JPH09141678A - Manufacture of composite optical device - Google Patents

Manufacture of composite optical device

Info

Publication number
JPH09141678A
JPH09141678A JP30457095A JP30457095A JPH09141678A JP H09141678 A JPH09141678 A JP H09141678A JP 30457095 A JP30457095 A JP 30457095A JP 30457095 A JP30457095 A JP 30457095A JP H09141678 A JPH09141678 A JP H09141678A
Authority
JP
Japan
Prior art keywords
resin
mold
contact
base material
central axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30457095A
Other languages
Japanese (ja)
Inventor
Satoshi Teramoto
諭 寺本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP30457095A priority Critical patent/JPH09141678A/en
Publication of JPH09141678A publication Critical patent/JPH09141678A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent an air bubble liable to cause the deterioration of an optical performance in the resin layer of a manufactured composite optical device by changing a section in which a resin comes into contact with a molding die at a low speed. SOLUTION: The optical face 1a of a molding die 1 is brought into contact with the top part 5a of a resin by moving the molding die 1 at a speed of about 0.1mm/sec. A section in which the molding die 1 is moved at this speed is between the distance h (2.7-0.04T)mm and the lower limits of a variation (2.5-0.04T)mm. Therefore, by moving the molding die 1 at a low speed (0.1mm/ sec) only in this section, the optical face 1a of the molding die 1 comes into contact the resin 5, so that no air bubbles may be mixed into the resin 5. T deg.C is an ambient temperature and h is the distance between the molded face of a basic material 2 on a central axis and the top part 5(a) of the resin 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光学素子の基材上
に樹脂層を形成した複合型光学素子の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a composite type optical element in which a resin layer is formed on a base material of an optical element.

【0002】[0002]

【従来の技術】従来、複合型光学素子を製造する際、基
材の成形面上に吐出した樹脂と金型の光学面(樹脂を押
圧する面)とを接触させる時に、樹脂内へ気泡が混入し
やすいことは周知の事実である。そこで、気泡の混入を
阻止すべく、例えば特開平5−8231号公報記載の発
明が開示されている。
2. Description of the Related Art Conventionally, when a composite type optical element is manufactured, when a resin discharged onto a molding surface of a substrate is brought into contact with an optical surface of a mold (a surface pressing the resin), bubbles are generated in the resin. It is a well-known fact that it is easily mixed. Therefore, in order to prevent the inclusion of air bubbles, for example, the invention described in Japanese Patent Application Laid-Open No. 5-8231 is disclosed.

【0003】上記発明は、金型の光学面を低速で基材上
の樹脂に接触させる方法である。また、金型の光学面が
樹脂に接触した後も、樹脂が所望の樹脂層形状となるま
で金型の押圧を継続しなければならない。この時も、高
速で押圧すると樹脂内に気泡を巻き込んでしまうことは
周知の事実である。そこで、上記発明によれば、この時
も接触時ほど低速ではないものの、所望の樹脂層形状が
形成されるまではやはり低速で押圧する方法である。
The above invention is a method of bringing the optical surface of the mold into contact with the resin on the substrate at a low speed. Further, even after the optical surface of the mold contacts the resin, the pressing of the mold must be continued until the resin has a desired resin layer shape. Even at this time, it is a well-known fact that bubbles are trapped in the resin when pressed at a high speed. Therefore, according to the above-mentioned invention, although the pressure is not as low as that at the time of contact, the pressing is still performed at a low speed until the desired resin layer shape is formed.

【0004】[0004]

【発明が解決しようとする課題】基材の成形面上に吐出
された樹脂は雰囲気温度によって樹脂の粘度が異なる。
そのため、吐出された樹脂量が一定の場合、その雰囲気
温度によって中心軸上における基材の成形面と吐出され
た樹脂の面頂との距離が異なる。従って、金型の光学面
と基材の成形面上に吐出された樹脂の面頂とが接触する
位置は雰囲気温度に応じて異なってくる。
The resin discharged onto the molding surface of the base material has a different viscosity depending on the ambient temperature.
Therefore, when the amount of discharged resin is constant, the distance between the molding surface of the base material and the top of the discharged resin on the central axis varies depending on the ambient temperature. Therefore, the position where the optical surface of the mold and the top of the resin discharged onto the molding surface of the base material come into contact with each other differs depending on the ambient temperature.

【0005】しかしながら、前記従来技術においては、
金型の光学面と樹脂の面頂とが接触する位置をどのよう
に制御するかに関しての記述がない。もちろん、金型の
光学面と樹脂の面頂とが接触するであろうと予測される
区間を幅広く設定すれば、金型の光学面と樹脂の面頂と
が接触する時に生じる気泡の混入を防止することはでき
る。しかし、金型の光学面と樹脂の面頂とが接触する時
は金型を最も低速で移動させる必要があるため、前記区
間を幅広く設定するとタクトタイムが著しく長くなり、
コストがアップする欠点がある。また、設備全体を温調
すれば、金型の光学面と樹脂の面頂とが接触する位置は
変化しないものの、大幅なコストアップの要因となる。
However, in the above prior art,
There is no description about how to control the contact position between the optical surface of the mold and the top of the resin. Of course, by setting a wide range where it is expected that the optical surface of the mold and the top of the resin will contact, it is possible to prevent air bubbles from entering when the optical surface of the mold and the top of the resin contact. You can do it. However, when the optical surface of the mold and the top of the resin contact each other, it is necessary to move the mold at the lowest speed.
It has the drawback of increasing costs. Further, if the temperature of the entire equipment is controlled, the position where the optical surface of the mold and the top of the resin contact each other does not change, but this causes a significant cost increase.

【0006】請求項1の課題は、雰囲気温度が変化して
も製造時におけるタクトタイムの延長を最小限に抑える
ことができ、かつ樹脂層内に気泡が混入することのない
複合型光学素子の製造方法を提供することにある。
An object of the present invention is to provide a composite optical element which can minimize the extension of the tact time at the time of manufacturing even if the ambient temperature changes, and in which bubbles are not mixed in the resin layer. It is to provide a manufacturing method.

【0007】[0007]

【課題を解決するための手段】請求項1の発明は、光学
素子の基材表面にエネルギー硬化型の樹脂を供給し、所
望の光学面を有する金型を接触させて樹脂を押し広げ、
基材表面と金型との間に所望の樹脂層を形成した後、エ
ネルギーを照射する複合型光学素子の製造方法におい
て、前記樹脂に金型が低速で接触する区間を雰囲気温度
に応じて変化させることを特徴とする複合型光学素子の
製造方法である。
According to a first aspect of the present invention, an energy curable resin is supplied to the surface of a base material of an optical element, a mold having a desired optical surface is brought into contact with the resin to spread the resin,
In a method of manufacturing a composite optical element in which a desired resin layer is formed between a substrate surface and a mold, energy is applied to the composite type optical element, and a section in which the mold contacts the resin at a low speed is changed according to an ambient temperature. And a method for manufacturing a composite optical element.

【0008】請求項1の発明の詳細を以下に説明する。
図1に示すように、雰囲気温度が25℃の条件で、成形
面上の曲率半径が100mm,他方の面が平面,直径が
25mmに形成された基材2の成形面上へ樹脂5を0.
1g吐出し、該樹脂5に所望の光学面を有する金型(図
示省略)を接触させて基材2上に樹脂5を広げる場合を
説明する。
The details of the invention of claim 1 will be described below.
As shown in FIG. 1, under the condition of the ambient temperature of 25 ° C., the resin 5 is applied to the molding surface of the base material 2 having a radius of curvature of 100 mm on the molding surface, the other surface being flat and having a diameter of 25 mm. .
A case will be described in which 1 g is discharged and a mold (not shown) having a desired optical surface is brought into contact with the resin 5 to spread the resin 5 on the base material 2.

【0009】上記の場合、中心軸上における基材2の成
形面と樹脂5の面頂との距離hは約1.6mmである。
しかし、複合型光学素子の製造においては、樹脂吐出量
のバラツキや金型移動時の停止位置のバラツキが発生す
るため、金型を低速で移動させる区間にもある程度の幅
を持たせる必要がある。そこで、検討を進めたところ、
移動する金型の光学面が樹脂5の面頂に接触する時に気
泡を混入させないために必要な低速の区間は、雰囲気温
度25℃の時、中心軸上における金型の光学面と基材2
の成形面との間隔が1.7mmの位置から1.5mmの
位置までであることがわかった。従って、この区間を
0.1mm/secで移動するように金型速度を設定す
ればよく、その時間は2secである。
In the above case, the distance h between the molding surface of the substrate 2 and the top of the resin 5 on the central axis is about 1.6 mm.
However, in the manufacture of the composite optical element, the resin discharge amount varies and the stop position varies when the mold is moved. Therefore, it is necessary to give a certain width to the section where the mold is moved at a low speed. . So, when we proceeded with the study,
When the optical surface of the moving mold comes into contact with the top of the resin 5, a low-speed section required to prevent air bubbles from entering is the optical surface of the mold and the substrate 2 on the central axis when the ambient temperature is 25 ° C.
It was found that the distance from the molding surface of was from the position of 1.7 mm to the position of 1.5 mm. Therefore, the mold speed may be set so as to move at 0.1 mm / sec in this section, and the time is 2 sec.

【0010】ところが、雰囲気温度が変化すると樹脂5
の粘度も変化するため、基材2上に吐出された樹脂5の
形状が変化する。つまり、中心軸上における基材2の成
形面と樹脂5の面頂との距離hも変化する。例えば、雰
囲気温度が20℃の場合、中心軸上における基材2の成
形面と樹脂5の面頂との距離hは約1.8mmになる。
また、雰囲気温度が30℃の場合、中心軸上における基
材2の成形面と樹脂5の面頂との距離hは約1.4mm
となる。
However, when the ambient temperature changes, the resin 5
Since the viscosity of the resin also changes, the shape of the resin 5 discharged onto the base material 2 changes. That is, the distance h between the molding surface of the base material 2 and the top of the resin 5 on the central axis also changes. For example, when the ambient temperature is 20 ° C., the distance h between the molding surface of the base material 2 and the top of the resin 5 on the central axis is about 1.8 mm.
When the ambient temperature is 30 ° C., the distance h between the molding surface of the base material 2 and the top of the resin 5 on the central axis is about 1.4 mm.
Becomes

【0011】上記温度範囲(20℃〜30℃)内におい
ては、距離hが概略直線的に変化することを検討により
判明している。従って、雰囲気温度が20℃の場合、金
型を低速で移動させる区間は、前述したバラツキの範囲
を考慮して中心軸上における金型の光学面と基材2の成
形面との距離を1.9mmの位置から1.7mmの位置
までに設定する必要がある。また、雰囲気温度が30℃
の場合、金型を低速で移動させる区間は、前述したバラ
ツキの範囲を考慮して中心軸上における金型の光学面と
基材2の成形面との距離を1.5mmの位置から1.3
mmの位置までに設定する必要がある。
It has been found from a study that the distance h changes substantially linearly within the above temperature range (20 ° C. to 30 ° C.). Therefore, when the ambient temperature is 20 ° C., in the section where the mold is moved at a low speed, the distance between the optical surface of the mold and the molding surface of the base material 2 on the central axis is 1 in consideration of the range of variation described above. It is necessary to set from the position of 1.9 mm to the position of 1.7 mm. Also, the ambient temperature is 30 ° C.
In the case of No. 1, in the section where the mold is moved at a low speed, the distance between the optical surface of the mold and the molding surface of the base material 2 on the central axis from the position of 1.5 mm is 1. Three
It is necessary to set up to the position of mm.

【0012】因って、20℃〜30℃の範囲で雰囲気温
度がT℃の場合、金型を低速で移動させなければならな
い区間は、中心軸上における基材2の成形面から金型の
光学面までの間隔が(2.7−0.04T)mmの位置
から(2.5−0.04T)mmの位置までとなる。す
ると、雰囲気温度が20℃〜30℃の範囲で変化する可
能性のあるところで複合型光学素子を製造しようとした
場合、中心軸上における金型の光学面と基材2の成形面
との間隔が1.9mmの位置から1.3mmの位置まで
金型を0.1mm/secで移動させなければならな
い。従って、金型が0.1mm/secで移動する時間
の合計は6secとなる。
Therefore, when the atmosphere temperature is T ° C. in the range of 20 ° C. to 30 ° C., the section where the mold must be moved at a low speed is located on the central axis from the molding surface of the base material 2 to the mold. The distance to the optical surface is from the position of (2.7-0.04T) mm to the position of (2.5-0.04T) mm. Then, when an attempt is made to manufacture a composite optical element in a place where the ambient temperature may change in the range of 20 ° C. to 30 ° C., the gap between the optical surface of the mold and the molding surface of the base material 2 on the central axis. The mold must be moved from the position of 1.9 mm to the position of 1.3 mm at 0.1 mm / sec. Therefore, the total time for the die to move at 0.1 mm / sec is 6 sec.

【0013】これに対し、雰囲気温度が20℃〜30℃
の範囲で変化する可能性のあるところで複合型光学素子
を製造しようとした場合でも、その雰囲気温度を随時測
定することにより、金型が0.1mm/secで移動す
る区間を限定することができる。すなわち、雰囲気温度
がT℃の時に金型を0.1mm/secで移動させる区
間は、中心軸上における金型の光学面と基材2の成形面
との間隔が(2.7−0.04T)mmの位置から
(2.5−0.04T)mmの位置までとなるように
し、金型の移動を制御する。この制御により、金型を
0.1mm/secで移動させる時間は雰囲気温度にか
かわらず2secで一定となる。つまり、製造時の雰囲
気温度が変化してもタクトタイムはほとんど変化しない
ことになる。
On the other hand, the ambient temperature is 20 ° C to 30 ° C.
Even if an attempt is made to manufacture a composite type optical element in a range that may change within the range of 1, the range in which the mold moves at 0.1 mm / sec can be limited by measuring the ambient temperature as needed. . That is, in the section in which the mold is moved at 0.1 mm / sec when the ambient temperature is T ° C., the distance between the optical surface of the mold and the molding surface of the substrate 2 on the central axis is (2.7-0. The movement of the mold is controlled so as to be from the position of 04T) mm to the position of (2.5-0.04T) mm. By this control, the time for moving the mold at 0.1 mm / sec is constant at 2 sec regardless of the ambient temperature. That is, the takt time hardly changes even when the ambient temperature during manufacturing changes.

【0014】[0014]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施の形態1)図2〜図7は本実施の形態を示す製造
工程図である。図2に示すように、両面が凹面のガラス
製の基材2にはエネルギー硬化型の樹脂5が必要量吐出
されている。基材2の成形面の曲率半径は100mm,
非成形面(樹脂を載置しない面)の曲率半径は20m
m,外径は25mmである。基材2の成形面の最外周部
には中心軸に対して垂直で半径方向の幅が2mmの端面
2aが基材2の中心軸に対して軸対称形状となるように
設けられている。また、樹脂5の必要量は予め求められ
ており、その重量は0.1gである。
(Embodiment 1) FIGS. 2 to 7 are manufacturing process diagrams showing the present embodiment. As shown in FIG. 2, a required amount of the energy curable resin 5 is discharged onto the glass base material 2 having concave surfaces on both sides. The radius of curvature of the molding surface of the base material 2 is 100 mm,
The radius of curvature of the non-molding surface (the surface on which the resin is not placed) is 20 m
m, the outer diameter is 25 mm. At the outermost peripheral portion of the molding surface of the base material 2, an end surface 2a perpendicular to the central axis and having a radial width of 2 mm is provided so as to be axially symmetrical with respect to the central axis of the base material 2. The required amount of the resin 5 has been determined in advance, and its weight is 0.1 g.

【0015】次に、図3に示すように、金型1を樹脂5
の頂部5aに接触する直前までは高速で移動させる。た
だし、雰囲気温度T℃と、中心軸上における基材2の成
形面と樹脂の頂部5aの距離h(mm)との間の関係は
検討の結果、h=2.6−0.04Tであることが判明
した。そこで、金型1を高速で移動させる区間はバラツ
キの上限をとって中心軸上の金型1の光学面1aと基材
2の成形面との距離を(2.7−0.04T)mmの位
置までとする。なお、金型1は光学面1aの曲率半径が
90mm,直径が20mm、その中心軸は基材2の中心
軸と同一で上下動自在に保持されている。
Next, as shown in FIG.
It is moved at a high speed until just before it comes into contact with the top 5a. However, the relationship between the ambient temperature T ° C. and the distance h (mm) between the molding surface of the base material 2 and the resin top portion 5a on the central axis is a result of examination, and as a result, h = 2.6−0.04T. It has been found. Therefore, the upper limit of the variation is set in the section in which the mold 1 is moved at high speed, and the distance between the optical surface 1a of the mold 1 and the molding surface of the substrate 2 on the central axis is (2.7-0.04T) mm. Up to the position. The mold 1 has an optical surface 1a having a radius of curvature of 90 mm and a diameter of 20 mm, and the central axis thereof is the same as the central axis of the substrate 2 and is held so as to be vertically movable.

【0016】次いで、図4に示すように、金型1を0.
1mm/secで移動させ、金型1の光学面1aを樹脂
5の頂部5aに接触させる。この速度で金型1を移動さ
せる区間は、前記距離h(2.7−0.04T)mmか
らバラツキの下限である(2.5−0.04T)mmま
での間とする。この区間だけ金型1を低速(0.1mm
/sec)で移動させることにより、必ず金型1の光学
面1aと樹脂5とが接触する。また、金型1と樹脂5と
を低速で接触させているので、樹脂5内に気泡が混入す
ることはない。さらに、この工程に要する時間は雰囲気
温度にかかわらず2secで一定であり、製造時のタク
トタイムが著しく長くなることはない。
Next, as shown in FIG.
The optical surface 1a of the mold 1 is brought into contact with the top portion 5a of the resin 5 by moving it at 1 mm / sec. The section in which the mold 1 is moved at this speed is between the distance h (2.7-0.04T) mm and the lower limit of the variation (2.5-0.04T) mm. The die 1 is operated at low speed (0.1 mm
/ Sec), the optical surface 1a of the mold 1 and the resin 5 always come into contact with each other. Further, since the mold 1 and the resin 5 are brought into contact with each other at a low speed, air bubbles are not mixed in the resin 5. Furthermore, the time required for this step is constant at 2 seconds regardless of the ambient temperature, and the takt time during manufacturing does not become extremely long.

【0017】続いて、図5に示すように、中心軸上の樹
脂層3の厚さが所望の値(本実施の形態では0.1m
m)になるまで、金型1を移動させる。この時の移動速
度は、0.1mm/sec程の低速にする必要はなく、
0.5mm/sec程度で差し支えない。この状態で、
基材2の下方から図示省略した手段によりエネルギーを
照射し、樹脂層3を硬化させる。エネルギーの照射が完
了した時点で、金型1,基材2および樹脂層3が一体と
なった密着体が形成されている。
Then, as shown in FIG. 5, the thickness of the resin layer 3 on the central axis is a desired value (0.1 m in this embodiment).
The mold 1 is moved until it becomes m). The moving speed at this time does not need to be as low as 0.1 mm / sec,
It may be about 0.5 mm / sec. In this state,
The resin layer 3 is cured by irradiating energy from below the base material 2 by means not shown. At the time when the irradiation of energy is completed, the contact body in which the mold 1, the base material 2 and the resin layer 3 are integrated is formed.

【0018】次に、図6に示すように、前記密着体を上
昇させると、予め基材2の端面2aの一部の上方に設け
られていた剥離用の部材4が基材2の端面2aと面接触
する。ただし、剥離用の部材4下部には基材2の端面2
aと平行な平面4aが形成されているものとする。する
と、基材2の端面2a上の剥離用の部材4の平面4aが
接触した部分にまず加重が集中し、その後加重が基材2
全体に分散する。さらに、この状態のまま前記密着体の
上昇を続けると、図7に示すように、金型1より基材2
と樹脂層3とが一体となった複合型光学素子6が剥離さ
れる。
Next, as shown in FIG. 6, when the contact member is raised, the peeling member 4 previously provided above a part of the end surface 2a of the base material 2 is removed from the end surface 2a of the base material 2. Make surface contact with. However, the end surface 2 of the base material 2 is provided below the peeling member 4.
It is assumed that a flat surface 4a parallel to a is formed. Then, the weight is first concentrated on the end surface 2a of the base material 2 where the flat surface 4a of the peeling member 4 is in contact, and then the weight is applied.
Disperse throughout. Further, if the contact body is continuously raised in this state, as shown in FIG.
The composite optical element 6 in which the resin layer 3 and the resin layer 3 are integrated is peeled off.

【0019】本実施の形態によれば、雰囲気温度が変化
しても、製造した複合型光学素子の樹脂層内に光学性能
の劣化につながるような気泡が混入することはなく、か
つ製造時のタクトタイムが長くならない。
According to this embodiment, even if the ambient temperature changes, air bubbles that would deteriorate the optical performance are not mixed in the resin layer of the manufactured composite optical element, and at the time of manufacturing. The takt time does not increase.

【0020】(実施の形態2)図8〜図11は本実施の
形態を示す製造工程図である。図8に示すように、成形
面が凹面で非成形面(樹脂を載置しない面)が凸面のガ
ラス製の基材2にはエネルギー硬化型の樹脂5が必要量
吐出されている。基材2の成形面の曲率半径は20m
m,非成形面の曲率半径は50mm,外径は25mmで
ある。基材2の成形面の最外周部には中心軸に対して垂
直で半径方向の幅が2mmの端面2aが基材2の中心軸
に対して軸対称形状となるように設けられている。ま
た、樹脂5の必要量は予め求められており、その重量は
0.14gである。
(Second Embodiment) FIGS. 8 to 11 are manufacturing process diagrams showing the present embodiment. As shown in FIG. 8, a required amount of the energy curable resin 5 is discharged onto the glass base material 2 whose concave surface is a concave surface and whose non-molding surface (a surface on which the resin is not placed) is a convex surface. The radius of curvature of the molding surface of the base material 2 is 20 m
m, the radius of curvature of the non-molded surface is 50 mm, and the outer diameter is 25 mm. At the outermost peripheral portion of the molding surface of the base material 2, an end surface 2a perpendicular to the central axis and having a radial width of 2 mm is provided so as to be axially symmetrical with respect to the central axis of the base material 2. The required amount of the resin 5 has been determined in advance, and its weight is 0.14 g.

【0021】次に、図9に示すように、金型1を樹脂5
の頂部5aに接触する直前までは高速で移動させる。た
だし、雰囲気温度T℃と、中心軸上における基材2の成
形面と樹脂の頂部5aの距離h(mm)との間の関係は
検討の結果、h=2.15−0.03Tであることが判
明した。そこで、金型1を高速で移動させる区間はバラ
ツキの上限をとって中心軸上の金型1の光学面1aと基
材2の成形面との距離を(2.25−0.03T)mm
の位置までとする。なお、金型1は光学面1aの曲率半
径が18mm,直径が20mm、その中心軸は基材2の
中心軸と同一で上下動自在に保持されている。
Next, as shown in FIG.
It is moved at a high speed until just before it comes into contact with the top 5a. However, the relationship between the ambient temperature T ° C. and the distance h (mm) between the molding surface of the base material 2 and the resin top portion 5a on the central axis is h = 2.15-0.03T as a result of the examination. It has been found. Therefore, in the section where the mold 1 is moved at high speed, the upper limit of the variation is set, and the distance between the optical surface 1a of the mold 1 and the molding surface of the base material 2 on the central axis is (2.25-0.03T) mm.
Up to the position. The mold 1 has an optical surface 1a with a radius of curvature of 18 mm and a diameter of 20 mm, and its central axis is the same as the central axis of the substrate 2 and is held so as to be vertically movable.

【0022】次いで、図10に示すように、金型1を
0.1mm/secで移動させ、金型1の光学面1aを
樹脂5の頂部5aに接触させる。この速度で金型1を移
動させる区間は、前記距離h(2.25−0.03T)
mmからバラツキの下限である(2.05−0.03
T)mmまでの間とする。この区間だけ金型1を低速
(0.1mm/sec)で移動させることにより、必ず
金型1の光学面1aと樹脂5とが接触する。また、金型
1と樹脂5とを低速で接触させているので、樹脂5内に
気泡が混入することはない。さらに、この工程に要する
時間は雰囲気温度にかかわらず2secで一定であり、
製造時のタクトタイムが著しく長くなることはない。
Next, as shown in FIG. 10, the mold 1 is moved at 0.1 mm / sec to bring the optical surface 1a of the mold 1 into contact with the top 5a of the resin 5. The section in which the mold 1 is moved at this speed is the distance h (2.25-0.03T).
mm is the lower limit of variation (2.05-0.03
T) up to mm. By moving the mold 1 at a low speed (0.1 mm / sec) only in this section, the optical surface 1a of the mold 1 and the resin 5 are always in contact with each other. Further, since the mold 1 and the resin 5 are brought into contact with each other at a low speed, air bubbles are not mixed in the resin 5. Furthermore, the time required for this process is constant at 2 seconds regardless of the ambient temperature,
The takt time at the time of manufacturing does not become extremely long.

【0023】続いて、図11に示すように、中心軸上の
樹脂層3の厚さが所望の値(本実施の形態では0.1m
m)になるまで、金型1を移動させる。この時の移動速
度は、0.1mm/sec程の低速にする必要はなく、
0.5mm/sec程度で差し支えない。この後の樹脂
層3を硬化させる工程から金型1と樹脂層3とを剥離す
る工程までは、前記実施の形態1と同様でありその説明
を省略する。
Then, as shown in FIG. 11, the thickness of the resin layer 3 on the central axis has a desired value (0.1 m in the present embodiment).
The mold 1 is moved until it becomes m). The moving speed at this time does not need to be as low as 0.1 mm / sec,
It may be about 0.5 mm / sec. The subsequent steps from the step of curing the resin layer 3 to the step of peeling the mold 1 and the resin layer 3 are the same as those in the first embodiment, and the description thereof will be omitted.

【0024】本実施の形態によれば、雰囲気温度が変化
しても、製造した複合型光学素子の樹脂層内に光学性能
の劣化につながるような気泡が混入することはなく、か
つ製造時のタクトタイムが長くならない。
According to the present embodiment, even if the ambient temperature changes, air bubbles that would deteriorate optical performance are not mixed in the resin layer of the manufactured composite optical element, and at the time of manufacturing. The takt time does not increase.

【0025】(実施の形態3)図12〜図15は本実施
の形態を示す製造工程図である。図12に示すように、
両面が凹面のガラス製の基材2にはエネルギー硬化型の
樹脂5が必要量吐出されている。基材2の成形面の曲率
半径は30mm,非成形面(樹脂を載置しない面)の曲
率半径は70mm,外径は40mmである。基材2の成
形面の最外周部には中心軸に対して垂直で半径方向の幅
が1.5mmの端面2aが基材2の中心軸に対して軸対
称形状となるように設けられている。また、樹脂5の必
要量は予め求められており、その重量は0.2gであ
る。
(Third Embodiment) FIGS. 12 to 15 are manufacturing process diagrams showing the present embodiment. As shown in FIG.
A required amount of the energy curable resin 5 is discharged onto the glass substrate 2 having concave surfaces on both sides. The radius of curvature of the molding surface of the base material 2 is 30 mm, the radius of curvature of the non-molding surface (the surface on which the resin is not placed) is 70 mm, and the outer diameter is 40 mm. An end face 2a perpendicular to the central axis and having a radial width of 1.5 mm is provided on the outermost peripheral portion of the molding surface of the substrate 2 so as to be axially symmetric with respect to the central axis of the substrate 2. There is. The required amount of the resin 5 has been determined in advance, and its weight is 0.2 g.

【0026】次に、図13に示すように、金型1を樹脂
5の頂部5aに接触する直前までは高速で移動させる。
ただし、雰囲気温度T℃と、中心軸上における基材2の
成形面と樹脂の頂部5aの距離h(mm)との間の関係
は検討の結果、h=3.5−0.06Tであることが判
明した。そこで、金型1を高速で移動させる区間はバラ
ツキの上限をとって中心軸上の金型1の光学面1aと基
材2の成形面との距離を(3.6−0.06T)mmの
位置までとする。なお、金型1は光学面1aの曲率半径
が24mm,直径が36mm、その中心軸は基材2の中
心軸と同一で上下動自在に保持されている。
Next, as shown in FIG. 13, the mold 1 is moved at a high speed until just before contacting the top 5a of the resin 5.
However, the relationship between the atmospheric temperature T ° C. and the distance h (mm) between the molding surface of the base material 2 and the resin top 5a on the central axis is h = 3.5-0.06T as a result of the examination. It has been found. Therefore, the upper limit of the variation is set in the section where the mold 1 is moved at high speed, and the distance between the optical surface 1a of the mold 1 on the central axis and the molding surface of the substrate 2 is (3.6-0.06T) mm. Up to the position. The mold 1 has an optical surface 1a having a radius of curvature of 24 mm and a diameter of 36 mm, and its central axis is the same as the central axis of the substrate 2 and is held so as to be movable up and down.

【0027】次いで、図14に示すように、金型1を
0.1mm/secで移動させ、金型1の光学面1aを
樹脂5の頂部5aに接触させる。この速度で金型1を移
動させる区間は、前記距離h(3.6−0.06T)m
mからバラツキの下限である(3.4−0.06T)m
mまでの間とする。この区間だけ金型1を低速(0.1
mm/sec)で移動させることにより、必ず金型1の
光学面1aと樹脂5とが接触する。また、金型1と樹脂
5とを低速で接触させているので、樹脂5内に気泡が混
入することはない。さらに、この工程に要する時間は雰
囲気温度にかかわらず2secで一定であり、製造時の
タクトタイムが著しく長くなることはない。
Then, as shown in FIG. 14, the mold 1 is moved at 0.1 mm / sec to bring the optical surface 1a of the mold 1 into contact with the top 5a of the resin 5. The section in which the mold 1 is moved at this speed is the distance h (3.6-0.06T) m.
The lower limit of the variation from m is (3.4-0.06T) m
Up to m. The die 1 is operated at low speed (0.1
(mm / sec), the optical surface 1a of the mold 1 and the resin 5 always come into contact with each other. Further, since the mold 1 and the resin 5 are brought into contact with each other at a low speed, air bubbles are not mixed in the resin 5. Furthermore, the time required for this step is constant at 2 seconds regardless of the ambient temperature, and the takt time during manufacturing does not become extremely long.

【0028】続いて、図15に示すように、中心軸上の
樹脂層3の厚さが所望の値(本実施の形態では0.1m
m)になるまで、金型1を移動させる。この時の移動速
度は、0.1mm/sec程の低速にする必要はなく、
0.5mm/sec程度で差し支えない。この後の樹脂
層3を硬化させる工程から金型1と樹脂層3とを剥離す
る工程までは、前記実施の形態1と同様でありその説明
を省略する。
Then, as shown in FIG. 15, the thickness of the resin layer 3 on the central axis is a desired value (0.1 m in this embodiment).
The mold 1 is moved until it becomes m). The moving speed at this time does not need to be as low as 0.1 mm / sec,
It may be about 0.5 mm / sec. The subsequent steps from the step of curing the resin layer 3 to the step of peeling the mold 1 and the resin layer 3 are the same as those in the first embodiment, and the description thereof will be omitted.

【0029】本実施の形態によれば、雰囲気温度が変化
しても、製造した複合型光学素子の樹脂層内に光学性能
の劣化につながるような気泡が混入することはなく、か
つ製造時のタクトタイムが長くならない。
According to this embodiment, even if the ambient temperature changes, air bubbles that would deteriorate optical performance are not mixed in the resin layer of the manufactured composite optical element, and at the time of manufacture, The takt time does not increase.

【0030】[0030]

【発明の効果】請求項1の効果は、雰囲気温度が変化し
ても、製造した複合型光学素子の樹脂層内に光学性能の
劣化につながるような気泡が混入することはなく、かつ
製造時のタクトタイムが長くならない。
The effect of the present invention is that even if the ambient temperature changes, air bubbles that would deteriorate optical performance are not mixed in the resin layer of the manufactured composite optical element, and at the time of manufacturing. Tact time does not increase.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施の形態1を示す製造工程図である。FIG. 1 is a manufacturing process diagram showing the first embodiment.

【図2】実施の形態1を示す製造工程図である。FIG. 2 is a manufacturing process diagram showing the first embodiment.

【図3】実施の形態1を示す製造工程図である。FIG. 3 is a manufacturing process diagram showing the first embodiment.

【図4】実施の形態1を示す製造工程図である。FIG. 4 is a manufacturing process diagram showing the first embodiment.

【図5】実施の形態1を示す製造工程図である。FIG. 5 is a manufacturing process diagram showing the first embodiment;

【図6】実施の形態1を示す製造工程図である。FIG. 6 is a manufacturing process diagram showing the first embodiment;

【図7】実施の形態1を示す製造工程図である。FIG. 7 is a manufacturing process diagram showing the first embodiment;

【図8】実施の形態2を示す製造工程図である。FIG. 8 is a manufacturing process diagram showing the second embodiment.

【図9】実施の形態2を示す製造工程図である。FIG. 9 is a manufacturing process diagram showing the second embodiment.

【図10】実施の形態2を示す製造工程図である。FIG. 10 is a manufacturing process diagram showing the second embodiment.

【図11】実施の形態2を示す製造工程図である。FIG. 11 is a manufacturing process diagram showing the second embodiment.

【図12】実施の形態3を示す製造工程図である。FIG. 12 is a manufacturing process diagram showing the third embodiment.

【図13】実施の形態3を示す製造工程図である。FIG. 13 is a manufacturing process diagram showing the third embodiment.

【図14】実施の形態3を示す製造工程図である。FIG. 14 is a manufacturing process diagram showing the third embodiment.

【図15】実施の形態3を示す製造工程図である。FIG. 15 is a manufacturing process diagram showing the third embodiment.

【符号の説明】 1 金型 2 基材 3 樹脂層 4 剥離用の部材 5 樹脂[Explanation of reference numerals] 1 mold 2 base material 3 resin layer 4 peeling member 5 resin

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B29L 11:00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location B29L 11:00

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光学素子の基材表面にエネルギー硬化型
の樹脂を供給し、所望の光学面を有する金型を接触させ
て樹脂を押し広げ、基材表面と金型との間に所望の樹脂
層を形成した後、エネルギーを照射する複合型光学素子
の製造方法において、前記樹脂に金型が低速で接触する
区間を雰囲気温度に応じて変化させることを特徴とする
複合型光学素子の製造方法。
1. An energy-curable resin is supplied to the surface of a base material of an optical element, a mold having a desired optical surface is brought into contact with the resin to spread the resin, and a desired resin is provided between the base material surface and the mold. In a method of manufacturing a composite optical element in which a resin layer is formed and then irradiated with energy, a section of a mold contacting the resin at a low speed is changed according to an ambient temperature. Method.
JP30457095A 1995-11-22 1995-11-22 Manufacture of composite optical device Pending JPH09141678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30457095A JPH09141678A (en) 1995-11-22 1995-11-22 Manufacture of composite optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30457095A JPH09141678A (en) 1995-11-22 1995-11-22 Manufacture of composite optical device

Publications (1)

Publication Number Publication Date
JPH09141678A true JPH09141678A (en) 1997-06-03

Family

ID=17934589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30457095A Pending JPH09141678A (en) 1995-11-22 1995-11-22 Manufacture of composite optical device

Country Status (1)

Country Link
JP (1) JPH09141678A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010107879A (en) * 2008-10-31 2010-05-13 Konica Minolta Opto Inc Method of manufacturing wafer lens, wafer lens, and device for manufacturing wafer lens
JP2013022770A (en) * 2011-07-15 2013-02-04 Sharp Corp Production process of cured material, production apparatus of cured material, and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010107879A (en) * 2008-10-31 2010-05-13 Konica Minolta Opto Inc Method of manufacturing wafer lens, wafer lens, and device for manufacturing wafer lens
JP2013022770A (en) * 2011-07-15 2013-02-04 Sharp Corp Production process of cured material, production apparatus of cured material, and program

Similar Documents

Publication Publication Date Title
US20060131768A1 (en) Lens molding die and a producing method therefor
JP2004106320A (en) Manufacturing method for article with fine surface structure
WO2009069940A1 (en) Device and method for fabricating lens
JPH02126434A (en) Optical disk substrate molding method
JPH09141678A (en) Manufacture of composite optical device
JPH06254868A (en) Manufacture of composite precisely molded product
JP3191447B2 (en) Method of manufacturing resin-bonded aspheric lens
JP2800898B2 (en) Manufacturing method of aspherical optical element
JP2008036817A (en) Manufacturing method of composite optical element
JPH07112443A (en) Composite type molded article and its manufacture and mold
CN1717607A (en) The manufacture method of hybrid aspherical lens
JP2718452B2 (en) Glass optical element molding method
JP2003222708A (en) Optical element and its manufacturing method
JP4786085B2 (en) Apparatus for molding minute parts and molding method of minute parts
JPH0552481B2 (en)
JPH09248861A (en) Method and apparatus for producing composite optical element
JPS62275735A (en) Method for forming aspherical lens
KR200141214Y1 (en) Complex non-sphere-surface lens fabrication equipment
JP2002321243A (en) Element having fine shape on its surface and method for manufacturing the same
JPH0210539A (en) Manufacture of optical disk substrate
JPH04340903A (en) Composite optical element and production thereof
JPH11333862A (en) Resin molding die of resin junction optical element and manufacture thereof
JP2004358559A (en) Method of manufacturing article with fine surface structure, and die and method of manufacturing the same
JPH0939109A (en) Manufacture of composite optical element
JPH08281821A (en) Manufacture of composite optical element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20041214

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20050210

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20050322

Free format text: JAPANESE INTERMEDIATE CODE: A02