JP2007084882A - Low work-hardening type iron alloy - Google Patents

Low work-hardening type iron alloy Download PDF

Info

Publication number
JP2007084882A
JP2007084882A JP2005275438A JP2005275438A JP2007084882A JP 2007084882 A JP2007084882 A JP 2007084882A JP 2005275438 A JP2005275438 A JP 2005275438A JP 2005275438 A JP2005275438 A JP 2005275438A JP 2007084882 A JP2007084882 A JP 2007084882A
Authority
JP
Japan
Prior art keywords
mass
equivalent
phase
iron alloy
work hardening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005275438A
Other languages
Japanese (ja)
Other versions
JP4654440B2 (en
Inventor
Kiyohito Ishida
清仁 石田
Ryosuke Kainuma
亮介 貝沼
Yuji Sudo
祐司 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2005275438A priority Critical patent/JP4654440B2/en
Publication of JP2007084882A publication Critical patent/JP2007084882A/en
Application granted granted Critical
Publication of JP4654440B2 publication Critical patent/JP4654440B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an iron alloy having high yield strength and tensile strength, extremely low work-hardening rate and excellent ductility, corrosion resistance and oxidation resistance. <P>SOLUTION: The low work-hardening iron alloy has a composition which is in a region A enclosed with lines connecting four points in a diagram (shown in a figure) of Cr equivalent represented by [Cr equivalent(%)=(Cr%+1.21Mo%+0.48Si%+2.48Al%)] (by mass, the same applies to the following) versus Ni equivalent represented by [Ni equivalent(%)=(Ni%+0.11Mn%-0.0086(Mn%)<SP>2</SP>+24.5C%)] and has the balance Fe with inevitable impurities. This alloy is a ferromagnetic material having ≥10 emu/g saturation magnetization and has <16 MPa/% work-hardening rate at the application of 10% strain in the tensile stress-strain curve. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高強度を有し、かつ加工硬化率(引張応力-歪み曲線の傾き)が極めて小さい鉄合金に関する。    The present invention relates to an iron alloy having high strength and a very low work hardening rate (slope of tensile stress-strain curve).

鉄をベースとした合金は、鉄が地球に多量に存在する、製造が容易である(製造法が確立されている)、比較的高い強度(鋼等)を有する、耐食性がある(ステンレス鋼、合金鋼)などの理由により、一般構造用材料、建築用材、鉄道車両や自動車のボディやフレーム材、レール材、船舶用材、耐食性材、石油等のパイプライン用材、橋梁材等の様々な分野に使用されている。   Alloys based on iron have a high amount of iron on the earth, are easy to manufacture (established manufacturing methods), have a relatively high strength (steel etc.), and are corrosion resistant (stainless steel, Alloy steel) for various fields such as general structural materials, building materials, railcars and automobile bodies and frame materials, rail materials, marine materials, corrosion resistant materials, pipeline materials for oil, bridge materials, etc. in use.

一般に、オーステナイト系ステンレス鋼などに代表されるオーステナイト相(γ相(fcc構造))の鉄合金は、冷間加工などによる加工誘起マルテンサイトの生成を利用し強化することが可能である。その反面、複雑な形状の製品への加工工程中に加工硬化が生じるため、中間焼鈍を挟んで軟化させながら加工を繰り返して成形する必要がある。
このようなことから、加工硬化性の少ない鉄合金について幾つかの文献が開示されている(例えば、特許文献1、特許文献2、特許文献3参照)。これらの特許文献によれば、オーステナイト安定化元素であるNi、Cu、Mnを利用し、加工誘起マルテンサイト変態を抑制することで低加工硬化性を得ている。
Generally, an austenitic phase (γ phase (fcc structure)) iron alloy typified by austenitic stainless steel or the like can be strengthened by utilizing the formation of work-induced martensite by cold working or the like. On the other hand, since work hardening occurs during a process of processing a product having a complicated shape, it is necessary to repeat the process while softening with intermediate annealing.
For this reason, several documents have been disclosed for iron alloys with low work hardening properties (see, for example, Patent Document 1, Patent Document 2, and Patent Document 3). According to these patent documents, low work hardenability is obtained by using the austenite stabilizing elements Ni, Cu, and Mn and suppressing the work-induced martensitic transformation.

しかし、これらの鉄合金は、通常、オーステナイト単相であり常磁性体となっているが、降伏強度(0.2%耐力)及び引張強度は、それぞれ300MPa及び700MPa程度以下と低く、加工硬化性も実用上十分に低いとは言えない。
また、低加工硬化性を有する既知鋼種として、SUS305などがあるが、上記の合金と同様に強度が低く、低加工硬化性も十分でない。
特開平2−141556 特開平5−117815 特開2005−154890
However, these iron alloys are usually austenite single phase and are paramagnetic, but their yield strength (0.2% proof stress) and tensile strength are as low as about 300 MPa and 700 MPa or less, respectively, and work hardenability. Is not low enough for practical use.
In addition, as a known steel type having low work hardenability, there is SUS305 or the like, but the strength is low as in the case of the above alloy, and the low work hardenability is not sufficient.
JP-A-2-141556 JP 5-117815 JP 2005-154890 A

本発明は、高い降伏強度と引張強度を有すると共に、加工硬化率が極めて低く、且つ延性、耐食性及び耐酸化性に富む鉄合金を提供することを課題とする。   An object of the present invention is to provide an iron alloy that has high yield strength and tensile strength, has an extremely low work hardening rate, and is rich in ductility, corrosion resistance, and oxidation resistance.

本発明者らは、鉄−マンガン−アルミニウム系材料を改善し、Hullらにより提案された(資料:Welding J.52(5)(1973)193s、Welding research supplement参照)Cr当量及びNi当量で示されるCr当量対Ni当量図上において、等加工硬化率線を調査した所、ある領域において強度、延性を低下させることなく上記の加工硬化率を大きく低減でき、それら合金は強磁性体であるとの知見を得た。
この知見に基づき、次の発明を提供する。
The present inventors have improved iron-manganese-aluminum materials and proposed by Hull et al. (Refer to Welding J. 52 (5) (1973) 193s, Welding research supplement). On the Cr equivalent vs. Ni equivalent diagram, when the work hardening rate line was investigated, the work hardening rate could be greatly reduced without reducing the strength and ductility in a certain region, and the alloys were ferromagnetic. I got the knowledge.
Based on this finding, the following invention is provided.

その1)として、Mn:10.0〜45.0質量%、Al:5.0〜15.0質量%、C:0.5〜2.0質量%、Si:0.01〜5.0質量%、Cr:0.01〜10.0質量%、Ni:0.001〜15質量%を含有し、Cr当量(質量%)=(Cr質量%+1.21Mo質量%+0.48Si質量%+2.48Al質量%)及びNi当量(質量%)=(Ni質量%+0.11Mn質量%−0.0086(Mn質量%)+24.5C質量%)で示されるCr当量対Ni当量図(図1)において、(Cr当量:22.0質量%、Ni当量:48質量%)、(Cr当量:10質量%、Ni当量:10質量%)、(Cr当量:38質量%、Ni当量:11質量%)、(Cr当量:45質量%、Ni当量:41質量%)の4点で囲まれる領域Aにあり、残部Fe及び不可避的不純物からなる低加工硬化鉄合金であって、10emu/g以上の飽和磁化を有する強磁性体であり、引張応力-歪み曲線において10%歪み付加時の加工硬化率が16MPa/%未満である低加工硬化鉄合金を提供する。 As 1), Mn: 10.0 to 45.0 mass%, Al: 5.0 to 15.0 mass%, C: 0.5 to 2.0 mass%, Si: 0.01 to 5.0 Containing mass%, Cr: 0.01-10.0 mass%, Ni: 0.001-15 mass%, Cr equivalent (mass%) = (Cr mass% + 1.21 Mo mass% + 0.48 Si mass% + 2 .48 Al mass%) and Ni equivalent (mass%) = (Ni mass% + 0.11 Mn mass% −0.0086 (Mn mass%) 2 +24.5 C mass%)) ) (Cr equivalent: 22.0 mass%, Ni equivalent: 48 mass%), (Cr equivalent: 10 mass%, Ni equivalent: 10 mass%), (Cr equivalent: 38 mass%, Ni equivalent: 11 mass%) %), (Cr equivalent: 45 mass%, Ni equivalent: 41 mass%) A low-work-hardening iron alloy consisting of the remainder Fe and inevitable impurities in A, a ferromagnetic material having a saturation magnetization of 10 emu / g or more, and work hardening when 10% strain is applied in the tensile stress-strain curve A low work-hardened iron alloy having a rate of less than 16 MPa /% is provided.

その2)として、Mn:15.0〜40.0質量%、Al:8.0〜15.0質量%、C:0.5〜2.0質量%、Si:0.01〜5.0質量%、Cr:5.0〜10.0質量%、Ni:0.01〜15質量%を含有し、Cr当量(質量%)=(Cr質量%+1.21Mo質量%+0.48Si質量%+2.48Al質量%)及びNi当量(質量%)=(Ni質量%+0.11Mn質量%−0.0086(Mn質量%)+24.5C質量%)で示されるCr当量対Ni当量図(図2)において、(Cr:25質量%、Ni:48質量%)、(Cr:24.2質量%、Ni:10質量%)、(Cr:38質量%、Ni:11質量%)、(Cr:45質量%、Ni:41質量%)の4点で囲まれる領域Bにあり、残部Fe及び不可避的不純物からなる低加工硬化鉄合金であって、かつ15emu/g以上の飽和磁化を有する強磁性体であり、引張応力-歪み曲線において10%歪み付加時の加工硬化率が10MPa/%未満である低加工硬化鉄合金を提供する。 As 2), Mn: 15.0 to 40.0 mass%, Al: 8.0 to 15.0 mass%, C: 0.5 to 2.0 mass%, Si: 0.01 to 5.0 Containing mass%, Cr: 5.0 to 10.0 mass%, Ni: 0.01 to 15 mass%, Cr equivalent (mass%) = (Cr mass% + 1.21 Mo mass% + 0.48 Si mass% + 2 .48 Al mass%) and Ni equivalent (mass%) = (Ni mass% + 0.11 Mn mass% −0.0086 (Mn mass%) 2 +24.5 C mass%)) ) (Cr: 25 mass%, Ni: 48 mass%), (Cr: 24.2 mass%, Ni: 10 mass%), (Cr: 38 mass%, Ni: 11 mass%), (Cr: 45% by mass, Ni: 41% by mass) in the region B surrounded by four points, the remaining Fe and inevitable impurities A low work-hardening iron alloy comprising a ferromagnetic material having a saturation magnetization of 15 emu / g or more and having a work hardening rate of less than 10 MPa /% when 10% strain is applied in a tensile stress-strain curve. Provide work hardened iron alloys.

その3として、1μm以下のサイズを有するペロブスカイト相(κ相)をマトリクス中に含有した強磁性体である1)又は2)に記載の低加工硬化鉄合金を提供する。
その4)として、B:0.001〜1.5質量%、N:0.001〜1.5質量%、各添加量が0.01〜5.0質量%であるBe,Mg,Ti,V,Co,Cu,Nb,Mo,Ta、Wから選択した元素の1種又は2種以上をさらに含有する1)〜3)のいずれかに記載の低加工硬化鉄合金を提供する。
As the third, there is provided a low work hardening iron alloy according to 1) or 2), which is a ferromagnetic material containing a perovskite phase (κ phase) having a size of 1 μm or less in a matrix.
As 4), B: 0.001 to 1.5% by mass, N: 0.001 to 1.5% by mass, and Be, Mg, Ti, each added amount of 0.01 to 5.0% by mass, A low work hardening iron alloy according to any one of 1) to 3), which further contains one or more elements selected from V, Co, Cu, Nb, Mo, Ta, and W.

本発明の鉄合金は、強磁性化することにより、引張応力-歪み曲線において10%歪み付加時の加工硬化率を16MPa/%未満に低下させることができ、ヤング率100GPa以上、0.2%耐力500MPa以上、引張強度800MPa以上であり、低加工硬化性を有し、強度、延性に優れた材料が得られるという効果を有する。   By making the iron alloy of the present invention ferromagnetization, the work hardening rate when a 10% strain is applied in the tensile stress-strain curve can be reduced to less than 16 MPa /%, and the Young's modulus is 100 GPa or more and 0.2%. It has a yield strength of 500 MPa or more and a tensile strength of 800 MPa or more, and has an effect that a material having low work curability and excellent strength and ductility can be obtained.

本発明の低加工硬化鉄合金は、Mn:10.0〜45.0質量%、Al:5.0〜15.0質量%、C:0.5〜2.0質量%、Si:0.01〜5.0質量%、Cr:0.01〜10.0質量%、Ni:0.01〜15質量%を含有し、Cr当量(質量%)=(Cr質量%+1.21Mo質量%+0.48Si質量%+2.48Al質量%)及びNi当量(質量%)=(Ni質量%+0.11Mn質量%−0.0086(Mn質量%) +24.5C質量%)で示されるCr当量対Ni当量図(図1)において、(Cr当量:22.0質量%、Ni当量:48質量%)、(Cr当量:10質量%、Ni当量:10質量%)、(Cr当量:38質量%、Ni当量:11質量%)、(Cr当量:45質量%、Ni当量:41質量%)の4点で囲まれる領域Aにあり、残部Fe及び不可避的不純物からなる低加工硬化鉄合金であって、10emu/g以上の飽和磁化を有する強磁性体となり、引張応力-歪み曲線において10%歪み付加時の加工硬化率を16MPa/%未満に抑えることができる。
Cr当量については、当然ながら前記(Cr質量%+1.21Mo質量%+0.48Si質量%+2.48Al質量%)となる範囲で、CrをMo、Si、Alに代替できる。同様に、Ni当量についても、(Ni質量%+0.11Mn質量%−0.0086(Mn質量%)+24.5C質量%)となる範囲で、NiをMn、Cに代替できる。
The low work hardening iron alloy of the present invention has Mn: 10.0 to 45.0 mass%, Al: 5.0 to 15.0 mass%, C: 0.5 to 2.0 mass%, Si: 0.00. 01-5.0 mass%, Cr: 0.01-10.0 mass%, Ni: 0.01-15 mass% are contained, Cr equivalent (mass%) = (Cr mass% + 1.21 Mo mass% + 0 .48Si mass% + 2.48Al mass%) and Ni equivalent (mass%) = (Ni mass% + 0.11 Mn mass% −0.0086 (Mn mass%) 2 +24.5 C mass%) In the equivalent diagram (FIG. 1), (Cr equivalent: 22.0 mass%, Ni equivalent: 48 mass%), (Cr equivalent: 10 mass%, Ni equivalent: 10 mass%), (Cr equivalent: 38 mass%, (Ni equivalent: 11% by mass), (Cr equivalent: 45% by mass, Ni equivalent: 41% by mass) Is a low work-hardened iron alloy consisting of the remaining Fe and inevitable impurities, and becomes a ferromagnetic material having a saturation magnetization of 10 emu / g or more, and when a 10% strain is applied in the tensile stress-strain curve. The work hardening rate can be suppressed to less than 16 MPa /%.
As for the Cr equivalent, naturally, Cr can be replaced with Mo, Si, and Al within the range of (Cr mass% + 1.21 Mo mass% + 0.48 Si mass% + 2.48 Al mass%). Similarly, regarding Ni equivalent, Ni can be replaced with Mn and C within the range of (Ni mass% + 0.11 Mn mass% −0.0086 (Mn mass%) 2 +24.5 C mass%).

特に、Mn:15.0〜40.0質量%、Al:8.0〜15.0質量%、C:0.5〜2.0質量%、Si:0.01〜5.0質量%、Cr:5.0〜10.0質量%、Ni:0.01〜15質量%を含有し、Cr当量(質量%)=(Cr質量%+1.21Mo質量%+0.48Si質量%+2.48Al質量%)及びNi当量(質量%)=(Ni質量%+0.11Mn質量%−0.0086(Mn質量%)+24.5C質量%)で示されるCr当量対Ni当量図(図2)において、(Cr:25質量%、Ni:48質量%)、(Cr:24.2質量%、Ni:10質量%)、(Cr:38質量%、Ni:11質量%)、(Cr:45質量%、Ni:41質量%)の4点で囲まれる領域Bで、15emu/g以上の飽和磁化を有する強磁性体となり、引張応力-歪み曲線において10%歪み付加時の加工硬化率を10MPa/%未満に抑えることができる。 In particular, Mn: 15.0 to 40.0 mass%, Al: 8.0 to 15.0 mass%, C: 0.5 to 2.0 mass%, Si: 0.01 to 5.0 mass%, Cr: 5.0 to 10.0 mass%, Ni: 0.01 to 15 mass%, Cr equivalent (mass%) = (Cr mass% + 1.21 Mo mass% + 0.48 Si mass% + 2.48 Al mass) %) And Ni equivalent (mass%) = (Ni mass% + 0.11 Mn mass% −0.0086 (Mn mass%) 2 +24.5 C mass%)) (Cr: 25 mass%, Ni: 48 mass%), (Cr: 24.2 mass%, Ni: 10 mass%), (Cr: 38 mass%, Ni: 11 mass%), (Cr: 45 mass%) , Ni: 41% by mass) in a region B surrounded by four points, a strong magnetization having a saturation magnetization of 15 emu / g or more. It becomes sex body, tensile stress - work hardening rate during 10% strain added in the strain curve can be suppressed to less than 10 MPa /%.

上記組成の鉄合金は、1μm以下のサイズを有するペロブスカイト相(κ相)をマトリクス中に含有した強磁性体とすることができ、高い降伏強度と引張強度を有する低加工硬化鉄合金となる。
Mn:10.0〜45.0質量%とする理由は、10.0質量%未満ではfcc構造を有するγ相が得られず、45.0質量%を超えると十分な強度が得られないからである。特にMn:15.0〜40.0質量%が望ましい。これにより、さらに引張強度の向上が可能である。
The iron alloy having the above composition can be a ferromagnetic material containing a perovskite phase (κ phase) having a size of 1 μm or less in the matrix, and becomes a low work hardening iron alloy having high yield strength and tensile strength.
The reason why Mn is 10.0 to 45.0% by mass is that if the amount is less than 10.0% by mass, a γ phase having an fcc structure cannot be obtained, and if it exceeds 45.0% by mass, sufficient strength cannot be obtained. It is. In particular, Mn: 15.0 to 40.0% by mass is desirable. Thereby, the tensile strength can be further improved.

Al:5.0〜15.0質量%とする理由は、5.0質量%未満では強磁性化することができないため低い加工硬化率を得られず、15.0質量%を超えると多量のα相(bcc構造)及び粗大なκ相が析出し、急激に脆化してしまうためである。特に、Al:8.0〜15.0質量%が望ましい。これにより、さらに強度を向上させることができる。
C:0.5〜2.0質量%とする理由は、0.5質量%未満ではα相が多量に析出して脆くなってしまい、2.0質量%を超えるとMC(M:Fe、Mn、Cr等)等の炭化物が析出してしまうためである。
The reason for Al: 5.0-15.0% by mass is that if it is less than 5.0% by mass, it cannot be ferromagnetized, so a low work hardening rate cannot be obtained, and if it exceeds 15.0% by mass, a large amount This is because an α phase (bcc structure) and a coarse κ phase are precipitated and rapidly embrittled. In particular, Al: 8.0-15.0 mass% is desirable. Thereby, intensity | strength can be improved further.
The reason for C: 0.5 to 2.0% by mass is that if it is less than 0.5% by mass, a large amount of α phase is precipitated and becomes brittle, and if it exceeds 2.0% by mass, M 3 C (M: This is because carbides such as Fe, Mn, Cr, etc. are precipitated.

Si:0.01〜5.0質量%とする理由は、0.01質量%未満では高い降伏強度が得られず、5.0質量%以上ではα相が多量に析出し脆くなってしまうためである。
Cr:0.01〜10.0質量%とする理由は、0.01質量%未満では耐食性及び耐酸化性に優れた合金が得られず、10.0質量%を超えるとCr炭化物やσ相などの金属間化合物が出現してしまう。特に、Cr:5.0〜10.0質量%が望ましい。これにより、耐食性をさらに向上させることができる。
Ni:0.001〜15.0質量%とする理由は、0.001質量%未満では、高延性を得ることができず、15質量%を超えると、低加工硬化率が得られないためである。Ni添加によって延性の効果を持たせるためには、Ni添加の下限値を、特に0.01重量%とすることが望ましい。
The reason for Si: 0.01 to 5.0% by mass is that high yield strength cannot be obtained if it is less than 0.01% by mass, and a large amount of α phase precipitates and becomes brittle if it is 5.0% by mass or more. It is.
The reason why Cr is 0.01 to 10.0% by mass is that if it is less than 0.01% by mass, an alloy excellent in corrosion resistance and oxidation resistance cannot be obtained, and if it exceeds 10.0% by mass, Cr carbide and σ phase are obtained. Intermetallic compounds such as appear. In particular, Cr: 5.0-10.0 mass% is desirable. Thereby, corrosion resistance can further be improved.
The reason why Ni is 0.001 to 15.0% by mass is that if it is less than 0.001% by mass, high ductility cannot be obtained, and if it exceeds 15% by mass, a low work hardening rate cannot be obtained. is there. In order to have a ductility effect by adding Ni, it is desirable that the lower limit value of Ni addition is particularly 0.01% by weight.

図1から明らかなように、Cr当量対Ni当量図において、(Cr当量:22.0質量%、Ni当量:48質量%)、(Cr当量:10質量%、Ni当量:10質量%)、(Cr当量:38質量%、Ni当量:11質量%)、(Cr当量:45質量%、Ni当量:41質量%)の4点で囲まれる領域Aとする理由は、加工硬化率を16MPa/%未満に抑えるためである。
さらに、図2から明らかなように、Cr当量対Ni当量図において、(Cr:25質量%、Ni:48質量%)、(Cr:24.2質量%、Ni:10質量%)、(Cr:38質量%、Ni:11質量%)、(Cr:45質量%、Ni:41質量%)の4点で囲まれる領域Bとする理由は、加工硬化率を10MPa/%未満に抑えるためである。これによって、さらに加工硬化率を低減することができる。
As is clear from FIG. 1, in the Cr equivalent to Ni equivalent diagram, (Cr equivalent: 22.0 mass%, Ni equivalent: 48 mass%), (Cr equivalent: 10 mass%, Ni equivalent: 10 mass%), The reason why the region A is surrounded by four points (Cr equivalent: 38% by mass, Ni equivalent: 11% by mass) and (Cr equivalent: 45% by mass, Ni equivalent: 41% by mass) is that the work hardening rate is 16 MPa / This is to suppress the content to less than%.
Further, as is apparent from FIG. 2, in the Cr equivalent to Ni equivalent diagram, (Cr: 25 mass%, Ni: 48 mass%), (Cr: 24.2 mass%, Ni: 10 mass%), (Cr : 38% by mass, Ni: 11% by mass), and (Cr: 45% by mass, Ni: 41% by mass), the reason why the region B is surrounded by four points is to suppress the work hardening rate to less than 10 MPa /%. is there. Thereby, the work hardening rate can be further reduced.

本発明の低比重鉄合金は、さらにB:0.001〜1.5質量%、N:0.001〜1.5質量%、それぞれ0.01〜5.0質量%のBe,Mg,Ti,V,Co,Cu,Nb,Mo,Ta、Wから選択した元素の1種又は2種以上を添加することができる。
B:0.001〜1.5質量%とする理由は0.001質量%未満では鋳造組織及び鍛造組織においても微細な結晶粒組織が得られず、また1.5質量%を超えると硼素化合物等の析出により脆化してしまうからである。
N:0.001〜1.5質量%とする理由は、0.01質量%未満では十分な比強度を得ることができず、1.5質量%を超えると窒化物等の析出により脆化するからである。上記の組成範囲において微細な結晶粒組織が得られ、優れた機械的特性を持つ合金が得られる。
The low specific gravity iron alloy of the present invention further comprises B: 0.001 to 1.5% by mass, N: 0.001 to 1.5% by mass, and 0.01 to 5.0% by mass of Be, Mg, Ti, respectively. , V, Co, Cu, Nb, Mo, Ta, or W can be added with one or more elements selected from elements.
B: 0.001 to 1.5% by mass The reason why the content is less than 0.001% by mass is that a fine grain structure cannot be obtained even in the cast structure and the forged structure. This is because it becomes brittle by precipitation of the like.
The reason for N: 0.001 to 1.5% by mass is that sufficient specific strength cannot be obtained if it is less than 0.01% by mass, and if it exceeds 1.5% by mass, embrittlement occurs due to precipitation of nitride or the like. Because it does. In the above composition range, a fine crystal grain structure is obtained, and an alloy having excellent mechanical properties is obtained.

また、Be又はMg添加は高強度化に有効であり、Ti添加は粒界腐食の防止に有効であり、V添加は耐摩耗性改善に有効であり、Co添加はγ相の安定化に有効であり、Cu又はMo添加は耐食性改善に有効であり、Mo、Nb、Ta添加は耐粒界腐食性改善に有効であり、W添加は析出硬化に有効であるという理由による。
これらを単独添加又は複合添加することができる。また、これらを0.01〜5.0質量%の範囲とするのは、0.01質量%未満であると添加の効果がなく、5.0質量%を超えると脆化してしまう問題があるので、上限を5.0質量%とする。これらは、さらに本発明の鉄合金の特性を向上させるために、副成分として添加するものであり、必須成分とするものではない。
Addition of Be or Mg is effective in increasing strength, addition of Ti is effective in preventing intergranular corrosion, addition of V is effective in improving wear resistance, and addition of Co is effective in stabilizing the γ phase. This is because the addition of Cu or Mo is effective for improving the corrosion resistance, the addition of Mo, Nb, and Ta is effective for improving the intergranular corrosion resistance, and the addition of W is effective for precipitation hardening.
These can be added alone or in combination. Moreover, there exists a problem which does not have the effect of addition if it is less than 0.01 mass%, and becomes embrittled when it exceeds 5.0 mass% to make these into the range of 0.01-5.0 mass%. Therefore, the upper limit is 5.0% by mass. These are added as subcomponents in order to further improve the characteristics of the iron alloy of the present invention, and are not essential components.

以上に示す通り、本発明の低加工硬化率鉄合金は、10emu/g以上の飽和磁化を有する強磁性体であって、引張応力-歪み曲線において10%歪み付加時の加工硬化率が16MPa/%未満であり、さらにはNi当量及びCr当量を制御することにより、15emu/g以上の飽和磁化を有する強磁性体であって、引張応力-歪み曲線において10%歪み付加時の加工硬化率が10MPa/%未満であるという低加工硬化率の合金となる。
特に、本発明の低加工硬化鉄合金では、微細なκ相が析出した強磁性体とすることにより、加工硬化率が10MPa/%未満であり、かつ降伏強度が700MPa以上、引張強度が900MPa以上とすることができる。
As described above, the low work hardening rate iron alloy of the present invention is a ferromagnetic material having a saturation magnetization of 10 emu / g or more, and the work hardening rate when applying 10% strain in the tensile stress-strain curve is 16 MPa / Is a ferromagnetic material having a saturation magnetization of 15 emu / g or more by controlling the Ni equivalent and Cr equivalent, and the work hardening rate when a 10% strain is applied in the tensile stress-strain curve. The alloy has a low work hardening rate of less than 10 MPa /%.
In particular, in the low work-hardening iron alloy of the present invention, a work hardening rate is less than 10 MPa /%, a yield strength is 700 MPa or more, and a tensile strength is 900 MPa or more by using a ferromagnetic material in which a fine κ phase is precipitated. It can be.

本発明合金の製造方法としては、まずMn:10.0〜45.0質量%、Al:5.0〜15.0質量%、C:0.5〜2.0質量%、Si:0.01〜5.0質量%、Cr:0.01〜10.0質量%、Ni:0.01〜15質量%、残部Feからなる組成範囲内で成分調整する。
また、必要に応じて、B、N(それぞれ0.001〜1.5質量%)及びBe、Mg、Ti、V、Co、Cu、Nb、Mo、Ta及びW(それぞれ0.01〜5.0質量%)からなる群から選択した1種又は2種以上の元素を所定量添加して、適宜原料成分を調整する。
B、N及びBe、Mg、Ti、V、Co、Cu、Nb、Mo、Ta及びWを添加する場合には、純元素単体、フェロボロン、フェロタンタル、フェロニオブなどの合金を適宜調整し所定量を添加する、また窒素雰囲気での溶解などにより含有させる。
As a manufacturing method of this invention alloy, first, Mn: 10.0-45.0 mass%, Al: 5.0-15.0 mass%, C: 0.5-2.0 mass%, Si: 0.00. Components are adjusted within a composition range of 01 to 5.0 mass%, Cr: 0.01 to 10.0 mass%, Ni: 0.01 to 15 mass%, and the balance Fe.
Moreover, as needed, B, N (0.001-1.5 mass% each) and Be, Mg, Ti, V, Co, Cu, Nb, Mo, Ta, and W (each 0.01-5. A predetermined amount of one or two or more elements selected from the group consisting of 0% by mass) is added to appropriately adjust the raw material components.
When adding B, N and Be, Mg, Ti, V, Co, Cu, Nb, Mo, Ta and W, an alloy such as pure element simple substance, ferroboron, ferrotantalum, ferroniobium, etc. is appropriately adjusted to a predetermined amount. It is added or dissolved by dissolution in a nitrogen atmosphere.

次に、これをアーク溶解炉又は高周波溶解炉を用いて溶解し、これを鋳造インゴットとし、さらに800°C〜1300°Cの温度にて、熱間鍛造あるいは熱間圧延及びその後の冷間圧延又は伸線等の加工工程を経て製品とする。また、必要に応じて、700°C〜1300°Cの温度にて熱処理後、焼き入れ、炉冷又は空冷して製造する。さらに、必要に応じて、前記熱処理後に200°C〜1000°Cの温度にて時効あるいは加工を施すことにより強度を調整することができる。
このようにして得られた材料は、合金の化学組成及び加工条件の選択により、γ単相、γ+α(bcc構造)2相、γ+κ2相、γ+α+κ3相組織が得られる。
本願発明において適用できる組織はγ+α(bcc構造)2相組織と微細なκ相を含む組織を有する鉄合金であり、特に微細なκ相を含む組織の合金において、極めて高い高耐力・高引張強度と、極めて低い加工硬化性を備えた本発明の鉄合金が得られる。
このようなκ相の微細組織を得るためには、熱処理後の冷却速度を制御することが重要であり、合金組成により水中焼入れ、オイル中焼入れ、空冷、炉冷などの製造工程を採用する。
Next, this is melted by using an arc melting furnace or a high-frequency melting furnace, which is used as a casting ingot, and further hot forging or hot rolling and subsequent cold rolling at a temperature of 800 ° C. to 1300 ° C. Or it is made into a product through processing steps such as wire drawing. Moreover, as needed, it heat-processes at the temperature of 700 degreeC-1300 degreeC, and quenches, furnace cools, or air cools and manufactures. Furthermore, if necessary, the strength can be adjusted by performing aging or processing at a temperature of 200 ° C. to 1000 ° C. after the heat treatment.
The material thus obtained can have a γ single phase, a γ + α (bcc structure) 2 phase, a γ + κ2 phase, and a γ + α + κ3 phase structure by selecting the chemical composition and processing conditions of the alloy.
The structure applicable in the present invention is an iron alloy having a structure including a γ + α (bcc structure) two-phase structure and a fine κ phase, and particularly in an alloy having a structure containing a fine κ phase, extremely high strength and tensile strength. And the iron alloy of this invention provided with very low work-hardening property is obtained.
In order to obtain such a microstructure of κ phase, it is important to control the cooling rate after the heat treatment, and manufacturing processes such as quenching in water, quenching in oil, air cooling, and furnace cooling are employed depending on the alloy composition.

特に、微細なκ相を析出させるためには、溶解により得られたインゴットを800°C〜1300°Cの温度にて熱間加工した後、冷却過程にて微細なκ相を析出させることができる。具体的には、例えば鋳造インゴット若しくは該鋳造インゴットを熱間圧延した後、又は必要に応じてこれをさらに冷間加工した後、700°C〜1300°Cの温度で、0.1分以上の熱処理を行い、これを水中焼入れ、オイル中焼入れ、空冷、炉冷等の冷却により微細なκ相を析出させる。この場合の冷却速度は、10〜1000°C/秒とするのが望ましい。
また、鋳造インゴット若しくは該鋳造インゴットを熱間圧延した後、又は必要に応じてこれをさらに冷間加工した後、熱処理により一旦γ単相とし、その後200°C〜1000°Cの温度範囲で1分以上時効することによっても、微細なκ相を析出させることができる。本発明においては、微細なκ相の析出が達成できれば、特にその製造工程に制限はなく、必要な加工、熱処理及び冷却を行うことができる。
In particular, in order to precipitate a fine κ phase, an ingot obtained by melting is hot-worked at a temperature of 800 ° C. to 1300 ° C., and then the fine κ phase is precipitated in the cooling process. it can. Specifically, for example, after casting a cast ingot or the cast ingot, or after further cold working as necessary, at a temperature of 700 ° C. to 1300 ° C. for 0.1 minutes or more Heat treatment is performed, and fine κ phase is precipitated by cooling such as quenching in water, quenching in oil, air cooling, furnace cooling and the like. In this case, the cooling rate is preferably 10 to 1000 ° C./second.
Moreover, after hot rolling the cast ingot or the cast ingot or further cold-working it as necessary, it is once converted into a γ single phase by heat treatment, and then 1 in a temperature range of 200 ° C to 1000 ° C. A fine κ phase can also be precipitated by aging for more than a minute. In the present invention, if fine κ phase precipitation can be achieved, the production process is not particularly limited, and necessary processing, heat treatment and cooling can be performed.

次に実施例及び比較例により本発明をさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。すなわち、本発明の技術思想の範囲における他の例、態様あるいは変形等を当然含むものである。
(実施例1−23)
本発明の鉄合金の範囲で、表1に示す実施例1−23の合金組成について高周波溶解炉を用いて溶解し、これを鋳造インゴットとした。次に1100°Cの温度にて、熱間圧延、900〜1100°Cの温度にて10分の熱処理、及び水中焼き入れ又は空冷の製造工程を経て合金試料を作製した。
EXAMPLES Next, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited at all by these examples. That is, other examples, modes, modifications, and the like within the scope of the technical idea of the present invention are naturally included.
(Example 1-23)
In the range of the iron alloy of the present invention, the alloy composition of Example 1-23 shown in Table 1 was melted using a high frequency melting furnace, and this was made into a casting ingot. Next, an alloy sample was produced through a manufacturing process of hot rolling at a temperature of 1100 ° C., heat treatment for 10 minutes at a temperature of 900 to 1100 ° C., and quenching in water or air cooling.

Figure 2007084882
Figure 2007084882

表2に、実施例1〜23の鉄合金のヤング率(GPa)、0.2%耐力(MPa)、加工硬化率(MPa/%)、引張強度(MPa)、引張伸び(%)、飽和磁化(emu/g)、構成相を示す。
実施例1−23に示すいずれの合金も、飽和磁化が10emu/g以上である強磁性体であり、10%引張歪み付加時の加工硬化率は16(MPa/%)以下であった。
実施例1、2、5及び9はγ+α相を有し、強磁性体である。このγ+α相を含む組織の代表例(実施例2)を図3に示す。図3の、γ相に点在する粒状又は紐状の組織がα相で、この紐状の長さが200μm程度の比較的粗な結晶でも脆くなることがなく、α相を含む合金は加工硬化率が低下し良好な延性を示す。
他の実施例、即ち実施例3、4、6、7及び10−23は、微細なκ相を含むもの、すなわちγ相+α相+κ相又はγ相+κ相の組織を有し、同様に強磁性体である。いずれも加工硬化率が低下し、延性を示す。
本鉄合金の加工硬化率は、Al濃度の増加に伴い低くなる傾向にあり、特に、Cr当量対Ni当量図(図2)中の領域B内に存在する合金では、10(MPa/%)未満と非常に小さい。
Table 2 shows the Young's modulus (GPa), 0.2% yield strength (MPa), work hardening rate (MPa /%), tensile strength (MPa), tensile elongation (%), and saturation of the iron alloys of Examples 1 to 23. Magnetization (emu / g) and constituent phases are shown.
Each alloy shown in Example 1-23 was a ferromagnetic material with a saturation magnetization of 10 emu / g or more, and the work hardening rate when 10% tensile strain was applied was 16 (MPa /%) or less.
Examples 1, 2, 5 and 9 have a γ + α phase and are ferromagnetic. A representative example (Example 2) of a tissue containing this γ + α phase is shown in FIG. In FIG. 3, the granular or string-like structure scattered in the γ phase is the α phase, and even a relatively coarse crystal having a string length of about 200 μm does not become brittle. The curing rate is reduced and good ductility is exhibited.
The other examples, ie, Examples 3, 4, 6, 7, and 10-23, have fine κ phase, ie, γ phase + α phase + κ phase or γ phase + κ phase structure, and are similarly strong. It is a magnetic material. In both cases, the work hardening rate is lowered and ductility is exhibited.
The work hardening rate of the present iron alloy tends to decrease as the Al concentration increases. In particular, in the alloy existing in the region B in the Cr equivalent vs. Ni equivalent diagram (FIG. 2), 10 (MPa /%) Less than and very small.

Figure 2007084882
Figure 2007084882

図4に、実施例3、9〜15の引張試験により得られた応力-歪み曲線の一例を示す。特に実施例11、13では、殆ど加工硬化が生じていないことが分る。
図5に、Cr当量対Ni当量図上に実施例1〜23の合金で得られた10%引張歪み付加時の加工硬化率及び後述する比較例1〜16の合金における10%引張歪み付加時の加工硬化率を表記した。
領域A内にある実施例合金は、いずれも加工硬化率が16(MPa/%)未満となっており、特に領域B内にある実施例合金はいずれも加工硬化率が10(MPa/%)未満であることが分る。
本発明の鉄合金は、含有成分の添加量を調整することにより、ヤング率、降伏強度、引張強さ、伸び、飽和磁化を多様に変化させることができることが分かる。
In FIG. 4, an example of the stress-strain curve obtained by the tension test of Example 3, 9-15 is shown. In particular, in Examples 11 and 13, it can be seen that almost no work hardening has occurred.
FIG. 5 shows the work hardening rate at the time of 10% tensile strain addition obtained in the alloys of Examples 1 to 23 on the Cr equivalent vs. Ni equivalent diagram and at the time of 10% tensile strain addition in the alloys of Comparative Examples 1 to 16 described later. The work hardening rate was expressed.
All of the example alloys in the region A have a work hardening rate of less than 16 (MPa /%). In particular, all of the example alloys in the region B have a work hardening rate of 10 (MPa /%). It turns out that it is less than.
It can be seen that the iron alloy of the present invention can change Young's modulus, yield strength, tensile strength, elongation, and saturation magnetization in various ways by adjusting the amount of added components.

図6に、実施例13にて得られた微細なκ相が析出したγ+κ2相組織を示す。この組織は、L1スポットより得られた透過電子顕微鏡(TEM)暗視野像である。マトリックスに対しサイコロ状の析出物が白く輝いて見えるが、これがL1構造を有するκ相であり、マトリックスに対し、一定の結晶方位を有していることが分る。
図6に示すように、κ析出相のサイズは100nm以下と非常に微細である。特に、このような組織を有する本鉄合金は、強磁性体であり、かつ高耐力・高強度・高延性を有し、極めて低い加工硬化率を有する。図6に示すような微細なκ相は、特に熱処理後の冷却過程(水焼入れ、空冷、炉冷などによる)において生成する。
FIG. 6 shows the γ + κ2 phase structure in which the fine κ phase obtained in Example 13 is precipitated. This organization, L1 2 obtained from spots transmission electron microscope (TEM) is a dark-field image. It shines white and dice-like precipitate to the matrix, which is a κ-phase having an L1 2 structure, the matrix with respect, it can be seen that has a constant crystal orientation.
As shown in FIG. 6, the size of the kappa precipitate phase is very fine, 100 nm or less. In particular, the present iron alloy having such a structure is a ferromagnetic material, has high proof stress, high strength, and high ductility, and has an extremely low work hardening rate. The fine κ phase as shown in FIG. 6 is generated particularly in the cooling process after heat treatment (by water quenching, air cooling, furnace cooling, etc.).

(比較例1−16)
比較例1−16は、本発明から逸脱する鉄合金であり、表3に示す比較例1−16の合金成分を、実施例と同様の製造工程を経て鉄合金を作製した。
比較例1−16については、表4に実施例と同様に、比較例合金のヤング率(GPa)、0.2%耐力(MPa)、加工硬化率(MPa/%)、引張強度(MPa)、引張伸び(%)、飽和磁化(emu/g)及び構成相を示す。
(Comparative Example 1-16)
Comparative Example 1-16 is an iron alloy that departs from the present invention, and an iron alloy was manufactured by using the alloy components of Comparative Example 1-16 shown in Table 3 through the same manufacturing steps as in the examples.
As for Comparative Example 1-16, in Table 4, as in Examples, the Young's modulus (GPa), 0.2% yield strength (MPa), work hardening rate (MPa /%), and tensile strength (MPa) of the comparative example alloy , Tensile elongation (%), saturation magnetization (emu / g) and constituent phases.

Figure 2007084882
Figure 2007084882

Figure 2007084882
Figure 2007084882

比較例5、6及び16は、オーステナイト(γ)単相合金であり、常磁性を示し、それらの加工硬化率は、16(MPa/%)以上と大きい。
比較例3、4は、α相が存在するため強磁性体であるが、本発明合金の組成範囲から逸脱しており、その加工硬化率は、16(MPa/%)以上と大きい。
比較例1、2及び7〜15の鉄合金は、α相と粗大なκ相の存在により、強磁性を示すが、本発明合金の組成範囲から逸脱している。また、1μmサイズより大きい粗大なκ相の析出により、延性に乏しく、引張伸びはいずれも10%以下であった。
Comparative Examples 5, 6 and 16 are austenite (γ) single-phase alloys, exhibit paramagnetism, and have a large work hardening rate of 16 (MPa /%) or more.
Comparative Examples 3 and 4 are ferromagnets due to the presence of the α phase, but deviate from the composition range of the alloy of the present invention, and the work hardening rate is as large as 16 (MPa /%) or more.
The iron alloys of Comparative Examples 1, 2, and 7 to 15 exhibit ferromagnetism due to the presence of the α phase and the coarse κ phase, but deviate from the composition range of the alloy of the present invention. Moreover, due to the precipitation of coarse κ phase larger than 1 μm size, the ductility was poor and the tensile elongation was 10% or less in all cases.

図7に、比較例3〜6の引張試験により得られた応力-歪み曲線の一例を示す。いずれの比較例においても、急激な加工硬化が生じているのが分る。
図5に示すように、本発明のCr当量対Ni当量図中の領域A及び領域Bの範疇外にある比較例は、いずれも10%引張歪み付加時の加工硬化率が16(MPa/%)以上と大きい。また、引張伸びが10%以下と延性に乏しい。
一方、比較例8は、Cr当量及びNi当量が本発明の成分範囲にあるが、Crを一切含有しておらず、粗大なκ相が析出しているために、引張伸びが0.25%と著しく悪かった。これは、比較例8材は、Crを一切含有していないために、κ相が熱処理温度(1100°C)にて安定相として存在し、κ相のサイズが容易に粗大化した為である。
図8に、比較例8にて得られた粗大なκ相を含有するγ+κ2相組織を示す。この組織は、光学顕微鏡により観察されたものである。マトリックスはγ相であり、この中に粗大なκ相が析出しているのが分る。このように粗大なκ相は、1100°Cの熱処理温度にて既に存在するため、そのサイズは大きく、材料の急激な低下を招く。この粗大κ相を有する鉄合金は、非常に脆く、10%以上の引張伸びを達成することができない。
In FIG. 7, an example of the stress-strain curve obtained by the tension test of Comparative Examples 3-6 is shown. In any of the comparative examples, it can be seen that rapid work hardening has occurred.
As shown in FIG. 5, the comparative examples outside the category of region A and region B in the Cr equivalent vs. Ni equivalent diagram of the present invention both have a work hardening rate of 16 (MPa /%) when 10% tensile strain is applied. ) Greater than that. In addition, the tensile elongation is 10% or less and the ductility is poor.
On the other hand, Comparative Example 8 has Cr equivalent and Ni equivalent in the component range of the present invention, but does not contain Cr at all, and a coarse κ phase is precipitated, so that the tensile elongation is 0.25%. It was extremely bad. This is because the material of Comparative Example 8 does not contain any Cr, so the κ phase exists as a stable phase at the heat treatment temperature (1100 ° C.), and the size of the κ phase is easily coarsened. .
FIG. 8 shows the γ + κ2 phase structure containing the coarse κ phase obtained in Comparative Example 8. This structure was observed with an optical microscope. The matrix is a γ phase, and it can be seen that a coarse κ phase is precipitated therein. Since such a coarse κ phase already exists at a heat treatment temperature of 1100 ° C., its size is large, which causes a rapid decrease in material. The iron alloy having this coarse κ phase is very brittle and cannot achieve a tensile elongation of 10% or more.

本発明の鉄合金は、加工硬化率を16(MPa/%)未満に低下させることができるので、成形性に優れ、低コストで各種部材を作製することができる。また、0.2%耐力500MPa以上、引張強度800MPa以上の高強度を有するので、構造用材料、免振用材、鉄道車両や自動車のボディやフレーム材、レール材、船舶用材、耐食性材、石油等のパイプライン用材、橋梁材、ゴルフ用品等の様々な分野に使用することができる。   Since the iron alloy of the present invention can reduce the work hardening rate to less than 16 (MPa /%), it is excellent in formability and can produce various members at low cost. In addition, since it has a high strength of 0.2% proof stress 500 MPa or more and tensile strength 800 MPa or more, it is a structural material, a vibration isolating material, a railway vehicle or automobile body or frame material, a rail material, a ship material, a corrosion resistant material, petroleum, etc. It can be used in various fields such as pipeline materials, bridge materials, and golf equipment.

4点(Cr:22質量%、Ni:48質量%)、(Cr:10質量%、Ni:10質量%)、(Cr:38質量%、Ni:11質量%)、(Cr:45質量%、Ni:41質量%)で囲まれる領域Aを示すCr当量対Ni当量図である。4 points (Cr: 22 mass%, Ni: 48 mass%), (Cr: 10 mass%, Ni: 10 mass%), (Cr: 38 mass%, Ni: 11 mass%), (Cr: 45 mass%) , Ni: 41 mass%) is a Cr equivalent vs. Ni equivalent diagram showing a region A surrounded by A). 4点(Cr:25質量%、Ni:48質量%)、(Cr:24.2質量%、Ni:10質量%)、(Cr:38質量%、Ni:11質量%)、(Cr:45質量%、Ni:41質量%)で囲まれる領域Bを示すCr当量対Ni当量図である。4 points (Cr: 25 mass%, Ni: 48 mass%), (Cr: 24.2 mass%, Ni: 10 mass%), (Cr: 38 mass%, Ni: 11 mass%), (Cr: 45 It is Cr equivalent vs. Ni equivalent figure which shows the area | region B enclosed by the mass% and Ni: 41 mass%). γ+α相の組織の顕微鏡組織写真である。It is a microscope picture of the structure of γ + α phase. 実施例3、9〜15の応力−歪み曲線を示す図である。It is a figure which shows the stress-strain curve of Example 3, 9-15. 実施例及び比較例の加工硬化率値、等加工硬化率線及び領域A及びBを示した図である。It is the figure which showed the work hardening rate value of the Example and the comparative example, the equal work hardening rate line, and the area | regions A and B. FIG. 実施例13にて得られた微細なκ相を含有するγ+κ2相組織を示す顕微鏡組織写真である。It is a microscope picture which shows the (gamma) + (kappa) 2 phase structure | tissue containing the fine (kappa) phase obtained in Example 13. FIG. 比較例3〜6の応力‐歪み曲線を示す図である。It is a figure which shows the stress-strain curve of Comparative Examples 3-6. 比較例8にて得られた粗大なκ相を含有するγ+κ2相組織を示す顕微鏡組織写真である。6 is a micrograph showing a γ + κ2 phase structure containing a coarse κ phase obtained in Comparative Example 8.

Claims (4)

Mn:10.0〜45.0質量%、Al:5.0〜15.0質量%、C:0.5〜2.0質量%、Si:0.01〜5.0質量%、Cr:0.01〜10.0質量%、Ni:0.001〜15質量%を含有し、Cr当量(質量%)=(Cr質量%+1.21Mo質量%+0.48Si質量%+2.48Al質量%)及びNi当量(質量%)=(Ni質量%+0.11Mn質量%−0.0086(Mn質量%)+24.5C質量%)で示されるCr当量対Ni当量図(図1)において、(Cr当量:22.0質量%、Ni当量:48質量%)、(Cr当量:10質量%、Ni当量:10質量%)、(Cr当量:38質量%、Ni当量:11質量%)、(Cr当量:45質量%、Ni当量:41質量%)の4点で囲まれる領域Aにあり、残部Fe及び不可避的不純物からなる低加工硬化鉄合金であって10emu/g以上の飽和磁化を有する強磁性体であり、引張応力-歪み曲線において10%歪み付加時の加工硬化率が16MPa/%未満であることを特徴とする低加工硬化鉄合金。 Mn: 10.0-45.0 mass%, Al: 5.0-15.0 mass%, C: 0.5-2.0 mass%, Si: 0.01-5.0 mass%, Cr: 0.01 to 10.0% by mass, Ni: 0.001 to 15% by mass, Cr equivalent (% by mass) = (Cr mass% + 1.21Mo mass% + 0.48Si mass% + 2.48Al mass%) And Ni equivalent (mass%) = (Ni mass% + 0.11 Mn mass% −0.0086 (Mn mass%) 2 +24.5 C mass%) Cr equivalent vs. Ni equivalent diagram (FIG. 1), Equivalent: 22.0 mass%, Ni equivalent: 48 mass%), (Cr equivalent: 10 mass%, Ni equivalent: 10 mass%), (Cr equivalent: 38 mass%, Ni equivalent: 11 mass%), (Cr Equivalent: 45% by mass, Ni equivalent: 41% by mass) in the region A surrounded by four points, and the rest A low work hardening iron alloy consisting e and unavoidable impurities, 10 emu / g and a ferromagnetic material having a higher saturation magnetization, the tensile stress - 10% in the strain curve distortion applying during the work hardening rate of 16 MPa /% Low work hardening iron alloy characterized by being less than. Mn:15.0〜40.0質量%、Al:8.0〜15.0質量%、C:0.5〜2.0質量%、Si:0.01〜5.0質量%、Cr:5.0〜10.0質量%、Ni:0.01〜15質量%を含有し、Cr当量(質量%)=(Cr質量%+1.21Mo質量%+0.48Si質量%+2.48Al質量%)及びNi当量(質量%)=(Ni質量%+0.11Mn質量%−0.0086(Mn質量%)+24.5C質量%)で示されるCr当量対Ni当量図(図2)において、(Cr:25質量%、Ni:48質量%)、(Cr:24.2質量%、Ni:10質量%)、(Cr:38質量%、Ni:11質量%)、(Cr:45質量%、Ni:41質量%)の4点で囲まれる領域Bにあり、残部Fe及び不可避的不純物からなる低加工硬化鉄合金であって、かつ15emu/g以上の飽和磁化を有する強磁性体であり、引張応力-歪み曲線において10%歪み付加時の加工硬化率が10MPa/%未満であることを特徴とする低加工硬化鉄合金。 Mn: 15.0-40.0% by mass, Al: 8.0-15.0% by mass, C: 0.5-2.0% by mass, Si: 0.01-5.0% by mass, Cr: 5.0 to 10.0 mass%, Ni: 0.01 to 15 mass%, Cr equivalent (mass%) = (Cr mass% + 1.21 Mo mass% + 0.48Si mass% + 2.48 Al mass%) And Ni equivalent (mass%) = (Ni mass% + 0.11 Mn mass% −0.0086 (Mn mass%) 2 +24.5 C mass%) : 25 mass%, Ni: 48 mass%), (Cr: 24.2 mass%, Ni: 10 mass%), (Cr: 38 mass%, Ni: 11 mass%), (Cr: 45 mass%, Ni : 41 mass%) in the region B surrounded by four points, and low processing consisting of the remaining Fe and inevitable impurities It is a ferrous alloy and a ferromagnetic material having a saturation magnetization of 15 emu / g or more, and has a work hardening rate of less than 10 MPa /% when 10% strain is added in a tensile stress-strain curve. Low work hardening iron alloy. 1μm以下のサイズを有するペロブスカイト相(κ相)をマトリクス中に含有した強磁性体であることを特徴とする請求項1又は2に記載の低加工硬化鉄合金。   The low work-hardening iron alloy according to claim 1 or 2, which is a ferromagnetic material containing a perovskite phase (κ phase) having a size of 1 µm or less in a matrix. B:0.001〜1.5質量%、N:0.001〜1.5質量%、各添加量が0.01〜5.0質量%であるBe,Mg,Ti,V,Co,Cu,Nb,Mo,Ta、Wから選択した元素の1種又は2種以上を、さらに含有することを特徴とする請求項1〜3のいずれかに記載の低加工硬化鉄合金。
B: 0.001 to 1.5% by mass, N: 0.001 to 1.5% by mass, and Be, Mg, Ti, V, Co, and Cu, each addition amount being 0.01 to 5.0% by mass The low work hardening iron alloy according to any one of claims 1 to 3, further comprising one or more elements selected from N, Nb, Mo, Ta, and W.
JP2005275438A 2005-09-22 2005-09-22 Low work hardening type iron alloy Active JP4654440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005275438A JP4654440B2 (en) 2005-09-22 2005-09-22 Low work hardening type iron alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005275438A JP4654440B2 (en) 2005-09-22 2005-09-22 Low work hardening type iron alloy

Publications (2)

Publication Number Publication Date
JP2007084882A true JP2007084882A (en) 2007-04-05
JP4654440B2 JP4654440B2 (en) 2011-03-23

Family

ID=37972161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005275438A Active JP4654440B2 (en) 2005-09-22 2005-09-22 Low work hardening type iron alloy

Country Status (1)

Country Link
JP (1) JP4654440B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299083A (en) * 2008-06-10 2009-12-24 Neomax Material:Kk Resistance alloy
JP2010188834A (en) * 2009-02-17 2010-09-02 Jtekt Corp Wheel bearing device
US8511903B2 (en) 2009-02-17 2013-08-20 Jtekt Corporation Wheel bearing device and manufacturing method therefor
US20130295409A1 (en) * 2010-12-13 2013-11-07 Posco Austenitic, Lightweight, High-Strength Steel Sheet Having High Yield Ratio and Ductility, and Method for Producing the Same
CN103667945A (en) * 2013-11-20 2014-03-26 马鞍山市益丰实业集团有限公司 Wear-resistant high-manganese steel liner plate material and preparation method thereof
WO2015099221A1 (en) * 2013-12-26 2015-07-02 주식회사 포스코 Steel sheet having high strength and low density and method of manufacturing same
JP2015520298A (en) * 2012-05-31 2015-07-16 アルセロルミタル・インベステイガシオン・イ・デサロジヨ・エセ・エレ Hot or cold low density rolled steel, its method of implementation and use
JP2020164941A (en) * 2019-03-29 2020-10-08 日鉄ステンレス株式会社 Ferritic stainless steel sheet
JP2022105199A (en) * 2015-12-24 2022-07-12 ロバルマ,ソシエダッド アノニマ Long durability high performance steel for structural, machine and tooling applications

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005120399A (en) * 2003-10-14 2005-05-12 Nippon Steel Corp High-strength and low-specific-gravity steel sheet having excellent ductility, and its manufacturing method
JP2005325387A (en) * 2004-05-13 2005-11-24 Kiyohito Ishida Low specific gravity iron alloy
JP2006118000A (en) * 2004-10-21 2006-05-11 Nippon Steel Corp Lightweight high strength steel having excellent ductility and its production method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005120399A (en) * 2003-10-14 2005-05-12 Nippon Steel Corp High-strength and low-specific-gravity steel sheet having excellent ductility, and its manufacturing method
JP2005325387A (en) * 2004-05-13 2005-11-24 Kiyohito Ishida Low specific gravity iron alloy
JP2006118000A (en) * 2004-10-21 2006-05-11 Nippon Steel Corp Lightweight high strength steel having excellent ductility and its production method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299083A (en) * 2008-06-10 2009-12-24 Neomax Material:Kk Resistance alloy
JP2010188834A (en) * 2009-02-17 2010-09-02 Jtekt Corp Wheel bearing device
US8511903B2 (en) 2009-02-17 2013-08-20 Jtekt Corporation Wheel bearing device and manufacturing method therefor
US20130295409A1 (en) * 2010-12-13 2013-11-07 Posco Austenitic, Lightweight, High-Strength Steel Sheet Having High Yield Ratio and Ductility, and Method for Producing the Same
US9738958B2 (en) * 2010-12-13 2017-08-22 Posco Austenitic, lightweight, high-strength steel sheet having high yield ratio and ductility, and method for producing the same
JP2017106108A (en) * 2012-05-31 2017-06-15 アルセロルミタル・インベステイガシオン・イ・デサロジヨ・エセ・エレ Hot or cold low density rolled steel, conducting method thereof and use
US10900105B2 (en) 2012-05-31 2021-01-26 Arcelormittal Low-density hot-or cold-rolled steel, method for implementing same and use thereof
JP2015520298A (en) * 2012-05-31 2015-07-16 アルセロルミタル・インベステイガシオン・イ・デサロジヨ・エセ・エレ Hot or cold low density rolled steel, its method of implementation and use
CN103667945A (en) * 2013-11-20 2014-03-26 马鞍山市益丰实业集团有限公司 Wear-resistant high-manganese steel liner plate material and preparation method thereof
CN106068333A (en) * 2013-12-26 2016-11-02 Posco公司 High intensity low-gravity steel plate and manufacture method thereof
JP2017507242A (en) * 2013-12-26 2017-03-16 ポスコPosco High strength low specific gravity steel plate and method for producing the same
KR101568552B1 (en) 2013-12-26 2015-11-11 주식회사 포스코 High specific strength steel sheet and method for manufacturing the same
CN106068333B (en) * 2013-12-26 2018-07-06 Posco公司 High intensity low-gravity steel plate and its manufacturing method
US10626476B2 (en) 2013-12-26 2020-04-21 Posco High specific strength steel sheet and method for manufacturing same
WO2015099221A1 (en) * 2013-12-26 2015-07-02 주식회사 포스코 Steel sheet having high strength and low density and method of manufacturing same
JP2022105199A (en) * 2015-12-24 2022-07-12 ロバルマ,ソシエダッド アノニマ Long durability high performance steel for structural, machine and tooling applications
JP2020164941A (en) * 2019-03-29 2020-10-08 日鉄ステンレス株式会社 Ferritic stainless steel sheet

Also Published As

Publication number Publication date
JP4654440B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
JP4654440B2 (en) Low work hardening type iron alloy
JP4529872B2 (en) High Mn steel material and manufacturing method thereof
CA2918720C (en) High-strength steel material for oil well and oil well pipes
JP4635115B1 (en) PERLITE HIGH CARBON STEEL RAIL HAVING EXCELLENT DUCTIVITY AND PROCESS FOR PRODUCING THE
JP5618932B2 (en) Non-magnetic steel wire rod or bar, and method for producing the same
CN105568151A (en) Aluminum-strengthened maraging steel and preparing method thereof
KR101632159B1 (en) Thick steel plate having good ultralow-temperature toughness
WO2012132992A1 (en) High-strength austenitic stainless steel for high-pressure hydrogen gas
WO2016052397A1 (en) High-strength steel material for oil wells, and oil well pipe
KR20120074638A (en) Ultra thick steel sheet for pressure vessel having excellent central properties and hydrogen induced cracking resistance, and method for manufacturing the same
KR101442400B1 (en) Thick steel plate excellent in ultra low temperature toughness
WO2015004906A1 (en) High-carbon hot-rolled steel sheet and production method for same
JP2010180459A (en) Duplex phase stainless steel and manufacturing method thereof
JP2016053191A (en) Pearlitic high carbon steel rail excellent in ductility and manufacturing method therefor
JP2013023742A (en) Non-magnetic steel wire material or rod steel
JP5729827B2 (en) High strength non-magnetic steel
JP5416452B2 (en) Soft magnetic steel materials, soft magnetic steel parts, and manufacturing methods thereof
JP2005325388A (en) Low specific gravity iron alloy
JP2011111666A (en) Nonmagnetic steel
JP3939568B2 (en) Nonmagnetic stainless steel with excellent workability
JP4712839B2 (en) High strength cold-rolled steel sheet with excellent hydrogen embrittlement resistance and workability
JP3757027B2 (en) High strength hot rolled steel with excellent weldability, high strength steel wire and high strength steel bar using the same
TW200418997A (en) High tensile strength steel having excellent fatigue strength and method of producing the same
JP4841308B2 (en) High-strength nonmagnetic stainless steel sheet and method for producing the same
JPH02285053A (en) Maraging steel and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150