部分と、オーステナイト結晶粒度番
号8番より細粒の再結晶したオーステナイト組織でなる
非磁性体部分を有しており、含有される窒素量が20〜
500ppmであることを特徴とする複合磁性部材であ
る。
Further, the present inventor has examined the relationship between the Ms point and the austenite structure. In the structure obtained by heating for austenitization, if recrystallization is incomplete, the magnetic permeability increases, On the other hand, it was found that when heated to a high temperature, the crystal grains coarsened and the magnetic permeability was low, but the Ms point increased, impairing the stabilization of the austenite structure. Then, it was found that the Ms point can be kept low by making the grain size finer than the austenite grain size number 8. The present invention has been found based on the above findings. That is, the present invention has a ferromagnetic portion mainly composed of Fe, Ni and Cr and having a martensite structure, and a non-magnetic portion having a recrystallized austenite structure finer than austenite grain size number 8. And the amount of nitrogen contained is 20-
It is a composite magnetic member characterized by being 500 ppm.

【0010】また、上述の本発明の複合磁性部材は、F
e,NiおよびCrを主成分とし、かつ窒素を20〜5
00ppm含有する素材を塑性加工によりマルテンサイ
ト組織とし、次いで前記マルテンサイト組織の一部を加
熱し再結晶させ、オーステナイト結晶粒度番号8番より
細粒のオーステナイト組織とする本発明の複合磁性部材
の製造方法により得ることができる。本発明の複合磁性
部材としては、重量%でC 0.6%以下、Cr 12〜
19%、Ni 6〜12%、Mn 2%以下、Si 1%
以下、窒素 20〜500ppm、残部実質的にFeの
組成とすることが望ましい。
The composite magnetic member of the present invention described above is F
e, Ni and Cr as main components, and nitrogen 20 to 5
Manufacture of a composite magnetic member of the present invention in which a material containing 00 ppm is made into a martensite structure by plastic working, and then a part of the martensite structure is heated and recrystallized to form an austenite structure having a finer grain than austenite grain size number 8. It can be obtained by the method. The composite magnetic member of the present invention includes C 0.6% or less by weight% and Cr 12 to
19%, Ni 6-12%, Mn 2% or less, Si 1%
Hereinafter, it is desirable that the composition of nitrogen is 20 to 500 ppm and the balance is substantially Fe.

【0011】特に強磁性体部の強磁性特性、および非磁
性体部の非磁性特性を高めるためには、平山の当量 H
eq=〔Ni%〕+1.05〔Mn%〕+0.65〔C
r%〕+0.35〔Si%〕+12.6〔C%〕が20
〜23%、であり、かつ、ニッケル当量 Nieq=
〔Ni%〕+30〔C%〕+0.5〔Mn%〕+30
〔N%〕が9〜12%、クロム当量 Creq=〔Cr
%〕+〔Mo%〕+1.5〔Si%〕+0.5〔Nb
%〕が16〜19%である組成を満足することが望まし
い。
In order to enhance the ferromagnetic properties of the ferromagnetic part and the nonmagnetic properties of the nonmagnetic part, the Hirayama equivalent H
eq = [Ni%] + 1.05 [Mn%] + 0.65 [C
r%] + 0.35 [Si%] + 12.6 [C%] is 20
˜23%, and nickel equivalent Nieq =
[Ni%] + 30 [C%] + 0.5 [Mn%] + 30
[N%] is 9 to 12%, chromium equivalent Creq = [Cr
%] + [Mo%] + 1.5 [Si%] + 0.5 [Nb
%] Is preferably 16 to 19%.

【0012】本発明の特徴の一つは、複合磁性材料とし
て窒素を20〜500ppm含有させたことにある。上
述したように窒素の高い組成の素材よりマルテンサイト
化して得られた強磁性部は、窒素量が多いほどNi当量
の予想を越えて強磁性特性が大きく劣化する。特に50
0ppmを越えると強磁性特性の劣化は著しいものとな
る。一方、オーステナイト部である非磁性部において
は、加熱によっても窒素量の変動はほとんどなく、窒素
はオーステナイト組織中で、Ms点を下げオーステナイ
ト組織を安定化するのに必須である。その限界量は20
ppm以上である。本発明は強磁性体部と非磁性体部が
一体で形成された複合磁性部材として、両方の特性を満
足するため、窒素の範囲を20〜500ppmに規定し
たものである。
One of the features of the present invention is that the composite magnetic material contains 20 to 500 ppm of nitrogen. As described above, the ferromagnetic portion obtained by martensite conversion from a material having a high nitrogen composition has a large amount of nitrogen, and the ferromagnetic properties are significantly deteriorated beyond the expected Ni equivalent. Especially 50
If it exceeds 0 ppm, the deterioration of the ferromagnetic properties becomes remarkable. On the other hand, in the non-magnetic portion which is the austenite portion, the amount of nitrogen hardly changes even by heating, and nitrogen is essential for lowering the Ms point in the austenite structure and stabilizing the austenite structure. The limit amount is 20
It is above ppm. The present invention provides a composite magnetic member in which a ferromagnetic material portion and a non-magnetic material portion are integrally formed, so that the nitrogen range is specified to 20 to 500 ppm in order to satisfy both characteristics.

【0013】また、窒素は割れ感受性を高める元素であ
り、リダクション 50%以上または絞り比2以上の大
きな加工を行なってマルテンサイト組織を得る場合に
は、規制しなければならない。本発明において、好まし
い窒素含有量は100〜250ppmである。本発明の
もう一つの特徴は、オーステナイト組織をオーステナイ
ト結晶粒度番号8番より細粒の再結晶組織としたことで
ある。上述したように、オーステナイト組織において
は、Ms点を下げて安定化しておく必要がある。
Nitrogen is an element that enhances cracking susceptibility, and must be regulated when a martensite structure is obtained by performing a large reduction of 50% or more or a drawing ratio of 2 or more. In the present invention, the preferable nitrogen content is 100 to 250 ppm. Another feature of the present invention is that the austenite structure is a fine-grained recrystallized structure from austenite grain size number 8. As described above, in the austenite structure, it is necessary to lower the Ms point and stabilize it.

【0014】本発明者は、上述した窒素の導入しただけ
では、Ms点を低いものとするには不十分であり、オー
ステナイト結晶粒度番号8番よりも細粒とすることで、
さらなるMs点の低下を達成したものである。上述のオ
ーステナイト結晶粒の大きさは、オーステナイト化温度
と時間によって調整することが可能である。オーステナ
イト化温度が低く再結晶が不完全であると透磁率が高く
なり、非磁性部としては使用できなくなる。一方、オー
ステナイト化温度が高すぎると結晶粒が粗大化し、Ms
点が上昇し、オーステナイト組織の安定性を劣化するの
である。すなわち、本発明においては、窒素の導入と再
結晶したオーステナイト組織の結晶粒の最適化により、
オーステナイト組織のMs点を低いものとしたことを大
きな特徴の一つとするものである。
The inventor of the present invention is not sufficient to lower the Ms point just by introducing the above-mentioned nitrogen, and by making finer grains than the austenite grain size number 8,
This is a further reduction of the Ms point. The size of the above-mentioned austenite crystal grains can be adjusted by the austenitizing temperature and time. If the austenitizing temperature is low and recrystallization is incomplete, the magnetic permeability becomes high and it cannot be used as a non-magnetic portion. On the other hand, if the austenitizing temperature is too high, the crystal grains become coarse and Ms
The point rises and the stability of the austenite structure deteriorates. That is, in the present invention, by the introduction of nitrogen and optimization of the crystal grains of the recrystallized austenite structure,
One of the major characteristics is that the Ms point of the austenite structure is low.

【0015】本発明におけるマルテンサイト組織は強磁
性を示し、オーステナイト組織は非磁性を示すものであ
り、これによって磁気スケールや電磁弁等の複合磁性材
料を構成するものである。また、マルテンサイト組織を
塑性加工により得た後、一部を加熱してオーステナイト
化することは、一体の成形品に強磁性部と非磁性部とを
存在させる方法として有効である。本発明の複合磁性部
材の好ましい組成として、Cを0.6%以下としたの
は、0.6%を越えても強磁性を示すが、炭化物量の増
加により加工成形性が低下するからである。Cr量を1
2〜19%としたのは、12%未満では塑性加工するこ
とによって発生するマルテンサイト中のCr量が低下す
るため、強度が低下するからである。また、19%を越
えると非磁性部であるオーステナイト中にフェライトが
発生し、非磁性部が減少するからである。
In the present invention, the martensite structure exhibits ferromagnetism and the austenite structure exhibits nonmagnetism, which constitutes a composite magnetic material such as a magnetic scale or a solenoid valve. Further, it is effective to heat a part of the martensite structure to obtain austenite after the martensite structure is obtained by plastic working, as a method of allowing the ferromagnetic part and the non-magnetic part to exist in an integrated molded product. As a preferable composition of the composite magnetic member of the present invention, C is set to 0.6% or less because it shows ferromagnetism even if it exceeds 0.6%, but the workability is deteriorated due to the increase in the amount of carbide. is there. Cr amount is 1
The reason why the content is set to 2 to 19% is that if it is less than 12%, the amount of Cr in martensite generated by the plastic working is reduced, so that the strength is reduced. On the other hand, if it exceeds 19%, ferrite is generated in austenite which is a non-magnetic part and the non-magnetic part is reduced.

【0016】Ni量を6〜12%としたのは、Ni量6
%未満ではオーステナイトがあまり安定せず、フェライ
トが発生するため、非磁性部が得にくいからである。ま
た、12%を越えるとオーステナイトの安定度が高まり
過ぎて加工誘起マルテンサイトの生成を阻害するからで
ある。Mnを2%以下としたのは2%を越えると塑性加
工によって発生するマルテンサイトの延性が低下し、加
工成形性も低下するからである。またMnは、マルテン
サイトの形成を抑制する元素であり、強磁性を確保する
には低い範囲に抑える必要がある。好ましい範囲は1.0%
以下である。Siを1%以下としたのは、1%を越える
とマルテンサイトの延性を低下させるためである。な
お、1%以下の添加は部材の高度を高める上で有効であ
るので0.3〜0.8%程度を狙って添加するのが良
い。
The Ni content of 6 to 12% means that the Ni content is 6%.
If it is less than%, austenite is not very stable and ferrite is generated, so that it is difficult to obtain a non-magnetic portion. On the other hand, if it exceeds 12%, the stability of austenite becomes too high and the formation of work-induced martensite is hindered. The Mn content is set to 2% or less because if it exceeds 2%, the ductility of martensite generated by plastic working decreases and the workability also decreases. Further, Mn is an element that suppresses the formation of martensite, and it is necessary to suppress it to a low range in order to secure ferromagnetism. The preferred range is 1.0%
It is as follows. Si is set to 1% or less because if it exceeds 1%, the ductility of martensite decreases. Note that addition of 1% or less is effective in increasing the height of the member, so it is preferable to add it by aiming at about 0.3 to 0.8%.

【0017】また、平山の当量 Heq=〔Ni%〕+
1.05〔Mn%〕+0.65〔Cr%〕+0.35
〔Si%〕+12.6〔C%〕が20〜23%、であ
り、かつ、ニッケル当量 Nieq=〔Ni%〕+30
〔C%〕+0.5〔Mn%〕+30〔N%〕が9〜12
%、クロム当量 Creq=〔Cr%〕+〔Mo%〕+
1.5〔Si%〕+0.5〔Nb%〕が16〜19%で
ある組成を満足すると、印加磁場4000A/m時の強
磁性部の磁束密度B40 00を0.3(T)以上にすること
が容易であり、また非磁性部においては透磁率μを1近
傍に調整することが容易となるという利点がある。
Hirayama equivalent Heq = [Ni%] +
1.05 [Mn%] + 0.65 [Cr%] + 0.35
[Si%] + 12.6 [C%] is 20 to 23%, and the nickel equivalent is Nieq = [Ni%] + 30.
[C%] + 0.5 [Mn%] + 30 [N%] is 9 to 12
%, Chromium equivalent Creq = [Cr%] + [Mo%] +
1.5 If [Si%] + 0.5 [Nb%] satisfies the composition is from 16 to 19%, the applied magnetic field 4000A / flux density of the ferromagnetic part of the time m B 40 00 0.3 (T) or higher And the magnetic permeability μ in the non-magnetic portion can be easily adjusted to around 1.

【0018】さらに、MoとNbは必ずしも添加する必
要はないが、MoはMs点を低める効果があり、またN
bは材料強度を高める作用があり、目的に応じて単独ま
たは複合で添加することができる。ここでMoが2%を
越えると、またNbが1%を越えると加工成形が低下す
るため、好ましくはMoおよびNbの添加量の上限をそ
れぞれ2%および1%とした。
Further, although Mo and Nb are not necessarily added, Mo has the effect of lowering the Ms point, and N
b has the effect of increasing the material strength, and can be added alone or in combination depending on the purpose. Here, if Mo exceeds 2% or Nb exceeds 1%, the workability decreases, so the upper limits of the amounts of addition of Mo and Nb are preferably set to 2% and 1%, respectively.

【0019】[0019]

【実施例】表1に示す組成の合金を熱間圧延により厚さ
2.5mmの板材とし、その後1000℃で5分間不
活性ガス中で溶体化処理を行ない、その後、窒素雰囲気
中で900℃に加熱して窒素量を調整し、異なる窒素量
で実質的にオーステナイト組織を有する複合磁性部材用
素材を得た。表1に示すように窒素量が異なるが、溶体
化処理により、実質的にオーステナイト組織を示す素材
が得られた。なお、γ量(%)は、溶体化処理後のオー
ステナイト量で単位は%、μは透磁率、〔N〕は溶体化
処理後の窒素含有量で単位はppmである。また、He
qは平山の当量、NieqはNi当量、CreqはCr
当量である。
EXAMPLE An alloy having the composition shown in Table 1 was hot-rolled into a plate having a thickness of 2.5 mm, which was then subjected to solution treatment at 1000 ° C. for 5 minutes in an inert gas, and then at 900 ° C. in a nitrogen atmosphere. The mixture was heated to 1, the nitrogen content was adjusted, and a composite magnetic member material having an austenite structure was obtained at different nitrogen contents. As shown in Table 1, although the nitrogen content was different, a material that substantially showed an austenite structure was obtained by the solution treatment. The γ amount (%) is the amount of austenite after the solution treatment, the unit is%, μ is the magnetic permeability, and [N] is the nitrogen content after the solution treatment, the unit is ppm. Also, He
q is Hirayama equivalent, Nieq is Ni equivalent, Creq is Cr
Is equivalent.

【0020】[0020]

【表1】 [Table 1]

【0021】表1に示す試料1〜5の試験片を冷間圧延
により、板厚 2.5mmから1.2mmまで圧下し、
強磁性部の評価を行なった結果を表2に示す。表2に示
すα′量(%)は、冷間圧延後のマルテンサイト量で単
位は%、B40 00(T)は印加磁場4000A/mの時の
磁束密度で単位はT(テスラ)である。なお、冷間圧延
による試験片中の合金組成の変化は認められなかった。
また、割れ性を評価するために冷間圧延後焼鈍したφ6
0mm×0.7tmmの円板状素材を内径φ30mmの
筒状に絞り加工を行なった。この時の絞り比はφ60/
φ30=2である。割れの発生の有無を表2に付記し
た。表2に示すように窒素の高い比較例においては、割
れが発生しており、好ましくないものであることがわか
る。また、強磁性が要求されるマルテンサイト部として
は、窒素量の増加に伴いB4000が低下し、磁気特性が劣
化していくことがわかる。
Samples 1 to 5 shown in Table 1 were cold-rolled to reduce the plate thickness from 2.5 mm to 1.2 mm,
The results of evaluation of the ferromagnetic part are shown in Table 2. The amount of α '(%) shown in Table 2 is the amount of martensite after cold rolling, the unit is%, B 4 00 (T) is the magnetic flux density when the applied magnetic field is 4000 A / m, and the unit is T (Tesla). is there. No change in alloy composition in the test piece due to cold rolling was observed.
Also, in order to evaluate the crackability, φ6 annealed after cold rolling.
A disk-shaped material having a size of 0 mm × 0.7 tmm was drawn into a cylindrical shape having an inner diameter of 30 mm. The aperture ratio at this time is φ60 /
φ30 = 2. The presence or absence of cracks is shown in Table 2. As shown in Table 2, in the comparative examples having a high nitrogen content, cracking occurs, which is not preferable. Further, it can be seen that in the martensite part requiring ferromagnetic properties, B 4000 decreases with an increase in the nitrogen content, and the magnetic characteristics deteriorate.

【0022】[0022]

【表2】 [Table 2]

【0023】表1に示す試料について、材料表面の一部
を880℃と1080℃の2条件で3秒間、10-3to
rrの真空中で高周波加熱して再結晶化して得られた非
磁性部の特性を表3に示す。表3から明らかなように、
部分加熱することにより実質的に非磁性を示すオーステ
ナイト組織が得られている。表3に示すように窒素を添
加することにより、非磁性であることが要求されるオー
ステナイト部の透磁率が1に近づき、Ms点が下がるた
め20ppm以上の窒素添加が非磁性特性の確保に有効
であることがわかる。そして、加熱条件が1080℃と
高く、オーステナイト結晶粒度番号8番以下の粗大な結
晶粒を有する試料については、同じ組成であるにもかか
わらず、880℃により結晶粒を微細化したものよりも
20℃以上もMs点が高くなっている。したがって、非
磁性部を構成するオーステナイト組織においては窒素の
導入と結晶粒の微細化が必須であることがわかる。
With respect to the samples shown in Table 1, a part of the material surface was subjected to 10 -3 to 10 s for 3 seconds under the two conditions of 880 ° C and 1080 ° C.
Table 3 shows the characteristics of the non-magnetic portion obtained by high frequency heating in a vacuum of rr and recrystallization. As is clear from Table 3,
By partially heating, an austenitic structure that is substantially non-magnetic is obtained. As shown in Table 3, by adding nitrogen, the magnetic permeability of the austenite portion, which is required to be non-magnetic, approaches 1, and the Ms point decreases, so addition of 20 ppm or more of nitrogen is effective for securing non-magnetic characteristics. It can be seen that it is. The heating condition was as high as 1080 ° C., and the sample having coarse crystal grains with an austenite grain size number 8 or less was 20 times larger than the one having the same composition but having the crystal grains refined at 880 ° C. The Ms point is high even at temperatures above ℃. Therefore, it is understood that introduction of nitrogen and refinement of crystal grains are essential in the austenite structure that constitutes the non-magnetic portion.

【0024】なお、本発明の典型的なオーステナイト組
織として試料番号3において、880℃で加熱処理を行
なった時のミクロ組織を図1に示す。図1に示すよう
に、本発明のオーステナイト組織は、微細な再結晶組織
となっている。なお、表3に示すγrevは部分加熱後の
非磁性体部分のオーステナイト量で単位は%である。ま
た、G.S. No.は、オーステナイト結晶粒度番号、Ms
はマルテンサイト化が始まる温度である。
As a typical austenite structure of the present invention, FIG. 1 shows the microstructure of Sample No. 3 when heat-treated at 880 ° C. As shown in FIG. 1, the austenite structure of the present invention is a fine recrystallized structure. It should be noted that γ rev shown in Table 3 is the amount of austenite in the non-magnetic material portion after partial heating and the unit is%. GS No. is austenite grain size number, Ms
Is the temperature at which martensite formation begins.

【0025】[0025]

【表3】 [Table 3]

【0026】(実施例2)表4の試料番号6〜12に示
す化学組成の試験片でそれぞれにつき、非磁性部を形成
する条件を880℃に設定する以外は、実施例1と同様の
操作を行なった結果を表4および表5に示す。なお、冷
間圧延において、窒素量の変化は認められなかった。表
4および表5から明らかなように、本発明の規定範囲内
の窒素量を有する試料は、冷間加工において得られたマ
ルテンサイト部の磁束密度が高く、また、その後の部分
加熱により非磁性化したオーステナイト組織において
は、オーステナイト結晶粒度番号8番より細粒であり、
かつ1に近い非磁性部が得られたことがわかる。
Example 2 The same operation as in Example 1 except that the condition for forming the non-magnetic portion was set to 880 ° C. for each of the test pieces having the chemical compositions shown in sample numbers 6 to 12 in Table 4. The results obtained are shown in Tables 4 and 5. No change in the amount of nitrogen was observed during cold rolling. As is clear from Tables 4 and 5, the samples having a nitrogen content within the specified range of the present invention have a high magnetic flux density in the martensite part obtained in the cold working and are non-magnetic due to the subsequent partial heating. In the transformed austenite structure, finer grains than austenite grain size number 8
Moreover, it can be seen that a non-magnetic portion close to 1 was obtained.

【0027】[0027]

【表4】 [Table 4]

【0028】[0028]

【表5】 [Table 5]

【0029】[0029]

【発明の効果】以上述べたように、本発明によれば、窒
素の最適な含有とオーステナイト組織の再結晶粒の微細
化により強磁性部と非磁性部の両方の特性を有する複合
磁性部材として、従来の複合磁性材では達成し得なかっ
たマルテンサイト組織の強磁性特性の向上およびオース
テナイト組織の非磁性特性の向上および安定化を両立す
ることが初めて可能となるものである。したがって、高
い磁束密度を有する強磁性体と比透磁率が1に近い非磁
性部が安定して形成され、磁気スケールや電磁弁の用途
にも適したものになる。
As described above, according to the present invention, a composite magnetic member having characteristics of both a ferromagnetic portion and a non-magnetic portion is obtained by optimal inclusion of nitrogen and refinement of recrystallized grains of austenite structure. For the first time, it is possible to achieve both improvement in the ferromagnetic properties of the martensite structure and improvement and stabilization of the non-magnetic properties of the austenite structure, which could not be achieved with conventional composite magnetic materials. Therefore, a ferromagnetic material having a high magnetic flux density and a non-magnetic portion having a relative magnetic permeability close to 1 are stably formed, which is suitable for use in a magnetic scale or a solenoid valve.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のオーステナイト部の再結晶組織を示す
金属ミクロ組織写真である。
FIG. 1 is a metal microstructure photograph showing a recrystallized structure of an austenite portion of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/00 H01F 1/00 Z (72)発明者 谷村 圭宏 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication location H01F 1/00 H01F 1/00 Z (72) Inventor Keihiro Tanimura 1-chome, Showa-cho, Kariya city, Aichi prefecture Address: Nippon Denso Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 Fe,NiおよびCrを主成分とし、マ
ルテンサイト組織でなる強磁性体部分と、オーステナイ
ト結晶粒度番号8番より細粒の再結晶したオーステナイ
ト組織でなる非磁性体部分を有しており、含有される窒
素量が20〜500ppmであることを特徴とする複合
磁性部材。
1. A ferromagnetic material portion containing Fe, Ni and Cr as main components and having a martensite structure, and a non-magnetic material portion having a recrystallized austenite structure with finer grains than austenite grain size number 8. And the amount of nitrogen contained is 20 to 500 ppm.
【請求項2】 複合磁性部材は重量%でC 0.6%以
下、Cr 12〜19%、Ni 6〜12%、Mn 2%
以下、Si 1%以下、窒素が20〜500ppm含有
され、残部が実質的にFeでなることを特徴とする請求
項1に記載の複合磁性部材。
2. The composite magnetic member, in% by weight, is C 0.6% or less, Cr 12 to 19%, Ni 6 to 12%, Mn 2%.
The composite magnetic member according to claim 1, wherein Si is 1% or less, nitrogen is contained in an amount of 20 to 500 ppm, and the balance is substantially Fe.
【請求項3】 平山の当量 Heq=〔Ni%〕+1.
05〔Mn%〕+0.65〔Cr%〕+0.35〔Si
%〕+12.6〔C%〕が20〜23%、であり、か
つ、ニッケル当量 Nieq=〔Ni%〕+30〔C
%〕+0.5〔Mn%〕+30〔N%〕が9〜12%、
クロム当量 Creq=〔Cr%〕+〔Mo%〕+1.
5〔Si%〕+0.5〔Nb%〕が16〜19%である
組成を満足することを特徴とする請求項1および2のい
ずれかに記載の複合磁性部材。
3. Hirayama equivalent Heq = [Ni%] + 1.
05 [Mn%] + 0.65 [Cr%] + 0.35 [Si
%] + 12.6 [C%] is 20 to 23%, and nickel equivalent Nieq = [Ni%] + 30 [C
%] + 0.5 [Mn%] + 30 [N%] is 9 to 12%,
Chromium equivalent Creq = [Cr%] + [Mo%] + 1.
3. The composite magnetic member according to claim 1, wherein the composition of 5 [Si%] + 0.5 [Nb%] is 16 to 19%.
【請求項4】 Fe,NiおよびCrを主成分とし、か
つ窒素を20〜500ppm含有する素材を塑性加工に
よりマルテンサイト組織とし、次いで前記マルテンサイ
ト組織の一部を加熱し再結晶させ、オーステナイト結晶
粒度番号8番より細粒のオーステナイト組織とすること
を特徴とする複合磁性部材の製造方法。
4. A material containing Fe, Ni and Cr as main components and containing nitrogen in an amount of 20 to 500 ppm to have a martensite structure by plastic working, and then part of the martensite structure is heated to recrystallize to form austenite crystals. A method for producing a composite magnetic member, characterized by having an austenite structure finer than grain size No. 8.
【請求項5】 素材は、重量%でC 0.6%以下、C
r 12〜19%、Ni 6〜12%、Mn 2%以下、
Si 1%以下、窒素を20〜500ppm含有し、残
部が実質的にFeでなることを特徴とする請求項4に記
載の複合磁性部材の製造方法。
5. The material is C 0.6% or less by weight%, C
r 12 to 19%, Ni 6 to 12%, Mn 2% or less,
The method for producing a composite magnetic member according to claim 4, wherein Si is 1% or less, nitrogen is contained in an amount of 20 to 500 ppm, and the balance is substantially Fe.
【請求項6】 素材は、平山の当量 Heq=〔Ni
%〕+1.05〔Mn%〕+0.65〔Cr%〕+0.
35〔Si%〕+12.6〔C%〕が20〜23%、で
あり、かつ、ニッケル当量 Nieq=〔Ni%〕+3
0〔C%〕+0.5〔Mn%〕+30〔N%〕が9〜1
2%、クロム当量 Creq=〔Cr%〕+〔Mo%〕
+1.5〔Si%〕+0.5〔Nb%〕が16〜19%
である組成を満足することを特徴とする請求項4または
5に記載の複合磁性部材の製造方法。
6. The material is Hirayama equivalent Heq = [Ni
%] + 1.05 [Mn%] + 0.65 [Cr%] + 0.
35 [Si%] + 12.6 [C%] is 20 to 23%, and the nickel equivalent is Nieq = [Ni%] + 3.
0 [C%] + 0.5 [Mn%] + 30 [N%] is 9 to 1
2%, chromium equivalent Creq = [Cr%] + [Mo%]
+1.5 [Si%] + 0.5 [Nb%] is 16 to 19%
6. The method for producing a composite magnetic member according to claim 4, wherein the composition satisfies
JP32375195A 1995-11-17 1995-11-17 Composite magnetic member and manufacturing method thereof Expired - Fee Related JP4015712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32375195A JP4015712B2 (en) 1995-11-17 1995-11-17 Composite magnetic member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32375195A JP4015712B2 (en) 1995-11-17 1995-11-17 Composite magnetic member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH09143635A true JPH09143635A (en) 1997-06-03
JP4015712B2 JP4015712B2 (en) 2007-11-28

Family

ID=18158222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32375195A Expired - Fee Related JP4015712B2 (en) 1995-11-17 1995-11-17 Composite magnetic member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4015712B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2777912A1 (en) * 1998-04-23 1999-10-29 Imphy Sa Creating nonmagnetic zones in soft magnetic alloy parts for stator of electric micro engine of a watch
WO2020166115A1 (en) * 2019-02-13 2020-08-20 株式会社日立製作所 Soft magnetic material, method for producing same, and electric motor using soft magnetic material
CN115627425A (en) * 2022-09-20 2023-01-20 武汉两仪材料有限公司 Metal material and preparation and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2777912A1 (en) * 1998-04-23 1999-10-29 Imphy Sa Creating nonmagnetic zones in soft magnetic alloy parts for stator of electric micro engine of a watch
WO2020166115A1 (en) * 2019-02-13 2020-08-20 株式会社日立製作所 Soft magnetic material, method for producing same, and electric motor using soft magnetic material
JP2020132894A (en) * 2019-02-13 2020-08-31 株式会社日立製作所 Soft magnetic material, method for producing the same and electric motor using soft magnetic material
CN113396235A (en) * 2019-02-13 2021-09-14 株式会社日立制作所 Soft magnetic material, method for producing same, and motor using same
CN115627425A (en) * 2022-09-20 2023-01-20 武汉两仪材料有限公司 Metal material and preparation and application thereof

Also Published As

Publication number Publication date
JP4015712B2 (en) 2007-11-28

Similar Documents

Publication Publication Date Title
EP3034642B1 (en) Martensitic stainless steel having excellent wear resistance and corrosion resistance, and method for producing same
CN113015818B (en) High strength non-magnetic austenitic stainless steel and method for manufacturing same
JP2022507339A (en) Non-magnetic austenitic stainless steel and its manufacturing method
JP2004359973A (en) High strength steel sheet having excellent delayed fracture resistance, and its production method
JP2016169435A (en) Magnetic steel sheet having high strength and excellent in magnetic property
JPH09157802A (en) Composite magnetic member and production thereof
JP2007084882A (en) Low work-hardening type iron alloy
JP2003301245A (en) Precipitation hardening soft magnetic ferritic stainless steel
JP4015712B2 (en) Composite magnetic member and manufacturing method thereof
JPH0542493B2 (en)
KR102265212B1 (en) Non-magnetic austenitic stainless steel
JP2002332543A (en) High strength stainless steel for metal gasket having excellent fatigue performance and high temperature setting resistance and production method therefor
JP3580507B2 (en) Composite magnetic member, method of manufacturing the same, and material for composite magnetic member
JP2000036409A (en) Manufacture of actuator composite magnetic member and ferromagnetic part thereof, and forming method of non- magnetic part of actuator composite magnetic member
JP2002256376A (en) Steel sheet having low deterioration in toughness caused by strain aging
JPH07233452A (en) Ferritic stainless steel excellent in magnetic property
JP3676477B2 (en) Composite magnetic member and manufacturing method thereof
CN114981465B (en) Non-magnetic austenitic stainless steel
JP3521998B2 (en) Soft magnetic stainless steel for relay iron core
JP3396138B2 (en) High corrosion resistant stainless steel wire with magnetism and sieving filter
JP2002129294A (en) High saturation magnetic flux density composite magnetic member and motor using the same member
JPS63199821A (en) Manufacture of accelerated cooling-type high-tensile steel plate
CN111492081B (en) Non-magnetic austenitic stainless steel with improved strength and surface conductivity
JP3561922B2 (en) Manufacturing method of soft magnetic stainless steel
JPH06306552A (en) Silicon stainless steel sheet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees