JP3580507B2 - Composite magnetic member, method of manufacturing the same, and material for composite magnetic member - Google Patents

Composite magnetic member, method of manufacturing the same, and material for composite magnetic member Download PDF

Info

Publication number
JP3580507B2
JP3580507B2 JP03128795A JP3128795A JP3580507B2 JP 3580507 B2 JP3580507 B2 JP 3580507B2 JP 03128795 A JP03128795 A JP 03128795A JP 3128795 A JP3128795 A JP 3128795A JP 3580507 B2 JP3580507 B2 JP 3580507B2
Authority
JP
Japan
Prior art keywords
magnetic member
composite magnetic
hydrogen
less
equivalent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03128795A
Other languages
Japanese (ja)
Other versions
JPH08227807A (en
Inventor
淳 砂川
慎也 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Denso Corp
Original Assignee
Hitachi Metals Ltd
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, Denso Corp filed Critical Hitachi Metals Ltd
Priority to JP03128795A priority Critical patent/JP3580507B2/en
Publication of JPH08227807A publication Critical patent/JPH08227807A/en
Application granted granted Critical
Publication of JP3580507B2 publication Critical patent/JP3580507B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/0302Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions
    • H01F1/0306Metals or alloys, e.g. LAVES phase alloys of the MgCu2-type

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、例えば磁気スケール等に利用される非磁性であるオーステナイト組織部と強磁性であるマルテンサイト組織部を有する複合磁性部材とその製造方法および複合磁性部材用素材に関するものである。
【0002】
【従来の技術】
例えば、強磁性体に等間隔で非磁性体部を形成した複合磁性部材を用い、この複合磁性部材に近接したセンサにより、非磁性部あるいは強磁性体部を検出して、位置決めを行なう磁気スケール等においては、特開昭62−161146号に記載されるように、素材を塑性加工により加工誘起マルテンサイト化して強磁性体化した後、レーザー加熱等の局部加熱手段を用いて、マルテンサイトの一部を非磁性のオーステナイト組織とすることにより、所定の位置を非磁性化した複合磁性部材が用いられている。
このような、加工誘起マルテンサイト化した後、一部をオーステナイト化するのに適した素材としては、オーステナイト系のステンレス鋼や高マンガン鋼が知られている。
【0003】
【発明が解決しようとする課題】
前述したように、複合磁性部材を得ようとすると、素材を塑性加工によって、マルテンサイト化し、次いで一部を加熱しオーステナイト化する必要がある。
そして、複合磁性部材としては、形成するオーステナイト部およびマルテンサイト部が安定して存在することが求められている。
マルテンサイトの安定度とオーステナイトの安定度は、相反する特性であり、組成に大きく依存する。
【0004】
すなわち、マルテンサイト化しやすい組成を選択すれば、塑性加工後に加熱してもオーステナイト化しなかったり、もしくは一度オーステナイトに相変態しても容易にマルテンサイトに戻るため、非磁性部が得られにくいという問題が生じる。反対にオーステナイト化しやすい組成を選択すれば、塑性加工してもマルテンサイト変態が起こらなかったり、極めて高い加工率が必要であるという問題が生じる。このような問題に対して、本発明者等は、特開平6−140216号で提案するように、次に示すオーステナイトの安定度の指標である平山の当量を20〜23とし、ニッケル当量を9〜12およびクロム当量を16〜19とすることで一応の特性を得ている。
Heq(平山の当量)=〔Ni%〕+1.05〔Mn%〕+0.65〔Cr%〕+0.35〔Si%〕+12.6〔C%〕
Nieq(ニッケルの当量)=〔Ni%〕+30〔C%〕+0.5〔Mn%〕+Creq(クロム当量)=〔Cr%〕+〔Mo%〕+1.5〔Si%〕+0.5〔Nb%〕
【0005】
しかし、現状では、さらなるオーステナイト部およびマルテンサイト部の安定化が求められると共に、製造の容易性が強く求められるようになってきている。本発明の目的は、マルテンサイト部とオーステナイト部を有する複合磁性部材を磁気特性を劣化することなく、容易に得る方法およびこの方法によって得られた新規の複合磁性部材を提供することである。
【0006】
【課題を解決するための手段】
本発明者がFe,NiおよびCrを主成分とする合金のマルテンサイト化、およびオーステナイト化と微量添加元素の関係について検討したところ、合金中に水素を含有させると、塑性加工によりマルテンサイト化し易くなり、しかもマルテンサイト化後加熱すると水素が拡散し、加熱部分がオーステナイト化し易くなることを見出し、水素を含有させれば、マルテンサイト部とオーステナイト部がともに安定な複合磁性部材が容易に得られることを知見し、本発明に到達した。
【0007】
すなわち、本発明の製造方法は、 Fe,NiおよびCrを主成分とする素材を水素含有雰囲気下で加熱し、素材中に水素を0.5〜4ppm含有させた後、塑性加工によりマルテンサイト組織とし、次いで前記マルテンサイト組織の一部を加熱しオーステナイト組織とすることを特徴とする複合磁性部材の製造方法である。
この方法によって、得られる新規な本発明の複合磁性部材は、Fe,NiおよびCrを主成分とし、マルテンサイト組織でなる強磁性体部分とオーステナイト組織でなる非磁性体部分を有しており、前記強磁性体部分に含まれる水素量が0.5〜4ppmであり、前記非磁性体部分の水素量は、前記強磁性体部分よりも少ないことを特徴とする複合磁性部材である。
また、複合磁性部材を得るためのマルテンサイト化する前の本発明の複合磁性部材用素材は、Fe,NiおよびCrを主成分とし、水素を0. 5〜4ppm含有し、組織が実質的にオーステナイトであることを特徴とする複合磁性部材用素材である。
本発明の複合磁性部材および複合磁性部材用素材としては、重量%でC 0.6%以下、Cr 12〜19%、Ni 6〜12%、Mn 2%以下、Si 1%以下、水素 0.5〜4ppm、残部実質的にFeの組成とすることが望ましい。
特に強磁性体部の強磁性特性、および非磁性体部の非磁性特性を高めるためには、平山の当量 Heq=〔Ni%〕+1.05〔Mn%〕+0.65〔Cr%〕+0.35〔Si%〕+12.6〔C%〕が20〜23%、であり、かつ、ニッケル当量 Nieq=〔Ni%〕+30〔C%〕+0.5〔Mn%〕が9〜12%、クロム当量 Creq=〔Cr%〕+〔Mo%〕+1.5〔Si%〕+0.5〔Nb%〕が16〜19%である組成を満足することが望ましい。
【0008】
【作用】
上述したように、本発明の最大の特徴は、水素を0.5〜4ppm含有させたことにある。
素材中の水素量が増加すると、理由は不詳であるが、塑性加工によりマルテンサイト化し易くなり、マルテンサイトした後に加熱すると水素は加熱部分以外に拡散し、オーステナイト化しやすくなる。
すなわち、マルテンサイト化しやすくなることは、マルテンサイト部が安定に存在できることになり、また塑性加工率を高くする必要がなくなり、製造が容易になる。また、加熱によって水素を減少させることは、オーステナイト部を安定にすることができるため、従来のようなマルテンサイトを安定化したためにオーステナイト化しにくくなるという問題を解決できるのである。
【0009】
本発明において、水素量を0.5〜4ppmとしたのは、それ未満ではマルテンサイト化を促進する効果が顕著でないためである。4ppmを越えると水素脆化により割れが生じ易くなるため4ppm以下とする。水素含有量を0.5ppm以上に制御するには、例えば水素分圧の低い雰囲気中で加熱するかもしくは、純水素中で加熱した後、水素分圧の低い雰囲気中で加熱する方法をとることができる。最も好ましい水素の含有量は1〜3ppmである。
【0010】
本発明におけるマルテンサイト組織は、強磁性を示し、オーステナイト組織は非磁性を示すものであり、これによって磁気スケール等の複合磁性材料を構成するものである。また、本発明の複合磁性部材用素材は、マルテンサイト化する前の素材であり、水素の含有により、塑性加工によりマルテンサイト化し易く、またマルテンサイトした後に加熱すれば、水素が除かれ、容易にオーステナイト化するという特徴を持つ。
素材において、実質的にオーステナイト組織と規定したのは、磁気特性が均一なマルテンサイト化組織にするために好ましいからである。
本発明の複合磁性部材および素材の好ましい組成として、Cを0.6%以下としたのは、0.6%以下でも強磁性を示すが、炭化物量の増加により加工成形性が低下するからである。Cr量を12〜19%としたのは、12%未満では塑性加工することによって発生するマルテンサイト中のCr量が低下するため、強度が低下するからである。また、19%を越えると非磁性部であるオーステナイト中にフェライトが発生し、非磁性部が減少するからである。
【0011】
Ni量を6〜12%としたのは、Ni量6%未満ではオーステナイトがあまり安定せず、フェライトが発生するため、非磁性部が得にくいからである。また、12%を越えるとオーステナイトの安定度が高まり過ぎて加工誘起マルテンサイトの生成を阻害するからである。
Mnを2%以下としたのは2%を越えると塑性加工によって発生するマルテンサイトの延性が低下し、加工成形性も低下するからである。
Siを1%以下としたのは、1%を越えるとマルテンサイトの延性を低下させるためである。なお、1%以下の添加は部材の高度を高める上で有効である。
また、平山の当量 Heq=〔Ni%〕+1.05〔Mn%〕+0.65〔Cr%〕+0.35〔Si%〕+12.6〔C%〕が20〜23%、であり、かつ、ニッケル当量 Nieq=〔Ni%〕+30〔C%〕+0.5〔Mn%〕が9〜12%、
クロム当量 Creq=〔Cr%〕+〔Mo%〕+1.5〔Si%〕+0.5〔Nb%〕が16〜19%
である組成を満足すると、印加磁場8000A/m時の強磁性部の磁束密度B8000を0.4(T)以上にすることが容易であり、また非磁性部においては透磁率μを1.2以下に調整することが容易となるという利点がある。
さらに、MoとNbは必ずしも添加する必要はないが、MoはMs点を低める効果があり、またNbは材料強度を高める作用があり、目的に応じて単独または複合で添加することができる。ここでMoが2%を越えると、またNbが1%を越えると加工成形が低下するため、好ましくはMoおよびNbの添加量の上限をそれぞれ2%および1%とした。
【0012】
【実施例】
表1に示す組成の合金を熱間圧延により厚さ 2.5mmの板材とし、その後1000℃で5分間窒素と水素の割合が1:3のガス中で溶体化処理を行ない、その後、窒素雰囲気中で900℃に加熱して水素含有量を調整し、異なる水素含有量で実質的にオーステナイト組織を有する複合磁性部材用素材を得た。表1に示すように水素含有量が異なるが、溶体化処理により、実質的にオーステナイト組織を示す素材が得られた。
複合磁性部材用素材は、透磁率μに示すように実質的に非磁性である。
なお、γ量(%)は、溶体化処理後のオーステナイト量で単位は%、μは透磁率、〔H〕は溶体化処理後の水素含有量で単位はppmである。また、Heqは平山の当量、NieqはNi当量、CreqはCr当量である。
【0013】
【表1】

Figure 0003580507
【0014】
表1に示す試料1〜5の試験片を冷間圧延により、板厚 2.5mmから1.2mmまで圧下し、強磁性部の評価を行なった結果を表2に示す。表2から明らかなように、水素含有量の上昇に伴いマルテンサイトα′の量も増加し、磁束密度B8000も上昇しており、水素の添加がマルテンサイト化を促進していることがわかる。
なお、表2に示すα′量(%)は、冷間圧延後のマルテンサイト量で単位は%、B8000(T)は印加磁場8000A/mの時の磁束密度で単位はT(テスラ)である。
【0015】
【表2】
Figure 0003580507
【0016】
表2に示す試料について、照射径3mmでレーザー加熱により、瞬間的に材料の一部を850℃程度まで加熱して得られた非磁性部の特性を表3に示す。表3から明らかなように、部分加熱することにより水素含有量が低下し、実質的に非磁性を示すオーステナイト組織が得られている。表2および表3に示すように水素を添加することにより、マルテンサイト化しやすくなり、また加熱により水素が除去されて、オーステナイト化しやすくなったことがわかる。
なお、表3に示すγrevは部分加熱後の非磁性体部分のオーステナイト量で単位は%である。
【0017】
【表3】
Figure 0003580507
【0018】
(実施例2)
試料番号6〜10に示す化学組成の試験片でそれぞれにつき、水素含有量を変えた複合磁性部材用素材について、実施例1と同様の操作を行なった結果を表4および表5に示す。表4および表5から明らかなように、同一成分において、本発明の規定範囲内の水素量を有する試料は、水素量の少ない比較例の試料により、冷間加工においてマルテンサイト化し易く、磁束密度も高いことから、容易に強磁性化していることがわかる。また、その後の部分加熱により水素量が減少し、容易に非磁性化したオーステナイト組織が得られたことがわかる。
【0019】
【表4】
Figure 0003580507
【0020】
【表5】
Figure 0003580507
【0021】
【発明の効果】
以上述べたように、本発明によれば、合金中に水素を含有させることで、塑性加工によりマルテンサイト化しやすくなり、またその後部分加熱することにより、加熱部分が容易にオーステナイト化するため、強磁性部と非磁性部の両方の特性を有する複合磁性部材として、要求されていたマルテンサイト組織の安定化およびオーステナイト組織の安定化を両立することが可能となる。
さらに、マルテンサイト化しやすいことは、複合磁性部材の製造を困難にしていた強加工が不要となるため、工業的にも有効である。[0001]
[Industrial applications]
The present invention relates to a composite magnetic member having a nonmagnetic austenitic structure and a ferromagnetic martensite structure used for a magnetic scale or the like, a method for manufacturing the same, and a material for the composite magnetic member.
[0002]
[Prior art]
For example, a magnetic scale that uses a composite magnetic member in which nonmagnetic portions are formed at equal intervals in a ferromagnetic material and detects the nonmagnetic portion or ferromagnetic portion with a sensor close to the composite magnetic member to perform positioning. And the like, as described in JP-A-62-161146, after forming the material into a ferromagnetic material by forming a work-induced martensite by plastic working, using a local heating means such as laser heating, the martensite A composite magnetic member in which a predetermined portion is made non-magnetic by using a non-magnetic austenitic structure in part is used.
Austenitic stainless steel and high manganese steel are known as materials suitable for partially austenizing after the formation of martensite after the induction of work.
[0003]
[Problems to be solved by the invention]
As described above, in order to obtain a composite magnetic member, it is necessary to transform a material into martensite by plastic working, and then heat a part to austenite.
The composite magnetic member is required to have a stable austenite portion and a martensite portion.
The stability of martensite and the stability of austenite are contradictory properties and greatly depend on the composition.
[0004]
That is, if a composition that easily transforms into martensite is selected, it does not become austenite even when heated after plastic working, or easily returns to martensite even once transformed into austenite, so that it is difficult to obtain a nonmagnetic portion. Occurs. On the other hand, if a composition that easily forms austenite is selected, there arises a problem that martensitic transformation does not occur even when plastic working is performed, and an extremely high working ratio is required. In order to solve such a problem, the present inventors set the equivalent of Hirayama, which is an index of austenite stability shown below, to 20 to 23 and set the nickel equivalent to 9 as proposed in JP-A-6-140216. By setting 12 and the chromium equivalent to 161919, tentative characteristics are obtained.
Heq (equivalent of Hirayama) = [Ni%] + 1.05 [Mn%] + 0.65 [Cr%] + 0.35 [Si%] + 12.6 [C%]
Nieq (equivalent of nickel) = [Ni%] + 30 [C%] + 0.5 [Mn%] + Creq (chromium equivalent) = [Cr%] + [Mo%] + 1.5 [Si%] + 0.5 [Nb %]
[0005]
However, at present, further stabilization of the austenite portion and the martensite portion is required, and easiness of production is strongly demanded. An object of the present invention is to provide a method for easily obtaining a composite magnetic member having a martensite portion and an austenite portion without deteriorating magnetic properties and a novel composite magnetic member obtained by this method.
[0006]
[Means for Solving the Problems]
The inventors of the present invention have examined the martensitic transformation of an alloy mainly composed of Fe, Ni and Cr, and the relationship between austenitization and trace addition elements. When hydrogen is contained in the alloy, martensite is easily formed by plastic working. In addition, it has been found that when heated after martensitization, hydrogen diffuses and the heated portion is apt to be austenite, and if hydrogen is contained, a composite magnetic member in which both the martensite portion and the austenite portion are stable can be easily obtained. The inventors have found that the present invention has been achieved.
[0007]
That is, in the production method of the present invention, a material mainly containing Fe, Ni and Cr is heated in a hydrogen-containing atmosphere to contain 0.5 to 4 ppm of hydrogen in the material, and then martensite is formed by plastic working. And then heating a part of the martensite structure to form an austenitic structure.
The novel composite magnetic member of the present invention obtained by this method has a ferromagnetic portion composed of martensite and a non-magnetic portion composed of austenite, containing Fe, Ni and Cr as main components. The composite magnetic member is characterized in that the amount of hydrogen contained in the ferromagnetic portion is 0.5 to 4 ppm , and the amount of hydrogen in the nonmagnetic portion is smaller than that in the ferromagnetic portion.
Further, the material for a composite magnetic member of the present invention before martensitization to obtain a composite magnetic member contains Fe, Ni, and Cr as main components and contains hydrogen at 0.1%. It is a raw material for a composite magnetic member, which contains 5 to 4 ppm and has a structure of substantially austenite.
The composite magnetic member and the material for the composite magnetic member of the present invention may be C 0.6% or less by weight, Cr 12 to 19%, Ni 6 to 12%, Mn 2% or less, Si 1% or less, hydrogen 0.1% or less. It is desirable that the composition be 5 to 4 ppm, and the balance be substantially Fe.
In particular, in order to enhance the ferromagnetic characteristics of the ferromagnetic material portion and the non-magnetic characteristics of the non-magnetic material portion, Hirayama's equivalent Heq = [Ni%] + 1.05 [Mn%] + 0.65 [Cr%] + 0. 35 [Si%] + 12.6 [C%] is 20 to 23%, and nickel equivalent Nieq = [Ni%] + 30 [C%] + 0.5 [Mn%] is 9 to 12%, chromium It is desirable to satisfy a composition in which the equivalent amount Creq = [Cr%] + [Mo%] + 1.5 [Si%] + 0.5 [Nb%] is 16 to 19%.
[0008]
[Action]
As described above, the greatest feature of the present invention resides in that 0.5 to 4 ppm of hydrogen is contained.
When the amount of hydrogen in the raw material increases, the reason is unknown, but it is easy to form martensite by plastic working, and when heated after martensite, hydrogen diffuses to portions other than the heated portion and becomes austenite.
That is, the fact that martensite is easily formed means that the martensite portion can be stably present, and it is not necessary to increase the plastic working ratio, thereby facilitating the production. Further, reducing the amount of hydrogen by heating can stabilize the austenite portion, thereby solving the conventional problem that martensite is stabilized and austenite is hardly formed.
[0009]
In the present invention, the reason why the amount of hydrogen is set to 0.5 to 4 ppm is that the effect of promoting martensite is not remarkable when the amount is less than 0.5 ppm. If it exceeds 4 ppm, cracks are likely to occur due to hydrogen embrittlement . In order to control the hydrogen content to 0.5 ppm or more, for example, heating in an atmosphere with a low hydrogen partial pressure or heating in pure hydrogen and then heating in an atmosphere with a low hydrogen partial pressure Can be. The most preferred hydrogen content is 1-3 ppm.
[0010]
In the present invention, the martensite structure indicates ferromagnetism, and the austenite structure indicates non-magnetism, thereby constituting a composite magnetic material such as a magnetic scale. Further, the material for a composite magnetic member of the present invention is a material before being transformed into martensite, and by containing hydrogen, it is easily transformed into martensite by plastic working. It has the characteristic of becoming austenite.
The material is substantially defined as having an austenitic structure because it is preferable to obtain a martensitic structure having uniform magnetic properties.
The reason why C is set to 0.6% or less as a preferable composition of the composite magnetic member and the material of the present invention is that although C exhibits ferromagnetism even at 0.6% or less, the workability decreases due to an increase in the amount of carbide. is there. The reason for setting the Cr content to 12 to 19% is that if the Cr content is less than 12%, the Cr content in martensite generated by plastic working is reduced, so that the strength is reduced. On the other hand, if it exceeds 19%, ferrite is generated in austenite which is a non-magnetic part, and the non-magnetic part is reduced.
[0011]
The reason why the Ni content is set to 6 to 12% is that if the Ni content is less than 6%, austenite is not very stable and ferrite is generated, so that it is difficult to obtain a nonmagnetic portion. On the other hand, if the content exceeds 12%, the stability of austenite becomes too high, which hinders the formation of work-induced martensite.
The reason that Mn is set to 2% or less is that if it exceeds 2%, the ductility of martensite generated by plastic working decreases, and the workability decreases.
The reason why the content of Si is set to 1% or less is that if it exceeds 1%, the ductility of martensite is reduced. The addition of 1% or less is effective in increasing the height of the member.
Also, the equivalent of Hirayama Heq = [Ni%] + 1.05 [Mn%] + 0.65 [Cr%] + 0.35 [Si%] + 12.6 [C%] is 20-23%, and Nickel equivalent Nieq = [Ni%] + 30 [C%] + 0.5 [Mn%] is 9 to 12%,
Chromium equivalent Creq = [Cr%] + [Mo%] + 1.5 [Si%] + 0.5 [Nb%] is 16-19%
Is satisfied, the magnetic flux density B 8000 of the ferromagnetic portion at an applied magnetic field of 8000 A / m can be easily increased to 0.4 (T) or more, and the magnetic permeability μ of the non-magnetic portion is set to 1. There is an advantage that adjustment to 2 or less is easy.
Further, Mo and Nb do not always need to be added, but Mo has the effect of lowering the Ms point, and Nb has the effect of increasing the material strength, and can be added alone or in combination depending on the purpose. Here, when Mo exceeds 2%, and when Nb exceeds 1%, work-forming decreases, so the upper limits of the added amounts of Mo and Nb are preferably set to 2% and 1%, respectively.
[0012]
【Example】
An alloy having the composition shown in Table 1 was hot-rolled into a sheet having a thickness of 2.5 mm, and then subjected to a solution treatment at 1000 ° C. for 5 minutes in a gas in which the ratio of nitrogen and hydrogen was 1: 3. The content of hydrogen was adjusted by heating to 900 ° C. in the inside to obtain a material for a composite magnetic member having a substantially austenitic structure with a different hydrogen content. As shown in Table 1, although the hydrogen content was different, a material substantially exhibiting an austenite structure was obtained by the solution treatment.
The material for the composite magnetic member is substantially non-magnetic as indicated by the magnetic permeability μ.
The γ amount (%) is the amount of austenite after the solution treatment in units of%, μ is the magnetic permeability, and [H] is the hydrogen content after the solution treatment and is in ppm. H eq is Hirayama's equivalent, Ni eq is Ni equivalent, and Cr eq is Cr equivalent.
[0013]
[Table 1]
Figure 0003580507
[0014]
The test pieces of Samples 1 to 5 shown in Table 1 were rolled down from 2.5 mm to 1.2 mm in thickness by cold rolling to evaluate the ferromagnetic portion. Table 2 shows the results. As is clear from Table 2, the amount of martensite α ′ increases with an increase in the hydrogen content, and the magnetic flux density B 8000 also increases, indicating that the addition of hydrogen promotes the formation of martensite. .
The α 'amount (%) shown in Table 2 is the amount of martensite after cold rolling in units of%, and B 8000 (T) is the magnetic flux density when the applied magnetic field is 8000 A / m, and the unit is T (tesla). It is.
[0015]
[Table 2]
Figure 0003580507
[0016]
With respect to the samples shown in Table 2, the characteristics of the nonmagnetic portion obtained by instantaneously heating a part of the material to about 850 ° C. by laser heating with an irradiation diameter of 3 mm are shown in Table 3. As is evident from Table 3, the partial heating reduces the hydrogen content, and an austenitic structure substantially non-magnetic is obtained. As shown in Tables 2 and 3, it can be seen that the addition of hydrogen facilitated the formation of martensite, and the removal of hydrogen by heating facilitated the formation of austenite.
Note that γ rev shown in Table 3 is the amount of austenite in the nonmagnetic portion after the partial heating, and the unit is%.
[0017]
[Table 3]
Figure 0003580507
[0018]
(Example 2)
Tables 4 and 5 show the results obtained by performing the same operation as in Example 1 for the composite magnetic member materials having different hydrogen contents for the test pieces having the chemical compositions shown in Sample Nos. 6 to 10. As is clear from Tables 4 and 5, a sample having the same component and having a hydrogen content within the specified range of the present invention is more likely to become martensite in cold working than the sample of the comparative example having a small hydrogen content, and has a high magnetic flux density. , The ferromagnetic property is easily determined. In addition, it can be seen that the amount of hydrogen was reduced by the subsequent partial heating, and a nonmagnetic austenitic structure was easily obtained.
[0019]
[Table 4]
Figure 0003580507
[0020]
[Table 5]
Figure 0003580507
[0021]
【The invention's effect】
As described above, according to the present invention, the inclusion of hydrogen in the alloy facilitates the formation of martensite by plastic working, and the subsequent heating allows the heated portion to easily become austenite. As a composite magnetic member having characteristics of both a magnetic part and a non-magnetic part, it is possible to achieve both the required stabilization of the martensite structure and the stabilization of the austenite structure.
Further, the fact that it is easy to form martensite is industrially effective because it does not require strong working which has made the production of the composite magnetic member difficult.

Claims (9)

Fe,NiおよびCrを主成分とし、マルテンサイト組織でなる強磁性体部分とオーステナイト組織でなる非磁性体部分を有しており、前記強磁性体部分に含まれる水素量が0.5〜4ppmであり、前記非磁性体部分の水素量は、前記強磁性体部分よりも少ないことを特徴とする複合磁性部材。It has a ferromagnetic portion composed of martensite structure and a nonmagnetic portion composed of austenite structure, which contains Fe, Ni and Cr as main components, and the amount of hydrogen contained in the ferromagnetic portion is 0.5 to 4 %. ppm , and the amount of hydrogen in the non-magnetic part is smaller than that in the ferromagnetic part. 複合磁性部材は、水素以外の化学組成が重量%でC 0.6%以下、Cr 12〜19%、Ni 6〜12%、Mn 2%以下、Si 1%以下、残部が実質的にFeでなることを特徴とする請求項1に記載の複合磁性部材。The composite magnetic member has a chemical composition other than hydrogen of 0.6% or less by weight of C, 12 to 19% of Cr, 6 to 12% of Ni, 2% or less of Mn, 1% or less of Si, and the balance of substantially Fe. The composite magnetic member according to claim 1, wherein: 平山の当量 Heq=〔Ni%〕+1.05〔Mn%〕+0.65〔Cr%〕+0.35〔Si%〕+12.6〔C%〕が20〜23%、であり、かつ、
ニッケル当量 Nieq=〔Ni%〕+30〔C%〕+0.5〔Mn%〕が9〜12%、
クロム当量 Creq=〔Cr%〕+〔Mo%〕+1.5〔Si%〕+0.5〔Nb%〕が16〜19%
である組成を満足することを特徴とする請求項1および2のいずれかに記載の複合磁性部材。
Hirayama's equivalent Heq = [Ni%] + 1.05 [Mn%] + 0.65 [Cr%] + 0.35 [Si%] + 12.6 [C%] is 20 to 23%, and
Nickel equivalent Nieq = [Ni%] + 30 [C%] + 0.5 [Mn%] is 9 to 12%,
Chromium equivalent Creq = [Cr%] + [Mo%] + 1.5 [Si%] + 0.5 [Nb%] is 16-19%
3. The composite magnetic member according to claim 1, wherein the composition satisfies the following composition.
Fe,NiおよびCrを主成分とする素材を水素含有雰囲気下で加熱し、素材中に水素を0.5〜4ppm含有させた後、塑性加工によりマルテンサイト組織とし、次いで前記マルテンサイト組織の一部を加熱しオーステナイト組織とすることを特徴とする複合磁性部材の製造方法。A material mainly composed of Fe, Ni and Cr is heated in a hydrogen-containing atmosphere to contain 0.5 to 4 ppm of hydrogen in the material, and then a martensite structure is formed by plastic working. A method for producing a composite magnetic member, wherein a part is heated to form an austenitic structure. 素材は、重量%でC 0.6%以下、Cr 12〜19%、Ni 6〜12%、Mn 2%以下、Si 1%以下、水素が0.5〜4ppm含有され、残部が実質的にFeでなることを特徴とする請求項4に記載の複合磁性部材の製造方法。The material contains 0.6% or less of C by weight, 12 to 19% of Cr, 6 to 12% of Ni, 2% or less of Mn, 1% or less of Si, and 0.5 to 4 ppm of hydrogen, with the balance being substantially the same. 5. The method for manufacturing a composite magnetic member according to claim 4, wherein the composite magnetic member is made of Fe. 素材は、平山の当量 Heq=〔Ni%〕+1.05〔Mn%〕+0.65〔Cr%〕+0.35〔Si%〕+12.6〔C%〕が20〜23%、であり、かつ、
ニッケル当量 Nieq=〔Ni%〕+30〔C%〕+0.5〔Mn%〕が9〜12%、
クロム当量 Creq=〔Cr%〕+〔Mo%〕+1.5〔Si%〕+0.5〔Nb%〕が16〜19%
である組成を満足することを特徴とする請求項4または5に記載の複合磁性部材の製造方法。
The material is 20-23% of Hirayama's equivalent Heq = [Ni%] + 1.05 [Mn%] + 0.65 [Cr%] + 0.35 [Si%] + 12.6 [C%], and ,
Nickel equivalent Nieq = [Ni%] + 30 [C%] + 0.5 [Mn%] is 9 to 12%,
Chromium equivalent Creq = [Cr%] + [Mo%] + 1.5 [Si%] + 0.5 [Nb%] is 16-19%
The method for producing a composite magnetic member according to claim 4, wherein the following composition is satisfied.
Fe,NiおよびCrを主成分とし、水素を0.5〜4ppm含有し、組織が実質的にオーステナイト組織であることを特徴とする複合磁性部材用素材。A material for a composite magnetic member comprising Fe, Ni and Cr as main components, containing 0.5 to 4 ppm of hydrogen, and having a substantially austenitic structure. 重量%でC 0.6%以下、Cr 12〜19%、Ni 6〜12%、Mn 2%以下、Si 1%以下、水素 0.5〜4ppm、残部が実質的にFeでなる組成を有することを特徴とし、組織が実質的にオーステナイト組織であることを特徴とする複合磁性部材用素材。The composition consisting of 0.6% or less by weight of C, 12 to 19% of Cr, 6 to 12% of Ni, 2% or less of Mn, 1% or less of Si, 0.5 to 4 ppm of hydrogen, and the balance substantially Fe A material for a composite magnetic member, wherein the material has a substantially austenitic structure. 平山の当量 Heq=〔Ni%〕+1.05〔Mn%〕+0.65〔Cr%〕+0.35〔Si%〕+12.6〔C%〕が20〜23%、であり、かつ、
ニッケル当量 Nieq=〔Ni%〕+30〔C%〕+0.5〔Mn%〕が9〜12%、
クロム当量 Creq=〔Cr%〕+〔Mo%〕+1.5〔Si%〕+0.5〔Nb%〕が16〜19%
である組成を満足することを特徴とする請求項7または8に記載の複合磁性部材用素材。
Hirayama's equivalent Heq = [Ni%] + 1.05 [Mn%] + 0.65 [Cr%] + 0.35 [Si%] + 12.6 [C%] is 20 to 23%, and
Nickel equivalent Nieq = [Ni%] + 30 [C%] + 0.5 [Mn%] is 9 to 12%,
Chromium equivalent Creq = [Cr%] + [Mo%] + 1.5 [Si%] + 0.5 [Nb%] is 16-19%
9. The material for a composite magnetic member according to claim 7, wherein the material satisfies the following composition.
JP03128795A 1995-02-21 1995-02-21 Composite magnetic member, method of manufacturing the same, and material for composite magnetic member Expired - Fee Related JP3580507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03128795A JP3580507B2 (en) 1995-02-21 1995-02-21 Composite magnetic member, method of manufacturing the same, and material for composite magnetic member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03128795A JP3580507B2 (en) 1995-02-21 1995-02-21 Composite magnetic member, method of manufacturing the same, and material for composite magnetic member

Publications (2)

Publication Number Publication Date
JPH08227807A JPH08227807A (en) 1996-09-03
JP3580507B2 true JP3580507B2 (en) 2004-10-27

Family

ID=12327100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03128795A Expired - Fee Related JP3580507B2 (en) 1995-02-21 1995-02-21 Composite magnetic member, method of manufacturing the same, and material for composite magnetic member

Country Status (1)

Country Link
JP (1) JP3580507B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4785054B2 (en) * 2006-09-15 2011-10-05 国立大学法人九州大学 Method for producing high-strength steel material with excellent hydrogen embrittlement resistance
CA2715814A1 (en) * 2008-02-29 2009-09-03 Yukitaka Murakami Austenitic stainless steel, and method for removing hydrogen therefrom

Also Published As

Publication number Publication date
JPH08227807A (en) 1996-09-03

Similar Documents

Publication Publication Date Title
US4318738A (en) Amorphous carbon alloys and articles manufactured from said alloys
TWI326310B (en) A fe-b-si system amorphous alloy thin strip
KR101399995B1 (en) Low-carbon steel sheet and process for producing same
US20160145701A1 (en) Stainless steel resistant to delayed cracking and a method for its production
KR930013189A (en) High strength hot rolled steel sheet and its manufacturing method
JP3868019B2 (en) Composite magnetic member and manufacturing method thereof
JP6359783B1 (en) Austenitic stainless steel sheet and manufacturing method thereof
JP3580507B2 (en) Composite magnetic member, method of manufacturing the same, and material for composite magnetic member
JPS6039150A (en) Steel for pipe for oil well with superior resistance to stress corrosion cracking
JP3939568B2 (en) Nonmagnetic stainless steel with excellent workability
JP4015712B2 (en) Composite magnetic member and manufacturing method thereof
KR102265212B1 (en) Non-magnetic austenitic stainless steel
JPH0261540B2 (en)
JP2002129294A (en) High saturation magnetic flux density composite magnetic member and motor using the same member
JP3276045B2 (en) Non-magnetic PC steel wire excellent in delayed fracture characteristics and method of manufacturing the same
JP6983321B2 (en) Austenitic stainless steel
JPH04173926A (en) Method for providing fatigue characteristic to martensitic stainless steel strip
JP3961800B2 (en) Method and apparatus for measuring the amount of retained austenite in steel
JP3396138B2 (en) High corrosion resistant stainless steel wire with magnetism and sieving filter
JP3676477B2 (en) Composite magnetic member and manufacturing method thereof
JPH08269640A (en) Soft-magnetic stainless steel for relay iron core
Ebata et al. New type of Pb‐free Machinable Soft‐Magnetic Stainless Steels with Dispersed Titanium Carbo‐Sulfide
JPH03271346A (en) Soft magnetic alloy
JP3561922B2 (en) Manufacturing method of soft magnetic stainless steel
JP2023049000A (en) Austenitic stainless steel and method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040716

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees