JPH0913109A - 微粉炭多量吹き込み高炉操業方法 - Google Patents

微粉炭多量吹き込み高炉操業方法

Info

Publication number
JPH0913109A
JPH0913109A JP16341995A JP16341995A JPH0913109A JP H0913109 A JPH0913109 A JP H0913109A JP 16341995 A JP16341995 A JP 16341995A JP 16341995 A JP16341995 A JP 16341995A JP H0913109 A JPH0913109 A JP H0913109A
Authority
JP
Japan
Prior art keywords
blast furnace
raw material
pulverized coal
blowing
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16341995A
Other languages
English (en)
Inventor
Kanji Takeda
幹治 武田
Yasuhei Nouchi
泰平 野内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP16341995A priority Critical patent/JPH0913109A/ja
Publication of JPH0913109A publication Critical patent/JPH0913109A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

(57)【要約】 【構成】 微粉炭吹き込み量が 150kg/t以上の微粉炭多
量吹き込み高炉操業方法において、炉頂から金属鉄原料
を装入することにより、羽口へ添加する富化酸素量を増
加させることなしに高出銑比操業を行う。 【効果】 溶銑コストの低減と同時に出銑量の増加、燃
料比の低下を達成することができる。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】この発明は、微粉炭多量吹き込み
高炉操業方法に関し、特に羽口からの微粉炭吹き込みと
炉頂からの金属鉄原料装入とを効果的に組み合わせるこ
とにより、低コストの下で出銑比の有利な向上を図ろう
とするものである。
【0002】
【従来の技術】コークス炉の老朽化に伴うコークス生産
能力の低下に対応する手段として、高炉内に羽口から微
粉炭を直接大量に吹き込むいわゆる微粉炭多量吹き込み
高炉操業が最近注目を浴びている。この微粉炭多量吹き
込み操業は、欧州、日本を中心として、最近では 200kg
/tの吹き込み操業が試みられている。
【0003】しかしながら、微粉炭の多量吹き込みに伴
う問題として、吹き込み量が増大するに従って、送風中
に添加される富化酸素量も増加を余儀なくされることが
挙げられる。というのは、一般に高炉操業では、安定操
業のために炉頂温度を 100℃以上、また設備的な制約か
ら 230℃以下程度の温度範囲に保持する必要があるが、
微粉炭の吹き込み量が増大すると、それに伴って高炉上
部のガスと固体の熱容量流量の比(熱流比)が低下し、
炉頂温度が上昇して、許容上限の 230℃を超えるおそれ
が生じてくる。このため、少なくとも微粉炭の吹き込み
量が 150kg/t以上の多量吹き込み操業では、酸素富化率
を上げて炉内ガス量の低減を図ることが不可欠と考えら
れているからである。
【0004】しかしながら、酸素富化の吹き込み酸素量
当りのコストは、空気の2〜2.5 倍であるため、酸素富
化量を増大させることは溶銑コストの上昇を招き、微粉
炭吹き込みのメリットを低減させる。
【0005】また、微粉炭の吹き込み量の増大に起因し
た炉内通過ガス量の増加、炉頂温度の上昇は、高炉上部
の装入物による圧力損失の増大を招くため、出銑量の多
い、高出銑比操業を非常に困難なものとしている。さら
に、この炉頂温度の上昇は、半径方向の分布制御を困難
にし、炉口半径が大きい大型高炉(内容積2000m3以上)
において微粉炭多量吹き込み操業における高出銑比操業
を律する要因となっている。従って、微粉炭の吹き込み
量が 150kg/t以上の多量吹き込み操業では、酸素富化に
よる吹き込みガス量の低減が不可欠とされていたのであ
る。
【0006】一方、高炉の燃料比の低下を狙った操業方
法として、炉頂からスクラップや還元ペレット等の金属
鉄原料を装入する高炉操業方法が知られている。また、
特開平5−295410号公報では、高炉炉頂中心部へスクラ
ップあるいは粒鉄を装入することによって、炉芯部に炭
素未飽和の鉄の液滴を滴下させることにより、炉芯部に
おける粉率を低減できることが示されている。さらに、
特開昭61−060810号公報では、高炉へのスクラップの装
入方法が示されている。
【0007】しかしながら、上記した金属鉄原料の装入
技術は、燃料比の低下には効果があるとはいえ、装入量
の増大に伴って高炉炉頂部の熱流比の上昇ひいては炉頂
温度の低下を招くため、その使用量には自ずから限界が
あった。
【0008】
【発明が解決しようとする課題】この発明は、上記し
た、微粉炭吹き込み技術および金属鉄原料装入技術両者
の問題を併せて解決するもので、酸素富化量を増加させ
ることなしに微粉炭の多量吹き込みを可能ならしめると
共に、金属鉄原料の装入量の限界を打破して燃料比の低
下を損なうことなしに金属鉄原料装入量の一層の増大を
可能ならしめる高炉操業方法を提案することを目的とす
る。
【0009】
【課題を解決するための手段】上述したとおり、従来の
微粉炭多量吹き込み操業では、炉頂温度の上昇を防止す
るために、約150kg/t 以上では酸素富化操業が不可欠と
なっている。この操業技術の本質的な問題点は、本来炉
頂から装入している燃料を、羽口から微粉炭として供給
するため、炉頂から装入される燃料を加熱する必要がな
くなり、結果として炉頂ガスの温度が上昇することにあ
る。また、炉内を通過するガス量が増加するため、装入
物による圧力損失が増大し、スリップ、棚吊りなどの操
業異常を招き易くなる。従って、微粉炭多量吹き込み操
業を高出銑比下で行うことは極めて難しく、とくに 150
kg/t以上の多量吹き込みでは酸素富化量の増大が不可欠
だったのである。
【0010】一方、金属鉄原料の装入技術は、燃料比の
低下には効果があるとはいえ、ただ単に炉頂から冷材で
あるスクラップや還元ペレット等の金属鉄原料を投入す
るだけであるから、装入量の増大に伴って高炉炉頂部の
熱流比は上昇し、また炉頂温度の低下を招いていた。
【0011】ところで、上述したところからも明らかな
ように、微粉炭の多量吹き込み技術と高炉炉頂からの金
属鉄原料の装入技術とでは、炉頂温度および熱流比に関
して逆の作用を持つ。そこで、発明者らは、この点に着
目し、微粉炭の多量吹き込み時に炉頂から金属鉄原料の
装入を試みたところ、所期した目的の達成に関し、望外
の成果が得られたのである。すなわち、微粉炭の吹き込
みに関しては、酸素富化の必要なしに、炉頂温度の上昇
を効果的に防止して多量の微粉炭吹き込みが可能とな
り、一方金属鉄原料の炉頂装入に関しては、装入量の限
界を打ち破って、燃料比の低下を損なうことなしに金属
鉄原料装入量の一層の増大が可能となったのである。こ
の発明は、上記の知見に立脚するものである。
【0012】すなわち、この発明は、高炉羽口からの微
粉炭吹き込み量が 150kg/t以上の微粉炭多量吹き込み高
炉操業方法において、炉頂から金属鉄原料を装入するこ
とにより、羽口へ添加する富化酸素量を増加させること
なしに高出銑比操業を行うことを特徴とする微粉炭多量
吹き込み高炉操業方法である。
【0013】この発明において、金属鉄原料の装入と微
粉炭吹き込みは、金属鉄原料の原単位W (kg/t) と微粉
炭吹き込み量P (kg/t) が次式(1), (2) W≦P+100 ---(1) W≧P−150 ---(2) の関係を満足する条件下で行うことが望ましい。
【0014】
【作用】以下、この発明の基礎となった実験結果につい
て説明する。従来、微粉炭多量吹き込み操業では、吹き
込み量の増大と共に送風中に添加される富化酸素量の増
加が必要とされていた。図1に、従来の高炉操業におい
て、微粉炭の吹き込み量を増大した場合における、炉頂
温度の変化および酸素富化率の変化を示す。なお、図1
の成績は、(コークス+吹き込み微粉炭)≒ 500kg/t、
鉱石≒1600 kg/t 、操業度= 1.4〜2.2t/d-m3で、かつ
全体の熱収支を一定とする条件下で行った結果、得られ
たものである。同図から明らかなように、微粉炭吹き込
み量の増加と共に高炉熱流比が低下して、炉頂温度が上
昇するため、特に微粉炭吹き込み量が 150kg/t以上では
酸素富化が不可欠であった。
【0015】また、図2には、金属鉄原料の装入量と炉
頂温度およびコークス比の変化との関係を示す。なお、
図2は、鉱石/コークス比は一定で操業し、炉頂温度が
下限の 100℃に達した後は、鉱石/コークス比を下げて
炉頂温度を 100℃に維持する操業を行った場合である。
同図に示したとおり、金属鉄原料の装入量が 100kg/tま
では順調にコークス比を低下させることができる。しか
しながら、一方で、金属鉄原料の装入量の増加と共に炉
頂温度が低下し、金属鉄原料の装入量が 100kg/tになる
と、炉頂温度が下限値の 100℃に達するので、その後の
コークス比の低減は困難となる。
【0016】上述の説明は、各因子を単独に変更した場
合の操業結果である。そこで、発明者らは次に、複数の
因子が同時に変化した場合の操業結果を多次元的に予測
するために、高炉数式シミュレータを開発した。この高
炉数式シミュレータを用いて、微粉炭多量吹き込みと金
属鉄原料装入の両者を組合わせた場合には、図3に示す
操業範囲が得られる。同図は、酸素富化なしの場合の結
果である。同図中、境界Aより上の領域は金属鉄原料の
装入により炉頂温度が低下し、炉頂温度が下限値の 100
℃に到達して、操業が困難になる領域である。また、境
界Bより下の領域は炉頂温度が上限値の 230℃に到達
し、酸素富化なしおよび金属鉄原料の装入なしの条件で
は操業が困難になる領域である。
【0017】さて、同図において、境界Cより左側、つ
まり微粉炭吹き込み量が 150kg/t未満の領域は、従来法
でも、酸素富化なしで操業は可能であったが、微粉炭吹
き込み量が 150kg/t以上の領域では酸素富化量の増大な
しには操業は不可能であった。しかしながら、この発明
に従い、羽口から微粉炭を吹き込むと共に、炉頂から金
属鉄原料を装入してやることにより、微粉炭吹き込み量
が 150kg/t以上の領域でも酸素富化なしに微粉炭の多量
吹き込みが可能となり、さらには、燃料比の低下および
出銑比の一層の向上が併せて実現されるのである。
【0018】この発明において、金属鉄原料とは、金属
鉄を主成分とする原料を意味し、スクラップ、直接還元
ペレット、直接還元ブリケット、さらには一部酸化鉄を
含有するミルスケールなどがあるが、コストの観点から
は、安価なミルスケールの装入がとりわけ有効である。
【0019】以上、酸素富化がない場合について説明し
た。一方、工場内に酸素の製造能力に余力があり、一定
量の酸素が安価に使用できる場合があるが、かような場
合には、酸素富化を併用することができる。この場合
に、安価な酸素使用可能量をO2 (送風中の富化酸素
%)とすると、金属鉄原料の装入原単位W(kg/t)と微粉
炭吹き込み量P(kg/t)との好適条件は、次式 (1)′,
(2) ′ W≦P+100 −24O2 --- (1)′ W≧P−150 −24O2 --- (2)′ のとおりとなる。
【0020】
【実施例】大型高炉(内容積4500m3)を用いて、下記の
基本条件下で、微粉炭の多量吹き込みと金属鉄原料の装
入を併用した高炉操業を実施した。基本条件 ・炉頂温度の制約条件:100 ℃以上、230 ℃以下 ・送風量:6800 Nm3/minほぼ一定 ・送風温度:1100〜1250℃ ・送風中湿分:30 g/Nm3一定 各操業の燃料比、出銑量、出銑比、炉頂温度および溶銑
コストについて調べた結果を表1に示す。
【0021】
【表1】
【0022】比較例1は、通常レベルの微粉炭吹き込み
操業である。炉頂温度は 200℃であり、管理限界よりは
低くなり、酸素富化を行わなくても操業が可能であっ
た。比較例2は、微粉炭吹き込み量を 200kg/tまで増加
した場合であるが、吹き込み量の増加に伴い、炉頂温度
を 230℃に抑えるために酸素富化2%が必要になった。
この例では、安価な微粉炭吹き込み量を増加させること
により、溶銑コストはやや低下するものの、酸素の使用
により微粉炭吹き込み量のメリットを享受することはで
きなかった。比較例3は、微粉炭吹き込み量を 100kg/t
に保持したまま、金属鉄原料単位を200kg/t に増加した
例である。微粉炭吹き込みがない場合には、図2に示し
たように金属鉄原料装入量は100kg/t が上限となるが、
微粉炭 100kg/t の吹き込みにより、金属鉄原料装入量
を 200kg/tに増加することができた。その結果、出銑量
を約20%増加することができ、同時に溶銑コストを低減
することができた。これに対し、実施例1では、微粉炭
多量吹き込みと同時に金属鉄原料の多量使用を実施した
が、この場合には、微粉炭吹き込みを酸素富化0%で実
施することができ、同時に出銑量を約20%増加すること
ができた。しかも、溶銑コスト指数を0.88まで低下で
き、安価な微粉炭多量吹き込みと高出銑比操業を同時に
実現することができた。
【0023】
【発明の効果】かくしてこの発明によれば、溶銑コスト
の低減と同時に出銑量の増加、燃料比の低下を達成する
ことができる。コークス炉の老朽化に伴うコークス生産
能力の低下に対応する手段として、コークス比の低下は
重要な問題である。コークス比の低下により、必要なコ
ークス生産能力を削減、コークス炉の再建コストを減ら
すことが可能になる。また、微粉炭吹き込み量の増加に
より、溶銑コストを大幅に低下することができるので、
その経済的効果は極めて大といえる。
【図面の簡単な説明】
【図1】微粉炭の吹き込み量の増大に伴う、炉頂温度の
変化および酸素富化率の変化を示したグラフである。
【図2】金属鉄原料の装入量と炉頂温度およびコークス
比の変化との関係を示したグラフである。
【図3】微粉炭の吹き込みと金属鉄原料の装入を併用し
た場合に、酸素富化量の増大なしに実施可能な操業範囲
を示したグラフである。

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】 高炉羽口からの微粉炭吹き込み量が 150
    kg/t以上の微粉炭多量吹き込み高炉操業方法において、
    炉頂から金属鉄原料を装入することにより、羽口へ添加
    する富化酸素量を増加させることなしに高出銑比操業を
    行うことを特徴とする微粉炭多量吹き込み高炉操業方
    法。
  2. 【請求項2】 請求項1において、金属鉄原料の装入原
    単位W (kg/t) と微粉炭吹き込み量P (kg/t) が次式
    (1), (2) W≦P+100 ---(1) W≧P−150 ---(2) の関係を満足する条件下で操業を行うことを特徴とする
    微粉炭多量吹き込み高炉操業方法。
JP16341995A 1995-06-29 1995-06-29 微粉炭多量吹き込み高炉操業方法 Pending JPH0913109A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16341995A JPH0913109A (ja) 1995-06-29 1995-06-29 微粉炭多量吹き込み高炉操業方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16341995A JPH0913109A (ja) 1995-06-29 1995-06-29 微粉炭多量吹き込み高炉操業方法

Publications (1)

Publication Number Publication Date
JPH0913109A true JPH0913109A (ja) 1997-01-14

Family

ID=15773548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16341995A Pending JPH0913109A (ja) 1995-06-29 1995-06-29 微粉炭多量吹き込み高炉操業方法

Country Status (1)

Country Link
JP (1) JPH0913109A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246947A (ja) * 2006-03-14 2007-09-27 Nippon Steel Corp 高炉操業方法
WO2014088031A1 (ja) * 2012-12-07 2014-06-12 新日鉄住金エンジニアリング株式会社 高炉の操業方法及び溶銑の製造方法
JP2014132122A (ja) * 2012-12-07 2014-07-17 Nippon Steel & Sumikin Engineering Co Ltd 高炉の操業方法及び溶銑の製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007246947A (ja) * 2006-03-14 2007-09-27 Nippon Steel Corp 高炉操業方法
JP4564462B2 (ja) * 2006-03-14 2010-10-20 新日本製鐵株式会社 高炉操業方法
WO2014088031A1 (ja) * 2012-12-07 2014-06-12 新日鉄住金エンジニアリング株式会社 高炉の操業方法及び溶銑の製造方法
JP2014132122A (ja) * 2012-12-07 2014-07-17 Nippon Steel & Sumikin Engineering Co Ltd 高炉の操業方法及び溶銑の製造方法
JP2014132108A (ja) * 2012-12-07 2014-07-17 Nippon Steel & Sumikin Engineering Co Ltd 高炉の操業方法及び溶銑の製造方法
US20150275321A1 (en) * 2012-12-07 2015-10-01 Nippon Steel & Sumikin Engineering co., Ltd. a corporation Method for operating blast furnace and method for producing molten pig iron
US9816151B2 (en) 2012-12-07 2017-11-14 Nippon Steel & Sumikin Engineering Co., Ltd. Method for operating blast furnace and method for producing molten pig iron

Similar Documents

Publication Publication Date Title
US6284018B1 (en) Method of making iron and steel
US6986800B2 (en) Method and apparatus for improved use of primary energy sources in integrated steel plants
US3375098A (en) Gaseous reduction of iron ores
CA1149175A (en) Recovery of steel from high phosphorous iron ores
JPH0913109A (ja) 微粉炭多量吹き込み高炉操業方法
JP5012138B2 (ja) 高炉操業方法
Spirin et al. The use of combined-blast is the main way to improve the energy efficiency of blast furnaces
JP2881840B2 (ja) 高炉羽口粉体吹き込み方法
RU2190667C1 (ru) Способ ведения доменной плавки
JPH06264120A (ja) 銑鉄製造方法
JP2827451B2 (ja) 高炉羽口粉体吹き込み操業法
JP2002146414A (ja) 高炉操業方法
Ostrowski et al. Blast Furnace Enrichment Investigations
JPH05156329A (ja) 高炉羽口粉体吹き込み操業法
JP4724942B2 (ja) 高炉操業方法
CN2310768Y (zh) 高炉直接炼钢的连接装置
JPH05239515A (ja) 高炉操業方法
JP2023067695A (ja) 高炉の操業方法
Knop et al. Technical, economical and ecological aspects for optimised use of fossil primary energies in integrated steel plants for crude steel production
Kumar et al. Recycling of steel plant wastes through Corex
CN114350882A (zh) 一种低硅铁水冶炼超低碳钢控制终点氧的方法
JP3017009B2 (ja) 高炉操業法
JPS6315963B2 (ja)
JPH05295412A (ja) 高炉操業法
JPH0637646B2 (ja) 高炉での低Si濃度溶銑の製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050621