JP2002256376A - Steel sheet having low deterioration in toughness caused by strain aging - Google Patents

Steel sheet having low deterioration in toughness caused by strain aging

Info

Publication number
JP2002256376A
JP2002256376A JP2001055575A JP2001055575A JP2002256376A JP 2002256376 A JP2002256376 A JP 2002256376A JP 2001055575 A JP2001055575 A JP 2001055575A JP 2001055575 A JP2001055575 A JP 2001055575A JP 2002256376 A JP2002256376 A JP 2002256376A
Authority
JP
Japan
Prior art keywords
steel sheet
steel
toughness
average grain
crystal orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001055575A
Other languages
Japanese (ja)
Other versions
JP3848091B2 (en
Inventor
Toru Yamashita
徹 山下
Kenichi Oe
憲一 大江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001055575A priority Critical patent/JP3848091B2/en
Publication of JP2002256376A publication Critical patent/JP2002256376A/en
Application granted granted Critical
Publication of JP3848091B2 publication Critical patent/JP3848091B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a steel sheet which has low deterioration in toughness caused by strain aging while maintaining strength required as steel for structural purpose, concretely, tensile strength. SOLUTION: The steel sheet having low deterioration in toughness caused by strain aging has a microstructure essentially consisting of ferrite or bainite, and contains C and N. When the average grain diameter of the crystal grains in which the crystal orientation difference by crystal orientation analysis using EBSP(Electron Back Scattering Pattern) is >=15 deg. is defined as D, the relation among the average grain diameter D and the contents of C and N satisfy the following inequality (1): (4.63×[C]+3.97×[N])×D/15<=0.4...(1); wherein, the [elements] respectively denote the content [mass%] of each element.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は構造用鋼板に関し、
より詳細には高強度を有すると共に、歪時効による靭性
劣化の少ない鋼板に関するものである。
TECHNICAL FIELD The present invention relates to a structural steel sheet,
More specifically, the present invention relates to a steel sheet having high strength and less toughness deterioration due to strain aging.

【0002】[0002]

【従来の技術】鋼板に塑性変形を加えると機械的性質、
特に靭性が劣化することが一般に知られている。これは
歪時効特性に起因するもので、鋼中に固溶しているC元
素やN元素が歪付与により導入された転位と相互作用を
おこし、転位の動きを妨げるため降伏点が上昇し、その
結果として、脆化がおこると考えられている。そこで、
靭性の劣化を抑制するため、C元素やN元素の含有量を
低減する方法がある。
2. Description of the Related Art When plastic deformation is applied to a steel sheet, mechanical properties,
In particular, it is generally known that toughness deteriorates. This is due to the strain aging characteristics, and the C element and N element dissolved in the steel interact with dislocations introduced by the application of strain, thereby hindering the movement of the dislocations, increasing the yield point, It is believed that embrittlement occurs as a result. Therefore,
In order to suppress the deterioration of toughness, there is a method of reducing the content of C element and N element.

【0003】塑性変形時の靭性劣化を抑制する技術とし
て、例えば、特開平10-88280号や同10-88281号などが提
案されている。これらの技術は、塑性変形による耐靭性
破壊性能の劣化代を最小限に抑えることを目的とし、C
量とN量の特定された鋼板に所定の粗圧延と未再結晶域
圧延、または二相域圧延を施すことにより、塑性歪を受
けた場合でも耐脆性破壊性能のうちアレスト性能の劣化
が小さい構造用鋼板を提供している。そして、塑性変形
時の靭性劣化を抑制するために、フリーNの含有量を20
ppm以下に抑制すると共に、歪付与後の延性を確保する
ため、C量を制限している。しかしながら、該C量と靭
性劣化との関係については考慮されていない。
[0003] As a technique for suppressing the degradation of toughness during plastic deformation, for example, Japanese Patent Application Laid-Open Nos. 10-88280 and 10-88281 have been proposed. These technologies aim at minimizing the degradation allowance of the toughness fracture performance due to plastic deformation,
By performing predetermined rough rolling and unrecrystallized zone rolling, or two-phase zone rolling on the steel sheet specified in the amount and the N amount, deterioration of arrest performance among brittle fracture resistance is small even when subjected to plastic strain. We provide structural steel sheets. In order to suppress toughness degradation during plastic deformation, the content of free N is set to 20%.
The amount of carbon is limited to suppress the content to less than ppm and to secure the ductility after strain application. However, no consideration is given to the relationship between the C content and toughness degradation.

【0004】また、深絞り加工用の冷延鋼板として、I
F(Interstitial Free)鋼などの使用が知られてい
る。IF鋼とは、C元素やその他の添加元素を極力低減
すると共に、TiやNb等を添加して鋼中のN元素を窒
化物として固定するもので、加工時に導入される転位に
Nが固着するのを防止し、且つ、これによって加工時の
表面欠陥(ストレッチャー−ストレインと呼ばれる波状
の欠陥)を防止している。しかしながら、C含有量を最
小限に抑えているので、厚板に適用した場合強度不足と
言わざるを得ず、引張強度で300MPaレベルしか得ら
れない。
[0004] Further, as cold-rolled steel sheets for deep drawing, I.
Use of F (Interstitial Free) steel or the like is known. IF steel is a steel that reduces the C element and other added elements as much as possible and adds Ti and Nb to fix the N element in the steel as a nitride. N adheres to dislocations introduced during processing. And a surface defect during processing (a wavy defect called a stretcher-strain) is thereby prevented. However, since the C content is minimized, when applied to a thick plate, it must be said that the strength is insufficient, and only a tensile strength level of 300 MPa can be obtained.

【0005】[0005]

【発明が解決しようとする課題】本発明は、この様な状
況に鑑みてなされたものであり、その目的は、構造用鋼
板として必要な強度(引張強度)を維持しつつ、しかも
歪時効による靭性劣化の少ない鋼板を提供することにあ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and it is an object of the present invention to maintain the strength (tensile strength) required for a structural steel sheet and to use strain aging. An object of the present invention is to provide a steel sheet with less toughness deterioration.

【0006】[0006]

【課題を解決するための手段】上記課題を解決すること
のできた歪時効による靭性劣化の少ない鋼板とは、フェ
ライト主体またはベイナイト主体のミクロ組織を有する
鋼板であって、C及びNを含み、EBSP(Electron Back
Scattering Pattern)を用いた結晶方位解析による結晶
方位差が15°以上の結晶粒の平均粒径をDとしたとき、
該平均粒径Dと前記C及びNの含有率との関係が下記
(1)式を満足する点に要旨を有する。 (4.63×[C]+3.97×[N])×D/15≦0.4 ・・・(1) ここで、[元素]は鋼材中の各元素の含有量[質量%]
を夫々表わす(以下同じ)。
Means for Solving the Problems A steel sheet having a small toughness deterioration due to strain aging, which can solve the above-mentioned problems, is a steel sheet having a microstructure mainly composed of ferrite or bainite, containing C and N, and containing EBSP. (Electron Back
When the average grain size of crystal grains having a crystal orientation difference of 15 ° or more by crystal orientation analysis using Scattering Pattern) is D,
The point is that the relationship between the average particle diameter D and the contents of C and N satisfies the following expression (1). (4.63 × [C] + 3.97 × [N]) × D / 15 ≦ 0.4 (1) Here, [element] is the content [mass%] of each element in the steel material.
(Hereinafter the same).

【0007】そして、前記鋼板は、質量%(以下%で示
す)で、C:0.03〜0.2%を含むものであると引
張強度が高くなるのでより好ましい。
[0007] It is more preferable that the steel sheet contains C: 0.03 to 0.2% by mass% (hereinafter expressed as%) because the tensile strength is increased.

【0008】また、本発明の目的は、フェライト主体ま
たはベイナイト主体のミクロ組織を有する鋼板であっ
て、C及びNを含み、更に、Ti及び/又はNbを含
み、EBSP(Electron Back Scattering Pattern)を用い
た結晶方位解析による結晶方位差が15°以上の結晶粒の
平均粒径をDとしたとき、該平均粒径Dと前記C及びN、
Ti及び/又はNbの含有率との関係が下記(2)式〜
(4)式を満足する歪時効による靭性劣化の少ない鋼板
においても達成することができる。 [N]−[Ti]/3.42≧0 ・・・(2) [C]−[Nb]/7.74≧0 ・・・(3) {4.63×([C]−[Nb]/7.74)+3.97×([N]−[Ti]/3.42)} ×D/15≦0.4 ・・・(4)
Another object of the present invention is to provide a steel sheet having a microstructure mainly composed of ferrite or bainite, which contains C and N, further contains Ti and / or Nb, and has an EBSP (Electron Back Scattering Pattern). When the average grain size of the crystal grains having a crystal orientation difference of 15 ° or more by the crystal orientation analysis used is D, the average grain size D and the C and N,
The relationship with the content of Ti and / or Nb is expressed by the following equation (2):
This can be achieved even with a steel sheet that satisfies the formula (4) and has little toughness deterioration due to strain aging. [N] − [Ti] /3.42≧0 (2) [C] − [Nb] /7.74≧0 (3) {4.63 × ([C] − [Nb] /7.74) +3. 97 × ([N]-[Ti] /3.42)} × D / 15 ≦ 0.4 (4)

【0009】さらに、本発明の目的は、フェライト主体
またはベイナイト主体のミクロ組織を有する鋼板であっ
て、C及びNを含み、更に、Ti及び/又はNbを含
み、EBSP(Electron Back Scattering Pattern)を用い
た結晶方位解析による結晶方位差が15°以上の結晶粒の
平均粒径をDとしたとき、該平均粒径Dと前記C及びN、
Ti及び/又はNbの含有率との関係が下記(5)式〜
(7)式を満足する歪時効による靭性劣化の少ない鋼板
であっても達成することができる。 [N]−[Ti]/3.42<0 ・・・(5) [C]−[Nb]/7.74≧0 ・・・(6) {4.63×[C]−[Nb]/7.74−([Ti]−3.42×[N])/3.99}×D /15≦0.4 ・・・(7)
Further, an object of the present invention is to provide a steel sheet having a microstructure mainly composed of ferrite or bainite, containing C and N, further containing Ti and / or Nb, and having an EBSP (Electron Back Scattering Pattern). When the average grain size of the crystal grains having a crystal orientation difference of 15 ° or more by the crystal orientation analysis used is D, the average grain size D and the C and N,
The relationship with the content of Ti and / or Nb is expressed by the following formula (5):
This can be achieved even with a steel sheet that satisfies the expression (7) and has little toughness deterioration due to strain aging. [N] − [Ti] /3.42 <0 (5) [C] − [Nb] /7.74≧0 (6) {4.63 × [C] − [Nb] /7.74 − ([Ti ] −3.42 × [N]) / 3.99} × D / 15 ≦ 0.4 (7)

【0010】そして、C及びNを含み、更に、Ti及び
/又はNbを含む鋼板では、質量%(以下%で示す)
で、C:0.03〜0.2%を含み、Ti:0.05%
以下及び/又はNb:0.03%以下を含むものである
ことが好ましい。
[0010] In a steel sheet containing C and N and further containing Ti and / or Nb, mass% (hereinafter referred to as%)
And C: 0.03 to 0.2%, Ti: 0.05%
And / or Nb: 0.03% or less.

【0011】さらに、引張強度が400MPa以上であ
ると厚板に適用した場合でも十分な強度を有する。
Further, when the tensile strength is 400 MPa or more, sufficient strength is obtained even when applied to a thick plate.

【0012】[0012]

【発明の実施の形態】本発明者らは、歪時効による靭性
劣化の原因を追求した結果、その原因は鋼中の固溶Cや
固溶Nにあり、これを無害化すれば良いことを知った。
しかし、固溶Cや固溶Nを無害化するために炭窒化物形
成元素であるTiやNb等を過剰に添加すると、TiN
やNbCなどの析出物が多量に生成し、母材の靭性劣化
を起こし易くなることを知った。そこで、鋼中の固溶C
や固溶Nを無害化する他の手法について鋭意研究した結
果、C元素やN元素は結晶粒界部分に固定されることに
よって、歪時効による靭性劣化を低減し得ることをつき
とめた。そこで、鋼中の結晶粒界と固溶Cや固溶Nの関
係について検討を重ねた。
BEST MODE FOR CARRYING OUT THE INVENTION As a result of pursuing the cause of toughness deterioration due to strain aging, the present inventors have found that the cause lies in solid solution C and solid solution N in steel, and it is only necessary to make these harmless. Knew.
However, if excessive addition of a carbonitride forming element such as Ti or Nb to render the solid solution C or solid solution N harmless, TiN
It has been found that a large amount of precipitates such as Nb and NbC are generated, and the toughness of the base material is easily deteriorated. Therefore, the solid solution C in steel
As a result of intensive studies on other techniques for detoxifying solid solution N, it has been found that the C element and the N element can be fixed to the crystal grain boundary portion, thereby reducing the toughness deterioration due to strain aging. Therefore, the relationship between the crystal grain boundaries in the steel and the solid solution C and solid solution N was repeatedly examined.

【0013】結晶粒界を現出させる方法としては、一般
に、ナイタール(3%HNo3アルコール溶液)と呼ば
れる腐食液を用いて観察する方法が採用されている。と
ころが、この方法で確認される結晶粒が微細化している
場合においても、歪時効による靭性劣化の低減量にばら
つきを生じることが確認された。しかし、その後更に研
究を重ね、EBSP(Electron Back Scattering Pattern)
解析装置を用いて鋼材の組織を観察した結果、靭性劣化
の低減には大角粒界が有効に作用しているという知見を
得た。ここで、大角粒界とは隣接する結晶の結晶方位が
15°以上異なる結晶粒間に存在する粒界を意味し、この
大角粒界にCやNが固着すると、両元素は粒界に安定し
て存在する様になる。すなわち、C元素やN元素を含む
鋼板であっても、組織中に大角粒界が多く生成する様に
製造すると、C元素やN元素は大角粒界に固着され、塑
性変形が施された際に導入される転位部分にCやNが固
着することはないため、歪時効による靭性の劣化が低減
されるものと思料される。
As a method for making the crystal grain boundaries appear, a method of observing using a corrosive liquid called nital (3% HNo 3 alcohol solution) is generally adopted. However, it has been confirmed that even when the crystal grains confirmed by this method are fine, the amount of reduction in toughness degradation due to strain aging varies. However, after further research, EBSP (Electron Back Scattering Pattern)
As a result of observing the structure of the steel material using an analyzer, it was found that the large-angle grain boundaries effectively acted to reduce the toughness degradation. Here, the crystal orientation of the crystal adjacent to the large-angle grain boundary is
This means a grain boundary existing between crystal grains different by 15 ° or more. When C or N is fixed to the large-angle grain boundary, both elements are stably present at the grain boundary. That is, even if a steel sheet containing the C element and the N element is manufactured so as to generate a large number of large-angle grain boundaries in the structure, the C element and the N element are fixed to the large-angle grain boundaries and subjected to plastic deformation. It is considered that C and N do not adhere to the dislocations introduced into the alloy, so that deterioration of toughness due to strain aging is reduced.

【0014】この様に、本発明はC元素やN元素を固着
することのできる大角粒界が靭性劣化の低減に有効であ
ることを突止めたところに最大のポイントがあり、結晶
方位差が15°以上の大角粒界が多量に生成するように結
晶粒を微細化することにより所期の目的を達成したもの
である。係る本発明の最重要ポイントは大角粒界と小角
粒界を明瞭に区別することによって初めて得られるもの
であり、ナイタール腐食液を用いた従来の観察手段で
は、鋼材の見掛けの結晶度しか観測することはできない
ため、到底得られなかった知見である。
As described above, the present invention has the largest point in finding out that the large-angle grain boundaries that can fix the C element and the N element are effective in reducing the deterioration of toughness. The intended purpose has been achieved by refining the crystal grains so that large-angle grain boundaries of 15 ° or more are generated in large quantities. The most important point of the present invention can be obtained only by clearly distinguishing between the large-angle grain boundaries and the small-angle grain boundaries, and the conventional observation means using a nital etching solution observes only the apparent crystallinity of the steel material. This is a finding that could not be obtained because it cannot be done.

【0015】更に本発明では、上記大角粒界の制御に加
えて鋼材中のC及びN量を適切に制御することが重要で
ある。つまり、大角粒界を生成するように結晶粒を微細
化し得たとしても、C量やN量が多いと粒界に固着し得
るC及びN量の許容範囲を超え、過剰量の元素が歪部分
に集中してしまい、歪時効による靭性の劣化をもたらす
からである。CやNの添加量が多い場合は、炭窒化物形
成元素であるTiやNbを添加して、TiNやNbCと
して析出させればよい。TiにトラップされなかったN
(以下「フリーN」と呼ぶことがある)やNbにトラッ
プされなかったC(以下「フリーC」と呼ぶことがあ
る)と、大角粒界の量を適切に制御することにより初め
て強度特性に優れ、しかも歪時効による靭性劣化の少な
い鋼板を提供することができるのである。以下、本発明
の要件について詳細に説明する。
Further, in the present invention, it is important to appropriately control the amounts of C and N in the steel material in addition to the control of the large-angle grain boundaries. In other words, even if the crystal grains can be refined so as to generate large-angle grain boundaries, if the C and N contents are large, the C and N amounts that can be fixed to the grain boundaries exceed the allowable range, and excessive amounts of elements cause distortion. This is because it concentrates on the part and causes toughness degradation due to strain aging. When C or N is added in a large amount, Ti or Nb which is a carbonitride forming element may be added to precipitate as TiN or NbC. N not trapped by Ti
(Hereinafter sometimes referred to as "free N") and C not trapped by Nb (hereinafter sometimes referred to as "free C"), and the strength characteristics can be obtained only by appropriately controlling the amount of large-angle grain boundaries. It is possible to provide a steel sheet which is excellent and has little toughness deterioration due to strain aging. Hereinafter, the requirements of the present invention will be described in detail.

【0016】まず、本発明の歪時効による靭性劣化の少
ない鋼板は、フェライト主体またはベイナイト主体のミ
クロ組織を有するものである。
First, the steel sheet according to the present invention, which has less toughness deterioration due to strain aging, has a ferrite-based or bainite-based microstructure.

【0017】ここで「フェライト主体」とは、当該鋼板
のミクロ組織が実質的にフェライト組織で構成されてい
ることを意味する。具体的には、フェライトの面積率
が、好ましくは80面積%以上、より好ましくは90面積%
以上である。フェライト以外の組織としては、例えばパ
ーライトやベイナイト組織、マルテンサイト等が挙げら
れ、これらの占める比率は10面積%以下であることが望
ましい。ちなみにこれら他の組織が多すぎると、母材
(歪が付与されていない素材)の靭性を劣化させたり、
延性を低下させる等の様な欠点がある。
Here, “mainly composed of ferrite” means that the microstructure of the steel sheet is substantially composed of a ferrite structure. Specifically, the area ratio of ferrite is preferably 80% by area or more, more preferably 90% by area.
That is all. Examples of the structure other than ferrite include pearlite, bainite structure, martensite, and the like, and the ratio of these is preferably 10 area% or less. By the way, if there are too many of these other structures, the toughness of the base material (material to which no strain is applied) will deteriorate,
There are disadvantages such as a decrease in ductility.

【0018】また、「ベイナイト主体」とは、当該鋼板
のミクロ組織が実質的にベイナイト組織で構成されてい
ることを意味する。具体的には、ベイナイト組織の占有
比率は約60面積%以上であることを意味する。また、上
記ベイナイト以外の組織としては、フェライト組織やパ
ーライト組織、マルテンサイト等が挙げられる。
"Bainite mainly" means that the microstructure of the steel sheet is substantially constituted by a bainite structure. Specifically, it means that the occupancy ratio of the bainite structure is about 60% by area or more. Examples of the structure other than the bainite include a ferrite structure, a pearlite structure, and martensite.

【0019】次に、本発明鋼板は、EBSP(Electron Bac
k Scattering Pattern)を用いた結晶方位解析による結
晶方位差が15°以上の結晶粒の平均粒径をDとしたと
き、該平均粒径Dと、鋼中のC及びNの含有率との関係
が下記(1)式を満足することが重要である。ここで、
平均粒径とは、所定組織の個々の結晶粒について、その
面積が等しくなるように想定した円の直径を意味する。
また、下記式中[元素]は鋼材中の各元素の含有量[質
量%]を夫々表わす。 (4.63×[C]+3.97×[N])×D/15≦0.4 ・・・(1)
Next, the steel sheet of the present invention is made of EBSP (Electron Bac
The relationship between the average grain size D and the contents of C and N in steel, where D is the average grain size of crystal grains having a crystal orientation difference of 15 ° or more by crystal orientation analysis using k scattering pattern). It is important that the following formula (1) is satisfied. here,
The average particle diameter means a diameter of a circle assumed to have an equal area for each crystal grain of a predetermined structure.
[Element] in the following formula represents the content [% by mass] of each element in the steel material. (4.63 × [C] + 3.97 × [N]) × D / 15 ≦ 0.4 (1)

【0020】まず、本発明では上述したミクロ組織を、
EBSP(Electron Back Scattering Pattern)を用いた結
晶方位解析によって結晶方位差を観測する。具体的に
は、EBSP解析装置として、TexSEM Laboratories社製の
装置を使用し、図1(a)に示す結晶方位の基準に基づ
き、結晶方位差が15°以上の結晶粒を色調の変化によっ
て観察する。EBSP解析装置により観測された板厚方向断
面の写真(カラーマップ)の一例を図1(b)に示す。図
1(b)から、EBSPを用いると色調の変化によって、結晶
方位差が15°以上の結晶粒を識別できることが分かる。
尚、上記(1)式は、TiやNbが実質的に含まれてい
ない鋼に適用されるもので、大角粒界の中に占めるフリ
ーCやフリーNの個数を上記(1)式の数値範囲に制御
すれば、所望の特性が得られることを示している。
First, in the present invention, the above-mentioned microstructure is
Observe the crystal orientation difference by crystal orientation analysis using EBSP (Electron Back Scattering Pattern). Specifically, a TexSEM Laboratories device was used as an EBSP analyzer, and crystal grains with a crystal orientation difference of 15 ° or more were observed by color change based on the crystal orientation criteria shown in Fig. 1 (a). I do. An example of a photograph (color map) of a cross section in the thickness direction observed by the EBSP analyzer is shown in FIG. 1 (b). Figure
From FIG. 1 (b), it is understood that the crystal grain having a crystal orientation difference of 15 ° or more can be identified by a change in color tone when EBSP is used.
The above equation (1) is applied to steel containing substantially no Ti or Nb, and the number of free C and free N occupying in the large angle grain boundary is calculated by the numerical value of the above equation (1). This indicates that the desired characteristics can be obtained by controlling the range.

【0021】ここで、上記(1)式中、4.63×[C]及
び3.97×[N]は、鋼中に存在するC元素量及びN元素
量(質量%)を夫々原子%(atom.%)に換算したもの
を原子の個数として表したものである。この様にして算
出された原子の総量が、大角結晶粒界に占める比率を表
したのが上記(1)式であり、これはCとN原子総量を
粒界体積分率(結晶粒の体積と粒界体積から導きだされ
るもの:D/15)で割ったものである。尚、上記(1)式
を設定するにあたっては粒界厚さを特定することが必要
であるが、結晶方位差が15°以上の結晶粒間に存在する
結晶粒界では、Fe原子などが不規則に存在しており、
その厚み(結晶粒界の厚み)は約5〜10Å程度であるこ
とから、本発明では該粒界厚さを5Åと近似して算出し
た。
Here, in the above formula (1), 4.63 × [C] and 3.97 × [N] represent the amount of C element and the amount of N element (mass%) present in the steel in atomic% (atom.%), Respectively. ) Is expressed as the number of atoms. The above equation (1) expresses the ratio of the total amount of atoms calculated in this way to the large-angle crystal grain boundaries, and is expressed by the above equation (1). And the value derived from the grain boundary volume: D / 15). In setting the above equation (1), it is necessary to specify the grain boundary thickness. However, in the crystal grain boundaries existing between crystal grains having a crystal orientation difference of 15 ° or more, Fe atoms and the like are not present. Exist in the rules,
Since the thickness (the thickness of the crystal grain boundary) is about 5 to 10 °, in the present invention, the thickness was calculated by approximating the thickness of the grain boundary to 5 °.

【0022】更に、鋼中にTi及び/又はNbを含有す
る鋼材については下記(2)式〜(4)式または下記
(5)式〜(7)式が適用される。 [N]−[Ti]/3.42≧0 ・・・(2) [C]−[Nb]/7.74≧0 ・・・(3) {4.63×([C]−[Nb]/7.74)+3.97×([N]−[Ti]/3.42)} ×D/15≦0.4 ・・・(4) [N]−[Ti]/3.42<0 ・・・(5) [C]−[Nb]/7.74≧0 ・・・(6) {4.63×[C]−[Nb]/7.74−([Ti]−3.42×[N])/3.99}×D /15≦0.4 ・・・(7)
Further, the following equations (2) to (4) or the following equations (5) to (7) apply to steel materials containing Ti and / or Nb in the steel. [N] − [Ti] /3.42≧0 (2) [C] − [Nb] /7.74≧0 (3) {4.63 × ([C] − [Nb] /7.74) +3. 97 × ([N] − [Ti] /3.42)} × D / 15 ≦ 0.4 (4) [N] − [Ti] /3.42 <0 (5) [C] − [Nb] /7.74≧0 (6) {4.63 × [C] − [Nb] /7.74 − ([Ti] −3.42 × [N]) / 3.99} × D / 15 ≦ 0.4 (7)

【0023】これは、TiやNbの添加によって、鋼中
のCやNを炭化物や窒化物として析出させるために特定
されたものであり、当該鋼板では前述した「鋼中のC及
びNの量」の制御に加え、更に「Ti及び/又はNbの
量」を適切に制御することが重要である。CやNと結合
し得るTiやNbの量を超えて過剰に添加すると、靭性
が低下したり、溶接性が劣化するなどの悪影響を及ぼ
す。
This is specified to precipitate C and N in steel as carbides and nitrides by adding Ti and Nb. In the steel sheet, the above-mentioned "Amount of C and N in steel" In addition to the above control, it is important to appropriately control the "amount of Ti and / or Nb". Excessive addition exceeding the amount of Ti or Nb that can combine with C or N adversely affects the toughness and the weldability.

【0024】このうち上記(2)式〜(4)式は、添加し
たTiに比べN量が多く、Tiと結合しないフリーNが
多く存在する[上記(2)式]と共に、添加したNbに
比べてC量が多く、Nbと結合しないフリーのCが多く
存在する[上記(3)式]場合には、上記(4)式の如
く、大角粒界中に占めるフリーCやフリーNの量を適切
に制御すれば所望の効果が得られることを示すものであ
る。TiやNbと結合しないフリーNやフリーCの一部
は、鋼中の他の元素と結合して窒化物や炭化物を形成す
るが、それでも結合しないフリーNやフリーCは、歪時
効による靭性の劣化をもたらす様になる。このような場
合には、大角粒界中に占めるフリーCやフリーNの量が
上記(4)式の関係になるように適切に制御すれば良
い。
Among them, the above equations (2) to (4) show that the amount of N is larger than that of added Ti and that there is a lot of free N that does not bond with Ti [the above equation (2)]. In the case where the amount of C is large and there is a lot of free C that is not bonded to Nb [Equation (3)], the amount of free C or free N occupying in the large-angle grain boundary as in the above equation (4). It is shown that a desired effect can be obtained by appropriately controlling. Some of the free N and free C that do not bond with Ti and Nb combine with other elements in the steel to form nitrides and carbides, but the free N and free C that do not bond still have toughness due to strain aging. It causes deterioration. In such a case, the amount of free C or free N occupying in the large-angle grain boundaries may be appropriately controlled so as to satisfy the relationship of the above equation (4).

【0025】一方、上記(5)式〜(7)式は、添加した
Tiに比べてNの量が少なく、フリーNは存在しない
[上記(5)式]が、添加したNbに比べC量が多く、
Nbと結合しないフリーCが多く存在する場合であり、
上記(7)式の如く大角粒界中に占めるフリーC量を適
切に制御すれば所望の効果が得られることを示すもので
ある。すなわち、鋼中に存在するTiはフリーCと結合
して、炭化物として析出することになる。
On the other hand, in the above equations (5) to (7), the amount of N is smaller than that of the added Ti, and no free N is present [the above equation (5)]. Many,
In the case where there are many free Cs that do not bind to Nb,
This shows that a desired effect can be obtained by appropriately controlling the amount of free C occupying in the large-angle grain boundaries as in the above equation (7). That is, Ti present in the steel combines with free C and precipitates as carbide.

【0026】尚、本発明では添加したNbがC量に比べ
て多く、フリーCがほとんど存在しない場合については
特に想定していないが、これは実操業レベルではかかる
態様を想定し難いからである。
In the present invention, the case where the added Nb is larger than the amount of C and free C hardly exists is not particularly assumed, but this is because it is difficult to assume such an aspect at the actual operation level. .

【0027】本発明の鋼板は、CやNの添加を抑制する
ものではなく、必要に応じて添加することができるの
で、Cの添加抑制による引張強度の低下は生じない。よ
って、400MPa以上の強度を有しているものも提供す
ることができる。
The steel sheet of the present invention does not suppress the addition of C and N, but can be added as needed, so that the suppression of the addition of C does not cause a decrease in tensile strength. Therefore, a material having a strength of 400 MPa or more can be provided.

【0028】以上が本発明を特徴づける要件についての
説明であるが、本発明において所望の大角粒界を生成す
るために結晶を微細化させる方法は、鋼種等に応じ、加
熱温度、粗圧延時の累積圧下率、仕上圧延時の累積相当
塑性歪量、冷却温度などを適切に制御すればよい。
The requirements that characterize the present invention have been described above. In the present invention, the method of refining the crystal to produce a desired large-angle grain boundary depends on the type of steel, etc. , The cumulative equivalent plastic strain during finish rolling, the cooling temperature, etc. may be appropriately controlled.

【0029】具体的には、加熱温度が高いと初期オース
テナイト粒が粗大化しやすくなるので、低い方が望まし
い。しかし、加熱温度が高い場合でも粗圧延の累積圧下
率を大きくすることによって、オーステナイトの再結晶
が進行によりオーステナイトが微細化し、その結果フェ
ライト組織やベイナイト組織を微細化することができ
る。さらに、仕上圧延時の累積相当塑性歪量が多い方が
フェライト組織やベイナイト組織の微細化しやすいた
め、多くすることが望ましい。また、冷却方法が空冷の
場合より水冷を採用した場合もフェライト組織やベイナ
イト組織が微細化しやすく、結晶粒の微細化が不足する
場合には水冷が推奨される。しかし、これらの方法は、
全てを満足する必要性はなく、添加成分量に応じて各項
目を適切にすることが重要である。
Specifically, if the heating temperature is high, the initial austenite grains are likely to become coarse, so that a lower heating temperature is desirable. However, even when the heating temperature is high, by increasing the cumulative rolling reduction of the rough rolling, the recrystallization of austenite progresses to make the austenite fine, and as a result, the ferrite structure and the bainite structure can be made fine. Furthermore, it is desirable to increase the amount of cumulative equivalent plastic strain during finish rolling because the ferrite structure and the bainite structure are more likely to be refined. Also, when water cooling is adopted as the cooling method, the ferrite structure and the bainite structure are easily refined, and water cooling is recommended when the refinement of crystal grains is insufficient. However, these methods
There is no need to satisfy all, and it is important to make each item appropriate according to the amount of the added component.

【0030】次に、本発明鋼板の鋼中化学成分について
説明する。上述した通り、本発明の鋼板は、結晶方位が
15°以上の結晶粒を生成させ、該結晶粒界に存在するC
とNの固溶量を適切に制御した点に最重要ポイントを有
するものであって、鋼中の化学成分は特に限定されない
が、フェライト主体またはベイナイト主体のミクロ組織
を得るための好ましい化学成分は以下の通りである。
Next, the chemical components in the steel of the steel sheet of the present invention will be described. As described above, the steel sheet of the present invention has a crystal orientation
Generate crystal grains of 15 ° or more, and C present at the crystal grain boundaries
And the most important point in appropriately controlling the solid solution amount of N and the chemical composition in the steel is not particularly limited, but a preferred chemical composition for obtaining a ferrite-based or bainite-based microstructure is It is as follows.

【0031】C:0.03〜0.2% C含有量は、必要強度を確保するため0.03%以上が好ま
しく、より好ましくは0.05%以上である。但し、過度の
含有は溶接性や母材靭性に悪影響を及ぼすので、0.2%
以下、より好ましくは0.17%以下に抑えることが望まし
い。
C: 0.03% to 0.2% The C content is preferably 0.03% or more, more preferably 0.05% or more, in order to secure necessary strength. However, excessive content adversely affects weldability and base metal toughness.
It is desirable that the content be suppressed to 0.17% or less.

【0032】N:0.01%以下 Nは、鋼中に含まれるAl,Ti,Nb,Vなどの添加
元素と窒化物を形成し、母材組織の細粒化作用を有す
る。但し、0.01%を超えて含有量が多くなり過ぎると固
溶Nの増大を招き、特に溶接部の靭性が劣化するので、
0.01%以下に抑えることが好ましい。
N: 0.01% or less N forms nitrides with additional elements such as Al, Ti, Nb, and V contained in steel, and has an effect of refining the base metal structure. However, if the content exceeds 0.01% and becomes too large, an increase in solid solution N is caused, and particularly, the toughness of a welded portion is deteriorated.
It is preferable to keep the content to 0.01% or less.

【0033】また、C及びNを無害化するために、Ti
やNbを添加してTiNやNbC等として析出すること
も有効である。この場合のTiやNbの添加量は特に限
定されないが、一例を下記に示す。
In order to make C and N harmless, Ti
It is also effective to add Nb or Nb to precipitate as TiN or NbC. The amount of Ti or Nb added in this case is not particularly limited, but one example is shown below.

【0034】Ti:0.05%以下及び/又はNb:0.03%
以下 これらの元素は、鋼片加熱時のオーステナイト粒粗大化
抑制作用、圧延終了後のフェライト変態核生成促進作
用、またはオーステナイト粒再結晶抑制効果を通じてフ
ェライト結晶粒の微細化効果を有する元素である。具体
的には、Tiは窒化物の形成によって鋼中のフリーNを
低減することができる。但し、0.05%を超えて過剰に添
加しても母材靭性を劣化させるため、その上限を0.05%
にすることが好ましい。
[0034] Ti: 0.05% or less and / or Nb: 0.03%
Hereinafter, these elements are elements that have an effect of suppressing the coarsening of austenite grains during heating of a slab, an action of promoting the formation of ferrite transformation nuclei after rolling, or an effect of suppressing the recrystallization of austenite grains, thereby reducing the size of ferrite grains. Specifically, Ti can reduce free N in steel by forming nitrides. However, even if added in excess of 0.05%, the base material toughness is deteriorated.
Is preferable.

【0035】また、Nbは炭窒化物の形成により、圧延
中のオーステナイト粒粗大化作用および再結晶抑制作用
を発揮し、圧延終了後のフェライト粒微細化に有効な元
素であると共に、鋼中のフリーCと結合して炭化物を生
成するので、フリーC量を低減することができる。但
し、0.03%を超えて過剰に添加すると溶接性が劣化する
ため、その上限を0.03%にすることが好ましい。
Nb exerts an austenite grain coarsening effect during rolling and a recrystallization suppressing effect due to the formation of carbonitrides, and is an element effective in refining ferrite grains after the rolling is completed. Since it combines with free C to form carbide, the amount of free C can be reduced. However, an excessive addition exceeding 0.03% deteriorates the weldability. Therefore, it is preferable to set the upper limit to 0.03%.

【0036】本発明鋼板は、C及びN元素を必須元素と
して含み、必要に応じてTiやNbを添加するものであ
る。よって、残部は構造用鋼として従来から添加されて
いる元素及びFeと不可避不純物や微量許容元素を含み
得る。一般的に添加されている元素とその添加量を例示
する。
The steel sheet of the present invention contains C and N elements as essential elements, and Ti and Nb are added as necessary. Therefore, the balance may include elements conventionally added as structural steel, Fe, inevitable impurities, and trace allowable elements. Examples of commonly added elements and their amounts are shown below.

【0037】Si:0.5%以下 Siは、母材の強度向上および溶鋼の脱酸成分として有
用な元素であり、その効果を有効に発揮させるには0.05
%以上含有させることが望ましい。しかし、含有量が多
くなり過ぎると、溶接性や母材靭性を劣化させるので、
0.5%以下、より好ましくは0.45%以下に抑えるのが良
い。
Si: 0.5% or less Si is an element useful as a component for improving the strength of the base material and deoxidizing the molten steel.
% Is desirably contained. However, if the content is too large, the weldability and base metal toughness will deteriorate,
0.5% or less, more preferably 0.45% or less.

【0038】Mn:1.8%以下 Mnは、母材の強度上昇元素として有用であり、その為
には0.5%以上含有させることが好ましく、より好まし
くは0.7%以上である。但し、過度の含有は溶接性や母
材靭性劣化を招くので、1.8%以下、より好ましくは1.6
%以下に抑えるのが良い。
Mn: 1.8% or less Mn is useful as an element for increasing the strength of the base material, and for that purpose it is preferable to contain 0.5% or more, and more preferably 0.7% or more. However, excessive content causes deterioration of weldability and base metal toughness, so that the content is 1.8% or less, more preferably 1.6% or less.
%.

【0039】Al:0.01〜0.1% Alは、脱酸剤として有用であるのみならず、窒化物を
形成して母材組織の細粒化に寄与する。こうした作用は
0.01%以上、より好ましくは0.015%以上で有効に発揮
されるが、0.1%を超えて過度に含有させると母材靭性
が劣化するので、0.1%以下、より好ましくは0.05
%以下に抑えることが望ましい。
Al: 0.01 to 0.1% Al is not only useful as a deoxidizing agent, but also forms a nitride and contributes to the refinement of the base metal structure. These effects
0.01% or more, more preferably 0.015% or more is effective, but if it exceeds 0.1% excessively, the base material toughness deteriorates, so 0.1% or less, more preferably 0.05% or less.
% Is desirable.

【0040】また、その他の元素として、更なる他の特
性付与を目指して、下記元素を積極的に添加することも
有効である。
It is also effective to positively add the following elements as other elements for the purpose of imparting further characteristics.

【0041】V:0.05%以下及び/又はB:0.002%以
Vは、Nbと同様、炭窒化物の形成により、圧延中のオ
ーステナイト粒粗大化および再結晶抑制作用を発揮し、
圧延終了後のフェライト粒微細化に有効な元素である。
この様な作用を有効に発揮させるには0.002%以上添加
することが好ましい。但し、0.05%を超えて過剰に添加
すると溶接性が劣化するため、その上限を0.05%とする
ことが好ましい。
V: 0.05% or less and / or B: 0.002% or less
Lower V, like Nb, exhibits austenite grain coarsening during rolling and suppresses recrystallization by forming carbonitrides,
It is an element effective for refining ferrite grains after rolling.
To effectively exert such an effect, it is preferable to add 0.002% or more. However, if added in excess of 0.05%, the weldability deteriorates, so the upper limit is preferably set to 0.05%.

【0042】Bは、溶接熱影響部(HAZ)の靭性を向
上させるのに有効な元素であり、この様な作用を有効に
発揮させるためには0.0002%以上の添加が好ましい。但
し、0.002%を超えて添加すると、焼入れ性が増加し、
母材の低温靭性劣化を招くことから、その上限を0.002
%とすることが好ましい。
B is an element effective for improving the toughness of the heat affected zone (HAZ), and is preferably added in an amount of 0.0002% or more in order to effectively exert such an effect. However, if added in excess of 0.002%, hardenability increases,
Since the low-temperature toughness of the base material deteriorates, the upper limit is 0.002.
% Is preferable.

【0043】Cu:0.5%以下及び/又はNi:0.5%以
これらの元素は、いずれもオーステナイト結晶粒の微細
化および低温靭性の向上に寄与する元素である。
Cu: 0.5% or less and / or Ni: 0.5% or less
Under these elements are all elements contributing to the improvement of the miniaturization and low-temperature toughness of the austenite crystal grains.

【0044】具体的には、Cuは、結晶粒の微細化に有
効な元素であり、この様な作用を有効に発揮させるため
には、0.2%以上添加することが好ましい。但し、多量
に添加すると母材の溶接性を劣化させるので、その上限
は0.5%とすることが好ましい。
Specifically, Cu is an element effective for refining crystal grains, and it is preferable to add 0.2% or more in order to effectively exert such an effect. However, the addition of a large amount deteriorates the weldability of the base material, so the upper limit is preferably set to 0.5%.

【0045】Niは、低温靭性の向上に有効な元素であ
るが、高価なため、その上限は0.5%とすることが好ま
しい。
Ni is an element effective for improving the low-temperature toughness, but is expensive, so its upper limit is preferably 0.5%.

【0046】これらの元素は単独で使用しても良いし、
或いは併用しても構わないが、Cuを単独添加すると熱
間割れが発生する可能性があることから、Niも同時に
添加し、熱間割れを防止することが好ましい。
These elements may be used alone,
Alternatively, they may be used in combination. However, since hot cracking may occur when Cu is added alone, it is preferable to add Ni at the same time to prevent hot cracking.

【0047】Cr:0.1%以下及び/又はMo:0.1%以
これらの元素は、いずれも炭窒化物を析出させ、強度上
昇に寄与する元素であり、この様な作用を有効に発揮さ
せるためには、いずれの元素も0.03%以上添加すること
が好ましい。但し、過度の添加は溶接性および母材靭性
を劣化させるため、その上限は0.1%とすることが好ま
しい。
Cr: 0.1% or less and / or Mo: 0.1% or less
Under these elements, either precipitated carbonitrides, is an element contributing to the increase in strength, in order to develop this function effectively, it is preferable to add any of the elements even 0.03% or more. However, excessive addition deteriorates weldability and base metal toughness, so the upper limit is preferably set to 0.1%.

【0048】Ca:0.01%以下及び/又はZr:0.01%
以下 これらの元素は鋼中の介在物形態を球状化させることに
よって母材の靭性を高める作用を有する。
[0048] Ca: 0.01% or less and / or Zr: 0.01%
Hereinafter, these elements have the effect of increasing the toughness of the base material by spheroidizing the form of inclusions in the steel.

【0049】このうちCaは、鋼中介在物の形態を球状
化させることにより、母材の靭性を改善する効果を有す
る。この様な作用を有効に発揮させるためには0.0005%
以上添加することが好ましい。但し、過剰の添加は逆に
母材の靭性を劣化させるため、その上限は0.01%とする
ことが好ましい。
Of these, Ca has the effect of improving the toughness of the base material by spheroidizing the form of inclusions in the steel. 0.0005% to effectively exert such effects
It is preferable to add the above. However, an excessive addition adversely degrades the toughness of the base material, so the upper limit is preferably set to 0.01%.

【0050】Zrは、Caと同様、鋼中介在物の形態を
球状化させることによって母材の靭性を改善する作用を
有する。この様な作用を有効に発揮させるためには、0.
003%以上添加することが好ましい。但し、過剰の添加
は逆に母材の靭性を劣化させるため、その上限は0.01%
とすることが好ましい。
Like Ca, Zr has the effect of improving the toughness of the base metal by making the form of inclusions in the steel spheroid. In order to exert such effects effectively, it is necessary to use 0.
It is preferable to add 003% or more. However, excessive addition adversely degrades the toughness of the base material, so the upper limit is 0.01%.
It is preferable that

【0051】以下、本発明を実施例によって更に詳細に
説明するが、下記実施例は本発明を限定する性質のもの
ではなく、前・後記の主旨に基づいて設計変更すること
はいずれも本発明の技術的範囲内に含まれるものであ
る。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples do not limit the present invention, and any design changes based on the above and following gist will be described. Are included within the technical scope of

【0052】[0052]

【実施例】表1に記載の鋼種1〜5を用い、表2に示す条
件で加熱し、二段階に分けて圧延した後冷却し、表3に
示した組織を有する鋼板を製造した。得られた各鋼板に
ついて、TexSEM Laboratories社製のEBSP解析装置を用
いて、表層領域(表面から1.5mmの深さ位置)における
結晶方位差が15°以上の結晶粒を観察し、平均結晶粒径
Dを算出した。
EXAMPLES Using steel types 1 to 5 shown in Table 1, the steel sheets were heated under the conditions shown in Table 2, rolled in two stages, and then cooled to produce steel sheets having the structure shown in Table 3. Using an EBSP analyzer manufactured by TexSEM Laboratories, each of the obtained steel sheets was observed for crystal grains having a crystal orientation difference of 15 ° or more in the surface layer region (at a depth of 1.5 mm from the surface), and the average crystal grain size was measured.
D was calculated.

【0053】表1に示した鋼種1及び2の場合は上記(1)
式の左辺の値を算出し、鋼種3及び4の場合は上記(4)
式の左辺の値を算出し、鋼種5の場合は上記(7)式の左
辺の値を算出した。これらの式の値をパラメータ値とし
て表3に示す。
In the case of steel types 1 and 2 shown in Table 1, the above (1)
Calculate the value on the left side of the equation. For steel types 3 and 4, above (4)
The value on the left side of the equation was calculated, and in the case of steel type 5, the value on the left side of the above equation (7) was calculated. Table 3 shows the values of these equations as parameter values.

【0054】得られた鋼材の特性を測定するために、予
め10%の歪を付与した鋼材に250℃で1時間時効処理を施
した時の靭性劣化量を算出し、評価した。ここで靭性劣
化量(℃)とは、脆性破面遷移温度(vTrs)の差を意味
し、「10%歪付与時の脆性破面遷移温度」から「母材の
脆性破面遷移温度」を引いた値である。靭性劣化量が小
さいと、歪時効による靭性劣化が少ないことを示してい
る。また、引張試験はJIS 1A号試験片により行なった。
尚、表中YP又はYS(MPa)は降伏強度、TS(M
Pa)は引張強度を示す。
In order to measure the properties of the obtained steel material, the amount of deterioration in toughness when a steel material to which a strain of 10% was previously applied was subjected to an aging treatment at 250 ° C. for 1 hour was calculated and evaluated. Here, the toughness deterioration amount (° C.) means a difference in brittle fracture transition temperature (vTrs), and is calculated from “brittle fracture transition temperature when 10% strain is applied” to “brittle fracture transition temperature of base material”. It is the value subtracted. A small amount of toughness deterioration indicates that there is little toughness deterioration due to strain aging. The tensile test was performed using a JIS No. 1A test piece.
In the table, YP or YS (MPa) is the yield strength and TS (M
Pa) indicates the tensile strength.

【0055】これらの結果を表3に示す。また、上記
(1)式又は(4)式又は(7)式の値(パラメータ値)
と、靭性劣化量(℃)との関係を図2に示す。
Table 3 shows the results. In addition, the value (parameter value) of the above formula (1) or (4) or (7)
Fig. 2 shows the relationship between the toughness degradation amount (° C).

【0056】[0056]

【表1】 [Table 1]

【0057】[0057]

【表2】 [Table 2]

【0058】[0058]

【表3】 [Table 3]

【0059】表3及び図2より次の様に考察できる。The following can be considered from Table 3 and FIG.

【0060】No.1〜12は、本発明の要件を満足する実施
例であり、上記(1)式又は(4)式又は(7)式の値
(パラメータ値)が0.4以下である。母材の靭性破面遷
移温度は、試験片によっても夫々異なるが、10%歪付与
後時効処理を施した場合でも、靭性劣化量が小さく20℃
以下であることがわかる。すなわち、本発明の要件を満
足するものは大角粒界中に、C及びNの固溶量が適切に
存在しているので、バランスが良く、歪時効による靭性
劣化を低減することができた。更に、本発明例では、強
度付与に十分なC量を含有しているので、引張特性も良
好である。
Nos. 1 to 12 are examples satisfying the requirements of the present invention, and the value (parameter value) of the above equation (1), (4) or (7) is 0.4 or less. The transition temperature of toughness fracture surface of the base metal varies depending on the test piece, but even when the aging treatment is performed after 10% strain imparting, the toughness deterioration amount is small and 20 ° C.
It can be seen that: That is, those satisfying the requirements of the present invention had good balance of solid solution amounts of C and N in the large-angle grain boundaries, so that the balance was good and the deterioration of toughness due to strain aging could be reduced. Furthermore, in the example of the present invention, since a sufficient amount of C for imparting strength is contained, the tensile properties are also good.

【0061】これに対し、No.13〜22は本発明の要件を
満足しない比較例である。これらは上記(1)式又は
(4)式又は(7)式で規定するパラメータ値が0.4を超
えているので、大角粒界中にC及びN原子の量が適切に
存在しないため、フリーC及びフリーNの量が多く、歪
が付与されると、導入された転位などにCやNが固着
し、靭性が劣化する。また、引張特性も劣化した。
On the other hand, Nos. 13 to 22 are comparative examples which do not satisfy the requirements of the present invention. Since the parameter values defined by the above formula (1) or (4) or (7) exceed 0.4, the amounts of C and N atoms are not properly present in the large-angle grain boundaries. When the amount of free N is large and strain is applied, C and N adhere to introduced dislocations and the like, and toughness deteriorates. In addition, the tensile properties also deteriorated.

【0062】No.1〜3とNo.13〜14、No.4〜5とNo.15〜1
6、No.6〜7とNo.17〜18、No.8〜9とNo.19〜20、No.10〜
12とNo.21〜22を夫々比較すると、鋼種の化学成分組成
が同じであるが、本発明の要件を満足する場合としない
場合がある。つまり、製造条件によって、大角粒界の体
積とCやNの固溶量とのバランスが変化することが分か
る。このような場合は、加熱温度、粗圧延の累積圧下
率、仕上圧延の累積相当塑性歪量、冷却方法などを適宜
変えると良い。
No. 1-3 and No. 13-14, No. 4-5 and No. 15-1
6, No.6-7 and No.17-18, No.8-9 and No.19-20, No.10-
Comparing No. 12 with Nos. 21 to 22, respectively, the chemical composition of the steel type is the same, but there are cases where the requirements of the present invention are satisfied and cases where the requirements are not satisfied. In other words, it can be seen that the balance between the volume of the large-angle grain boundaries and the solid solution amounts of C and N changes depending on the manufacturing conditions. In such a case, the heating temperature, the cumulative rolling reduction of the rough rolling, the cumulative equivalent plastic strain of the finish rolling, the cooling method, and the like may be appropriately changed.

【0063】[0063]

【発明の効果】上記のような構成を採用すると、構造用
鋼として必要な引張強度を維持しつつ、しかも歪時効に
よる靭性劣化の少ない鋼板を提供することができた。
According to the present invention, it is possible to provide a steel sheet which maintains the tensile strength required for structural steel and has less toughness deterioration due to strain aging.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で得た鋼板の板厚方向断面のEBSPカラー
マップの一例を示す図である。
FIG. 1 is a diagram showing an example of an EBSP color map of a cross section in the thickness direction of a steel sheet obtained by the present invention.

【図2】パラメータ値と靭性劣化量との関係を示すグラ
フである。
FIG. 2 is a graph showing a relationship between a parameter value and a toughness deterioration amount.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 フェライト主体またはベイナイト主体の
ミクロ組織を有する鋼板であって、C及びNを含み、EB
SP(Electron Back Scattering Pattern)を用いた結晶
方位解析による結晶方位差が15°以上の結晶粒の平均
粒径をDとしたとき、該平均粒径Dと前記C及びNの含有
率との関係が下記(1)式を満足することを特徴とする
歪時効による靭性劣化の少ない鋼板。 (4.63×[C]+3.97×[N])×D/15≦0.4 ・・・(1) ここで、[元素]は鋼材中の各元素の含有量[質量%]
を夫々表わす。
1. A steel sheet having a microstructure mainly composed of ferrite or bainite, comprising C and N,
When the average grain size of crystal grains having a crystal orientation difference of 15 ° or more as determined by crystal orientation analysis using an SP (Electron Back Scattering Pattern) is defined as D, the relationship between the average grain size D and the contents of C and N described above. Satisfies the following expression (1): a steel sheet with less toughness deterioration due to strain aging. (4.63 × [C] + 3.97 × [N]) × D / 15 ≦ 0.4 (1) Here, [element] is the content [mass%] of each element in the steel material.
Represents each.
【請求項2】 質量%(以下%で示す)で、C:0.0
3〜0.2%を含むものである請求項1に記載の鋼板。
2. C: 0.0% by mass (hereinafter referred to as%)
The steel sheet according to claim 1, which contains 3 to 0.2%.
【請求項3】 フェライト主体またはベイナイト主体の
ミクロ組織を有する鋼板であって、C及びNを含み、更
に、Ti及び/又はNbを含み、EBSP(Electron Back
Scattering Pattern)を用いた結晶方位解析による結晶
方位差が15°以上の結晶粒の平均粒径をDとしたと
き、該平均粒径Dと前記C及びN、Ti及び/又はNb
の含有率との関係が下記(2)式〜(4)式を満足する
ことを特徴とする歪時効による靭性劣化の少ない鋼板。 [N]−[Ti]/3.42≧0 ・・・(2) [C]−[Nb]/7.74≧0 ・・・(3) {4.63×([C]−[Nb]/7.74)+3.97×([N]−[Ti]/3.42)} ×D/15≦0.4 ・・・(4) ここで、[元素]は鋼材中の各元素の含有量[質量%]
を夫々表わす。
3. A steel sheet having a microstructure mainly composed of ferrite or bainite, containing C and N, further containing Ti and / or Nb, and comprising an EBSP (Electron Backing).
When the average grain size of crystal grains having a crystal orientation difference of 15 ° or more by a crystal orientation analysis using Scattering Pattern is D, the average grain size D is compared with the average grain size of C, N, Ti and / or Nb.
Characterized by satisfying the following formulas (2) to (4) with respect to the content ratio of: [N] − [Ti] /3.42≧0 (2) [C] − [Nb] /7.74≧0 (3) {4.63 × ([C] − [Nb] /7.74) +3. 97 × ([N] − [Ti] /3.42)} × D / 15 ≦ 0.4 (4) where [element] is the content [mass%] of each element in the steel material.
Represents each.
【請求項4】 フェライト主体またはベイナイト主体の
ミクロ組織を有する鋼板であって、C及びNを含み、更
に、Ti及び/又はNbを含み、EBSP(Electron Back
Scattering Pattern)を用いた結晶方位解析による結晶
方位差が15°以上の結晶粒の平均粒径をDとしたと
き、該平均粒径Dと前記C及びN、Ti及び/又はNb
の含有率との関係が下記(5)式〜(7)式を満足する
ことを特徴とする歪時効による靭性劣化の少ない鋼板。 [N]−[Ti]/3.42<0 ・・・(5) [C]−[Nb]/7.74≧0 ・・・(6) {4.63×[C]−[Nb]/7.74−([Ti]−3.42×[N])/3.99}×D /15≦0.4 ・・・(7) ここで、[元素]は鋼材中の各元素の含有量[質量%]
を夫々表わす。
4. A steel sheet having a microstructure mainly composed of ferrite or bainite, containing C and N, further containing Ti and / or Nb, and comprising an EBSP (Electron Backing).
When the average grain size of crystal grains having a crystal orientation difference of 15 ° or more by a crystal orientation analysis using Scattering Pattern is D, the average grain size D is compared with the average grain size of C, N, Ti and / or Nb.
Characterized by satisfying the following formulas (5) to (7): [N] − [Ti] /3.42 <0 (5) [C] − [Nb] /7.74≧0 (6) {4.63 × [C] − [Nb] /7.74 − ([Ti ] −3.42 × [N]) / 3.99} × D / 15 ≦ 0.4 (7) where [element] is the content of each element in the steel material [mass%]
Represents each.
【請求項5】 質量%(以下%で示す)で、C:0.0
3〜0.2%を含み、Ti:0.05%以下及び/又は
Nb:0.03%以下を含むものである請求項3または
4に記載の鋼板。
5. C: 0.0% by mass (hereinafter referred to as%)
The steel sheet according to claim 3, wherein the steel sheet contains 3 to 0.2%, and contains 0.05% or less of Ti and / or 0.03% or less of Nb.
【請求項6】 引張強度が400MPa以上である請求
項1〜5のいずれかに記載の鋼板。
6. The steel sheet according to claim 1, having a tensile strength of 400 MPa or more.
JP2001055575A 2001-02-28 2001-02-28 Steel sheet with less toughness deterioration due to strain aging Expired - Fee Related JP3848091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001055575A JP3848091B2 (en) 2001-02-28 2001-02-28 Steel sheet with less toughness deterioration due to strain aging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001055575A JP3848091B2 (en) 2001-02-28 2001-02-28 Steel sheet with less toughness deterioration due to strain aging

Publications (2)

Publication Number Publication Date
JP2002256376A true JP2002256376A (en) 2002-09-11
JP3848091B2 JP3848091B2 (en) 2006-11-22

Family

ID=18915744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001055575A Expired - Fee Related JP3848091B2 (en) 2001-02-28 2001-02-28 Steel sheet with less toughness deterioration due to strain aging

Country Status (1)

Country Link
JP (1) JP3848091B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007072752A1 (en) * 2005-12-19 2007-06-28 Kabushiki Kaisha Kobe Seiko Sho Sheet steel excellent in fatigue crack propagation resistance
JP2009228020A (en) * 2008-03-19 2009-10-08 Kobe Steel Ltd High-strength thick steel plate having excellent strain aging property, and method for producing the same
JP2011184754A (en) * 2010-03-09 2011-09-22 Kobe Steel Ltd Steel having excellent brittle crack arrest property, and method of producing the same
JP2012197497A (en) * 2011-03-22 2012-10-18 Kobe Steel Ltd Thick steel plate excellent in toughness and strain aging property
JP2014062333A (en) * 2006-10-06 2014-04-10 Exxonmobil Upstram Research Company Low yield ratio dual phase steel linepipe with superior strain aging resistance
JP2022510212A (en) * 2018-11-29 2022-01-26 ポスコ High-strength steel with excellent ductility and low-temperature toughness and its manufacturing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007072752A1 (en) * 2005-12-19 2007-06-28 Kabushiki Kaisha Kobe Seiko Sho Sheet steel excellent in fatigue crack propagation resistance
JP2014062333A (en) * 2006-10-06 2014-04-10 Exxonmobil Upstram Research Company Low yield ratio dual phase steel linepipe with superior strain aging resistance
JP2009228020A (en) * 2008-03-19 2009-10-08 Kobe Steel Ltd High-strength thick steel plate having excellent strain aging property, and method for producing the same
KR101096930B1 (en) 2008-03-19 2011-12-22 가부시키가이샤 고베 세이코쇼 High-strength thick steel sheet excellent in distortion aging property, and process for producing the same
JP2011184754A (en) * 2010-03-09 2011-09-22 Kobe Steel Ltd Steel having excellent brittle crack arrest property, and method of producing the same
JP2012197497A (en) * 2011-03-22 2012-10-18 Kobe Steel Ltd Thick steel plate excellent in toughness and strain aging property
JP2022510212A (en) * 2018-11-29 2022-01-26 ポスコ High-strength steel with excellent ductility and low-temperature toughness and its manufacturing method
JP7221475B2 (en) 2018-11-29 2023-02-14 ポスコ カンパニー リミテッド High-strength steel material with excellent ductility and low-temperature toughness, and method for producing the same
JP7221475B6 (en) 2018-11-29 2023-02-28 ポスコ カンパニー リミテッド High-strength steel material with excellent ductility and low-temperature toughness, and method for producing the same

Also Published As

Publication number Publication date
JP3848091B2 (en) 2006-11-22

Similar Documents

Publication Publication Date Title
KR102044693B1 (en) High strength cold rolled steel sheet and method of producing such steel sheet
JP4362318B2 (en) High strength steel plate with excellent delayed fracture resistance and method for producing the same
EP2781615A1 (en) Thin steel sheet and process for producing same
JP2002129281A (en) High tensile strength steel for welding structure excellent in fatigue resistance in weld zone and its production method
JP4051999B2 (en) High tensile hot-rolled steel sheet excellent in shape freezing property and durability fatigue property after forming, and method for producing the same
JP3470660B2 (en) Chromium stainless steel material for spring and multi-layered structure for spring and method for producing the same
JP2002256376A (en) Steel sheet having low deterioration in toughness caused by strain aging
JP2023071938A (en) High strength steel sheet having excellent ductility and workability, and method for manufacturing the same
JP2003155543A (en) Ferrite stainless steel having excellent deep drawability and reduced plane anisotropy, and production method therefor
EP4079904A1 (en) High-strength steel sheet having superior workability, and manufacturing method therefor
US20230029040A1 (en) High strength steel sheet having superior workability and method for manufacturing same
JP2000129400A (en) Annealed martensitic stainless steel excellent in strength, toughness, and spring characteristic
KR102321287B1 (en) High strength steel sheet having excellent workability and method for manufacturing the same
JP7442645B2 (en) High-strength steel plate with excellent workability and its manufacturing method
KR102321297B1 (en) High strength steel sheet having excellent workability and method for manufacturing the same
JP7403658B2 (en) High-strength steel plate with excellent workability and its manufacturing method
KR102353611B1 (en) High strength steel sheet having excellent workability and method for manufacturing the same
JP4044862B2 (en) Composite structure type high strength steel plate excellent in earthquake resistance and weldability and method for producing the same
JP2000096140A (en) Production of high toughness high damping alloy
JP2005194586A (en) Method for manufacturing steel plate with composite structure excellent in fatigue characteristic
EP4079899A2 (en) High strength steel sheet having excellent workability and method for manufacturing same
JP2003342674A (en) Cast steel for welding having excellent toughness
JP2023506049A (en) High-strength steel sheet with excellent workability and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060824

R150 Certificate of patent or registration of utility model

Ref document number: 3848091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees