JPH09129231A - Nonaqueous electrolytic secondary battery and manufacture of positive electrode active material therefor - Google Patents

Nonaqueous electrolytic secondary battery and manufacture of positive electrode active material therefor

Info

Publication number
JPH09129231A
JPH09129231A JP7282775A JP28277595A JPH09129231A JP H09129231 A JPH09129231 A JP H09129231A JP 7282775 A JP7282775 A JP 7282775A JP 28277595 A JP28277595 A JP 28277595A JP H09129231 A JPH09129231 A JP H09129231A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
lithium
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7282775A
Other languages
Japanese (ja)
Other versions
JP3185635B2 (en
Inventor
Yoshiyuki Ozaki
義幸 尾崎
Tomoko Kono
智子 河野
Shigeo Kobayashi
茂雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17656920&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH09129231(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP28277595A priority Critical patent/JP3185635B2/en
Publication of JPH09129231A publication Critical patent/JPH09129231A/en
Application granted granted Critical
Publication of JP3185635B2 publication Critical patent/JP3185635B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To enhance thermal stability in particular by improving a method for manufacturing LiNi(1-x) Cox O2 as a positive electrode active material for an aqueous electrolytic secondary battery. SOLUTION: In this method, the composite hydroxide of Ni and Co is synthesized by the coprecipitation method, mixed with a lithium compound and then thermally treated, thereby preparing a positive electrode active material. The active material so prepared has a true half-value breadth β (003) of a diffraction peak on a plane (003) with powder X-ray diffraction is between 0.01deg. and 0.10deg. A nonaqueous electrolyte secondary battery using the active material so obtained has large capacity as well as high thermal stability in particular.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は非水電解液二次電
池、特にその正極の活物質の製造法の改良に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to an improvement in a method for producing a positive electrode active material.

【0002】[0002]

【従来の技術】近年、電子機器のポータブル化、コード
レス化が急速に進んでおり、これらの駆動用電源として
小型、軽量で高エネルギー密度を有する二次電池への要
望が高い。このような観点で非水系二次電池、とりわけ
リチウム二次電池は高電圧、高エネルギー密度を有する
電池としてその期待は大きい。
2. Description of the Related Art In recent years, portable electronic devices and cordless devices have been rapidly developed, and there is a great demand for secondary batteries having a small size, a light weight and a high energy density as driving power supplies for these electronic devices. From this viewpoint, non-aqueous secondary batteries, especially lithium secondary batteries, are highly expected as batteries having high voltage and high energy density.

【0003】このような中でLiCoO2を正極に、リ
チウムをインターカレート/デインターカレートし得る
炭素材料を負極に用いたリチウムイオン二次電池が既に
開発、商品化されている。LiCoO2の作動電位はL
iに対して約4Vと高いために電池電圧が高くなると共
に、負極に炭素材料を用いてLiのインターカレーショ
ン反応を利用しているために、金属リチウムを負極に用
いた場合の課題であったデンドライト状リチウムの生成
による充放電効率の低下や安全性上の問題を大幅に解決
することが可能となった。
Under such circumstances, a lithium ion secondary battery using LiCoO 2 as a positive electrode and a carbon material capable of intercalating / deintercalating lithium as a negative electrode has already been developed and commercialized. The operating potential of LiCoO 2 is L
This is a problem when metallic lithium is used for the negative electrode because the battery voltage is high because it is as high as about 4 V with respect to i, and the intercalation reaction of Li is used by using the carbon material for the negative electrode. In addition, it has become possible to significantly solve the problems of safety and deterioration of charge / discharge efficiency due to the generation of dendrite-like lithium.

【0004】しかしながら、Coの資源やコストの面か
ら、更にはより高エネルギー密度のリチウムイオン二次
電池の開発という観点から、LiCoO2に替わるリチ
ウム含有複合酸化物正極の開発が進んでおり、LiNi
2を中心とする正極活物質が注目を集めている。Li
NiO2ならびにLiCoO2を始めとするこの種のリチ
ウム含有複合酸化物はいずれも4V近い電位を示し、か
つインターカレーション反応が利用できる六方晶系の結
晶構造を持つ層状化合物である。このような観点から、
例えばLixNiO2(米国特許第4302518号)、
LiyNi2-y 2(特開平2−40861号公報)など
のLiNiO2に係わるもの、あるいはLiyNixCo
1-x2(特開昭63−299056号公報)やLiy
1-xx2(但し、MはTi,V,Mn,Feのいず
れか)などのLiNiO2のNiの一部を他の遷移金属
で置換したリチウム含有複合酸化物が提案されている。
その他、Axyz2(但し、Aはアルカリ金属、Mは
遷移金属、NはAl、In、Snの一種)(特開昭62
−90863号公報)やLixyz2(但し、MはF
e,Co,Niの中から選ばれた少なくとも一種でNは
Ti,V,Cr,Mnの中から選ばれた少なくとも一
種)(特開平4−267053号公報)などの多種の金
属元素を同時に含むものまで提案されている。そしてこ
れらの活物質材料を用いて4V級の放電電位を持った高
エネルギー密度の二次電池の開発が進められている。
However, in terms of Co resources and costs,
And even higher energy density lithium ion secondary
From the viewpoint of battery development, LiCoO 2TwoRichi to replace
The development of positive electrodes containing complex oxides of
OTwoThe positive electrode active material centered on is attracting attention. Li
NiOTwoAnd LiCoOTwoThis kind of lichen
All of the complex oxides containing um show a potential close to 4V.
Hexagonal crystals that can be used for intercalation reactions
It is a layered compound having a crystal structure. From this perspective,
For example, LixNiOTwo(U.S. Pat. No. 4,302,518),
LiyNi2-yO Two(Japanese Patent Laid-Open No. 2-40861), etc.
LiNiOTwoRelated to or LiyNixCo
1-xOTwo(JP-A-63-299056) and LiyN
i1-xMxOTwo(However, M is Ti, V, Mn, or Fe
Such as LiNiOTwoPart of Ni in other transition metals
A lithium-containing composite oxide substituted with is proposed.
Other, AxMyNzOTwo(However, A is an alkali metal, M is
Transition metal, N is one of Al, In and Sn)
-90863) and LixMyNzOTwo(However, M is F
At least one selected from e, Co, and Ni is N
At least one selected from Ti, V, Cr, and Mn
Seeds) (Japanese Patent Laid-Open No. 4-267053) and other types of gold
Proposals have been made to include elements of the genus at the same time. And this
Using these active material materials, a high discharge potential of 4V class
The development of energy density secondary batteries is underway.

【0005】本発明者らはLiNiO2を中心に種々の
正極活物質の合成およびその正極特性の評価を行ってき
た。その結果、LiNiO2正極は放電容量がサイクル
初期では180mAh/g以上の比容量が得られるが、
サイクル数の増加に伴う特性劣化が著しく50サイクル
目では初期容量の65%程度にまで劣化することがわか
った。そこでNiの一部を他の遷移金属元素で置換する
ことで結晶構造の改良を試みた。その結果、Coを添
加、置換したLiNi(1-X)Cox2がサイクル特性、
放電容量、放電電圧のいずれにおいても他のリチウム含
有複合酸化物に比べ良好であることがわかった。
The present inventors have synthesized various positive electrode active materials centering on LiNiO 2 and evaluated their positive electrode characteristics. As a result, the LiNiO 2 positive electrode has a specific discharge capacity of 180 mAh / g or more at the beginning of the cycle.
It was found that the characteristics were significantly deteriorated with the increase in the number of cycles and the capacity was deteriorated to about 65% of the initial capacity at the 50th cycle. Therefore, an attempt was made to improve the crystal structure by substituting a part of Ni with another transition metal element. As a result, LiNi (1-X) Co x O 2 with Co added and substituted, has cycle characteristics,
It was found that both the discharge capacity and the discharge voltage were better than other lithium-containing composite oxides.

【0006】[0006]

【発明が解決しようとする課題】本発明は、LiNiO
2のNiの一部をCoで置換したリチウム含有複合酸化
物正極活物質LiNi(1-x)Cox2に係わるものであ
る。前述の如く、LiNi(1-x)Cox2は170mA
h/g以上の比容量を有し、サイクル特性も良好であ
る。しかしながら、充電時、つまり正極活物質からリチ
ウムがデインターカレートした状態において、活物質の
熱的安定性が低下するといった課題がある。このことは
LiNiO2正極の場合も同様であるが、一般にNi系
のリチウム含有複合酸化物では従来のLiCoO2正極
に比べ充電電圧が低く、可逆的にデインターカレート/
インターカレートするリチウム量が多いためにフル充電
状態における結晶構造の安定性が低下する傾向にある。
従って、電池が充電状態で高温に放置された場合、その
熱安定性が低下するものである。(例えば、充電状態の
電池を5℃/min.の速度で150℃まで昇温し15
0℃で維持した場合、数分後に電池が発火、破裂に至
る。) 本発明者らは正極の可逆容量を損なうことなく上記課題
を解決するためにLiNi(1-x)Cox2正極活物質の
結晶構造の安定化を図ることを目的とし、その出発原料
にさかのぼり活物質の製造法および物性を調査、検討を
行った。その結果、得られた正極活物質はNiとCoが
完全に固溶した複合酸化物であることが要求され、この
ことは粉末X線回折法によって得られる情報として六方
晶に帰属される単一層のピークのみが検出され、かつ充
電状態においても単一相のみのピークが見られる必要が
あることがわかった。かかる観点から活物質の製造法を
検討した結果、従来から知られているようなニッケル塩
とコバルト塩とリチウム化合物とを混合し熱処理を施す
といった製造法(例えば特開昭63−299056)に
おいては完全な単一相の固溶体を得ることは困難であ
る。そこで、あらかじめニッケル塩とコバルト塩とを水
溶液中で共沈させることによってNiとCoの複合水酸
化物を得た後、この複合水酸化物とリチウム化合物とを
混合し熱処理を施すことによって、完全に単一相からな
るリチウム含有複合酸化物が得られることがわかった。
また、固溶させるCoのモル比はNiに対し5%以上必
要であることがわかった。しかしながら、上述の熱安定
性を確保するためには得られたリチウム含有複合酸化物
の結晶性が大きく関与しており、粉末X線回折法から得
られる003面に帰属する回折ピークの半価幅あるいは
半価幅の値から求められるc軸方向の結晶子サイズの値
が重要であることがわかった。
SUMMARY OF THE INVENTION The present invention is directed to LiNiO.
2 relates to a lithium-containing composite oxide positive electrode active material LiNi (1-x) Co x O 2 in which a part of Ni of 2 is replaced by Co. As mentioned above, LiNi (1-x) Co x O 2 is 170 mA.
It has a specific capacity of h / g or more and good cycle characteristics. However, there is a problem that the thermal stability of the active material decreases during charging, that is, in a state where lithium is deintercalated from the positive electrode active material. This is the same as in the case of the LiNiO 2 positive electrode, but in general, the Ni-based lithium-containing composite oxide has a lower charging voltage than the conventional LiCoO 2 positive electrode and reversibly deintercalates /
Since the amount of intercalated lithium is large, the stability of the crystal structure in a fully charged state tends to decrease.
Therefore, when the battery is left in a charged state at a high temperature, its thermal stability is lowered. (For example, the battery in a charged state is heated to 150 ° C. at a rate of 5 ° C./min.
When kept at 0 ° C, the battery ignites and bursts after a few minutes. The present inventors aim to stabilize the crystal structure of LiNi (1-x) Co x O 2 positive electrode active material in order to solve the above-mentioned problems without impairing the reversible capacity of the positive electrode, and its starting material The manufacturing method and physical properties of the retroactive material were investigated and examined. As a result, the obtained positive electrode active material is required to be a composite oxide in which Ni and Co are completely dissolved, which means that a single layer attributed to hexagonal crystal as information obtained by powder X-ray diffraction method. It was found that it was necessary to detect only the peak of 1 and the peak of only a single phase in the charged state. As a result of investigating the production method of the active material from such a viewpoint, in the production method of mixing a nickel salt, a cobalt salt, and a lithium compound as conventionally known and performing heat treatment (for example, JP-A-63-299056), Obtaining a complete single phase solid solution is difficult. Therefore, a nickel and cobalt salt is co-precipitated in an aqueous solution in advance to obtain a composite hydroxide of Ni and Co, and then the composite hydroxide and a lithium compound are mixed and heat treated, It was found that a lithium-containing composite oxide consisting of a single phase was obtained.
Further, it was found that the molar ratio of Co to be solid-solubilized should be 5% or more with respect to Ni. However, the crystallinity of the obtained lithium-containing composite oxide is largely involved in ensuring the above-mentioned thermal stability, and the half-value width of the diffraction peak attributed to the 003 plane obtained by the powder X-ray diffraction method. Alternatively, it was found that the value of the crystallite size in the c-axis direction, which is obtained from the value of the half width, is important.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
めに本発明は、ニッケル塩とコバルト塩との混合水溶液
にアルカリ溶液を加えてニッケルとコバルトの水酸化物
を共沈させることによって得た複合水酸化物にリチウム
化合物を混合し、この混合物を熱処理して得られるリチ
ウム含有複合酸化物LiNi(1-x)Cox2を正極活物
質とし、その003面の回折ピークの真の半価幅β(0
03)が0.01〜0.10deg.としたものであ
る。詳しくは上記リチウム含有複合酸化物の構造式のx
の値が0.05〜0.30としたものである。
In order to solve the above problems, the present invention is obtained by adding an alkaline solution to an aqueous mixed solution of a nickel salt and a cobalt salt to coprecipitate a hydroxide of nickel and cobalt. Lithium-containing composite oxide LiNi (1-x) Co x O 2 obtained by mixing a lithium compound with the above composite hydroxide and heat-treating this mixture is used as the positive electrode active material, and the true diffraction peak of the 003 plane is obtained. Half width β (0
03) is 0.01 to 0.10 deg. It is what it was. Specifically, x in the structural formula of the lithium-containing composite oxide
Value of 0.05 to 0.30.

【0008】[0008]

【発明の実施の形態】本発明による正極活物質の製造法
では、Ni塩とCo塩との混合溶液にアルカリ溶液を加
えてNiとCoの水酸化物を共沈させることによりNi
/Coの複合水酸化物を得ている。この段階で結晶構造
がNiの一部をCoが確実に置換した固溶体となってお
り、粉末X線回折においても単一相であることを確認で
きる。そして、この複合水酸化物にLi化合物を加えて
熱処理を行うことにより、Liが固溶した3元系の複合
酸化物が生成可能である。このようにして得られた(以
下、共沈法と称す)活物質は完全に単一相からなってお
り、また充電状態においても単一相を維持しており、粉
末X線回折法において単一のピークのみが検出される。
一方、従来の合成法によって合成した活物質はNiとC
oが完全に固溶した複合酸化物を得ることは困難であ
り、わずかに2相あるいはそれ以上の混合物となる。ま
た、この2相領域は充電状態においてより顕著となり、
粉末X線回折において2種以上のピークの存在が認めら
れる。従って、結晶構造が不安定な状態となり、高温で
放置された場合の熱安定性が低下する結果となる。一
方、本共沈法により得られた正極活物質を用いた場合、
充電状態における結晶構造の安定性は増すが、それだけ
では充分な熱安定性を確保することはできない。合成さ
れた活物質の結晶構造の完成度が高いことが重要であ
る。言い換えれば粉末X線回折による003面の回折ピ
ークの半価幅が充分に小さいことが必要であり、真の半
価幅β(003)の値が0.01〜0.10deg.で
あることが要求され、好ましくは0.03〜0.07で
ある。0.10を越えた場合結晶性が低く、充電状態に
おいて結晶構造の安定性を欠き熱安定性を確保すること
ができない。逆に、β(003)が0.01未満になる
と熱安定性は充分に確保できるが、結晶構造があまりに
もリジッドであるために可逆容量の低下やサイクル特性
の低下といった問題を生じるようになる。なお、これら
半価幅に関することは共沈法によって得られた正極活物
質について寄与するものであり、従来の合成法により得
られた正極活物質では半価幅が如何なる値であっても熱
安定性を確保することは困難である。LiNi(1-x)
x2の003面の回折ピークの半価幅あるいは結晶子
の大きさに関する記載は特開平−267539号公報あ
るいは特開平−275274号公報に開示されている
が、これらはいずれも共沈法によって合成された正極活
物質に関するものではなく、本発明の意図から外れるも
のである。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for producing a positive electrode active material according to the present invention, an alkaline solution is added to a mixed solution of Ni salt and Co salt to coprecipitate Ni and Co hydroxides.
/ Co composite hydroxide is obtained. At this stage, it can be confirmed that the crystal structure is a solid solution in which a part of Ni is surely replaced by Co, and the powder X-ray diffraction has a single phase. Then, a Li compound is added to this composite hydroxide and a heat treatment is performed to generate a ternary composite oxide in which Li is solid-dissolved. The active material thus obtained (hereinafter referred to as the coprecipitation method) is completely composed of a single phase, and also maintains the single phase even in a charged state. Only one peak is detected.
On the other hand, the active materials synthesized by the conventional synthesis method are Ni and C.
It is difficult to obtain a complex oxide in which o is completely solid-solved, and a mixture of only two phases or more is obtained. Also, this two-phase region becomes more prominent in the charged state,
The presence of two or more peaks is recognized in the powder X-ray diffraction. Therefore, the crystal structure becomes unstable, resulting in a decrease in thermal stability when left at a high temperature. On the other hand, when the positive electrode active material obtained by this coprecipitation method is used,
Although the stability of the crystal structure in the charged state increases, it is not enough to secure sufficient thermal stability. It is important that the crystal structure of the synthesized active material is high. In other words, it is necessary that the full width at half maximum of the diffraction peak on the 003 plane by powder X-ray diffraction is sufficiently small, and the value of the true full width at half maximum β (003) is 0.01 to 0.10 deg. Is required, and preferably 0.03 to 0.07. When it exceeds 0.10, the crystallinity is low, and the stability of the crystal structure is lacking in the charged state, and the thermal stability cannot be secured. On the other hand, when β (003) is less than 0.01, sufficient thermal stability can be secured, but since the crystal structure is too rigid, problems such as reduction in reversible capacity and degradation in cycle characteristics occur. . Note that these half-value widths contribute to the positive electrode active material obtained by the coprecipitation method, and the positive-electrode active material obtained by the conventional synthesis method has no thermal stability at any value. It is difficult to secure sex. LiNi (1-x) C
The half-width of the diffraction peak of the 003 plane of o x O 2 or the size of the crystallite is disclosed in JP-A-267539 or JP-A-275274, both of which are coprecipitation methods. The present invention does not relate to the positive electrode active material synthesized according to the present invention and is outside the scope of the present invention.

【0009】ここで、真の半価幅β(003)の値を求
める方法であるが、一般にX線回折を行った場合、その
ピークの回折幅はピーク自身が持つ回折幅以外にX線自
体が有する回折幅や装置に起因する回折幅の広がりとい
ったものを含んでいる。そこで本発明ではピーク自体の
真の半価幅の値を求めるために、内部標準物質として高
純度のSi粉末を10〜20重量部添加、混合し粉末X
線回折測定を行った。そして、得られたリチウム含有複
合酸化物の003面の回折ピーク(CuKαを用いたX
線回折において2θが18〜20deg.)とSiの1
11面の回折ピーク(同X線回折において2θが28d
eg.付近)のそれぞれの半価幅の値を求め、補正する
ことで真の半価幅β(003)を求めるものである。こ
のような方法は一般に炭素材料の真の半価幅を求めるた
めに学振法として知られている方法を本発明の酸化物に
応用したものである。
Here, the method of obtaining the value of the true full width at half maximum β (003) is generally used, but when X-ray diffraction is performed, the diffraction width of the peak is not only the diffraction width of the peak itself but also the X-ray itself. It includes such things as the diffraction width of the device and the spread of the diffraction width due to the device. Therefore, in the present invention, in order to obtain the value of the true full width at half maximum of the peak itself, 10 to 20 parts by weight of high-purity Si powder as an internal standard substance is added and mixed to obtain powder X.
A line diffraction measurement was performed. Then, the diffraction peak of the 003 plane of the obtained lithium-containing composite oxide (X using CuKα
In the line diffraction, 2θ is 18 to 20 deg. ) And Si 1
Diffraction peak of 11 planes (2θ is 28d in the same X-ray diffraction
eg. The true half-value width β (003) is obtained by finding and correcting the respective half-value widths (in the vicinity). Such a method is an application of a method known as the Gakushin method to the true half-width of a carbon material to the oxide of the present invention.

【0010】最後に得られた複合水酸化物Ni(1-x)
x(OH)2およびリチウム含有複合水酸化物LiNi
(1-x)Cox2のxの値は0.05〜0.30であるこ
とが重要であり、好ましくは0.05〜0.20であ
る。0.05未満では結晶構造の安定化が不十分であ
り、真の半価幅の値にかかわらず熱安定性の確保が困難
である。一方、xが0.30を越えた場合、熱安定性は
高いものの放電容量の低下を招く。
Finally obtained composite hydroxide Ni (1-x) C
o x (OH) 2 and lithium-containing composite hydroxide LiNi
It is important that the value of x of (1-x) Co x O 2 is 0.05 to 0.30, and preferably 0.05 to 0.20. If it is less than 0.05, the stabilization of the crystal structure is insufficient, and it is difficult to secure the thermal stability regardless of the value of the true full width at half maximum. On the other hand, when x exceeds 0.30, the thermal stability is high but the discharge capacity is reduced.

【0011】[0011]

【実施例】【Example】

(実施例1)以下、実施例により本発明を詳しく述べ
る。図1に本実施例で用いた円筒形電池の縦断面図を示
す。図において、1は耐有機電解液性のステンレス鋼板
を加工した電池ケース、2は安全弁を設けた封口板、3
は絶縁パッキングを示す。4は極板群であり、正極およ
び負極がセパレータを介して複数回渦巻状に巻回されて
ケース1内に収納されている。そして上記正極からは正
極リード5が引き出されて封口板2に接続され、負極か
らは負極リード6が引き出されて電池ケース1の底部に
接続されている。7は絶縁リングで極板群4の上下部に
それぞれ設けられている。以下正極活物質の製造法およ
び正、負極板等について詳しく説明する。
(Example 1) The present invention will be described in detail below with reference to examples. FIG. 1 shows a vertical cross-sectional view of the cylindrical battery used in this example. In the figure, 1 is a battery case formed by processing an organic electrolyte resistant stainless steel plate, 2 is a sealing plate provided with a safety valve, 3
Indicates insulating packing. Reference numeral 4 denotes an electrode plate group, in which the positive electrode and the negative electrode are spirally wound a plurality of times with the separator interposed therebetween and are housed in the case 1. A positive electrode lead 5 is drawn out from the positive electrode and connected to the sealing plate 2, and a negative electrode lead 6 is drawn out from the negative electrode and connected to the bottom of the battery case 1. Reference numeral 7 denotes an insulating ring provided on the upper and lower portions of the electrode plate group 4, respectively. The method for producing the positive electrode active material and the positive and negative electrode plates will be described in detail below.

【0012】まず、本発明によるNi/Co複合水酸化
物の共沈による製造法を説明する。市販の硫酸ニッケル
を水に加え、飽和状態の硫酸ニッケル水溶液を調整し、
これにNiとCoのモル比が85:15になるように硫
酸コバルトを加え、更に水を加えて硫酸ニッケルおよび
硫酸コバルトを含む飽和水溶液を作製した。次いで撹拌
しながらこの水溶液に水酸化ナトリウムを溶解したアル
カリ溶液をゆっくりと加えていくと、NiとCoの水酸
化物の沈殿(共沈)が同時に始まった。十分にアルカリ
溶液を加えて沈殿が終了した後、濾過して沈殿物を回収
し水洗した。pHを確認しながら水洗を繰り返し、残存
アルカリがほぼ消失した後、100℃の熱風空気中で乾
燥させた。
First, the production method by coprecipitation of the Ni / Co composite hydroxide according to the present invention will be described. Commercially available nickel sulfate is added to water to prepare a saturated nickel sulfate aqueous solution,
Cobalt sulfate was added to this so that the molar ratio of Ni and Co was 85:15, and water was further added to prepare a saturated aqueous solution containing nickel sulfate and cobalt sulfate. Then, an alkaline solution in which sodium hydroxide was dissolved was slowly added to this aqueous solution with stirring, and precipitation (coprecipitation) of hydroxides of Ni and Co simultaneously started. After sufficient addition of an alkaline solution to complete the precipitation, the precipitate was collected by filtration and washed with water. Washing with water was repeated while confirming the pH, and after almost all the residual alkali had disappeared, it was dried in hot air at 100 ° C.

【0013】このようにして得られたNi/Co複合水
酸化物Ni0.85Co0.15(OH)2は粉末X線回折の結
果、単一相であり、元素分析の結果、ほぼ目的の比率で
NiとCoを含んでいることを確認した。なお、本実施
例1では共沈の源材料にNi源として硫酸ニッケルをC
o源として硫酸コバルトを用いたが、Ni源として硝酸
ニッケル、Co源として硝酸コバルトなど、水溶液を作
製し得る塩であればいずれの塩も使用可能である。ま
た、アルカリ源として水酸化ナトリウムを用いたが、水
酸化カリウム、水酸化リチウムなど他のアルカリ溶液で
あってもよい。
The Ni / Co composite hydroxide Ni 0.85 Co 0.15 (OH) 2 thus obtained was in a single phase as a result of powder X-ray diffraction, and as a result of elemental analysis, Ni 0.85 Co 0.15 (OH) 2 was found to be almost in a target ratio. Was confirmed to contain Co. In Example 1, nickel sulfate was used as a Ni source in the coprecipitation source material, and
Although cobalt sulfate was used as the o source, any salt can be used as long as it can form an aqueous solution, such as nickel nitrate as the Ni source and cobalt nitrate as the Co source. Although sodium hydroxide was used as the alkali source, other alkali solutions such as potassium hydroxide and lithium hydroxide may be used.

【0014】次いで、Li化合物との混合、熱処理の工
程について説明する。Li化合物としては水酸化リチウ
ムを用い、Ni/Co複合水酸化物のNiとCoの原子
数の和とLiの原子数が等量になるようにボールミルに
投入し十分混合した。この混合物をアルミナ製のるつぼ
に入れ空気中において種々の温度および時間で熱処理を
行った。そして自然冷却後、粉砕、分級を行い平均粒径
が約10μmの正極活物質粉末LiNi0.85Co0.15
2とした。
Next, the steps of mixing with a Li compound and heat treatment will be described. Lithium hydroxide was used as the Li compound, and the mixture was put into a ball mill and mixed sufficiently so that the total number of Ni and Co atoms in the Ni / Co composite hydroxide and the number of Li atoms were equal. This mixture was placed in an alumina crucible and heat-treated in air at various temperatures and times. Then, after being naturally cooled, it is pulverized and classified to form a positive electrode active material powder LiNi 0.85 Co 0.15 O having an average particle size of about 10 μm.
And 2 .

【0015】このようにして種々の熱処理条件で得られ
たリチウム含有複合酸化物の粉末(それぞれ電池A〜電
池Gに相当)は粉末X線回折の結果、いずれの場合にお
いても単一相の生成物であった。
The powders of lithium-containing composite oxides (corresponding to batteries A to G, respectively) thus obtained under various heat treatment conditions were subjected to powder X-ray diffraction, and in each case, a single phase was formed. It was a thing.

【0016】つづいて正極板の作製方法について説明す
る。得られた正極活物質100重量部に対してアセチレ
ンブラック4重量部を加え、この混合物にN−メチルピ
ロリジノン(NMP)の溶媒に結着剤としてのポリフッ
化ビニリデン(PVDF)を溶解した溶液を加え混練し
てペースト状にした。なお、加えたPVDFの量は正極
活物質100重量部に対して4重量部となるように調整
した。次いでこのペーストをアルミニウム箔の両面に塗
工し、乾燥後、圧延して厚さ0.14mm、幅37m
m、長さ250mmの正極板とした。
Next, a method for manufacturing the positive electrode plate will be described. To 100 parts by weight of the obtained positive electrode active material, 4 parts by weight of acetylene black was added, and to this mixture was added a solution of polyvinylidene fluoride (PVDF) as a binder in a solvent of N-methylpyrrolidinone (NMP). It was kneaded into a paste. The amount of PVDF added was adjusted to 4 parts by weight with respect to 100 parts by weight of the positive electrode active material. Next, this paste is applied to both sides of an aluminum foil, dried and rolled to a thickness of 0.14 mm and a width of 37 m.
The positive electrode plate had a length of m and a length of 250 mm.

【0017】負極はメソフェーズ小球体を黒鉛化したも
の(以下メソフェーズ黒鉛と称す)を使用した。このメ
ソフェーズ黒鉛100重量部に結着剤としてのスチレン
/ブタジエンゴム3重量部を混合し、カルボキシメチル
セルロース水溶液を加えて混練し、ペースト状にした。
そしてこのペーストを銅箔の両面に塗工し、乾燥後、圧
延して厚み0.21mm、幅39mm、長さ280mm
の負極板とした。
As the negative electrode, graphitized mesophase spheres (hereinafter referred to as mesophase graphite) were used. 100 parts by weight of this mesophase graphite was mixed with 3 parts by weight of styrene / butadiene rubber as a binder, and an aqueous solution of carboxymethyl cellulose was added and kneaded to form a paste.
Then, this paste is applied to both sides of the copper foil, dried and rolled to a thickness of 0.21 mm, a width of 39 mm, and a length of 280 mm.
Was used as the negative electrode plate.

【0018】そして、正極板にはアルミニウム製、負極
板にはニッケル製のリードをそれぞれ取り付け、厚さ
0.025mm、幅45mm、長さ740mmのポリエ
チレン製のセパレータを介して渦巻状に巻回し、直径1
4.0mm、高さ50mmの電池ケースに納入した。
Aluminum leads are attached to the positive electrode plate and nickel leads are attached to the negative electrode plate, and the leads are spirally wound through a polyethylene separator having a thickness of 0.025 mm, a width of 45 mm, and a length of 740 mm. Diameter 1
It was delivered to a battery case with a height of 4.0 mm and a height of 50 mm.

【0019】電解液にはエチレンカーボネート(EC)
とエチルメチルカーボネート(EMC)とを20:80
の体積比で混合した溶媒に電解質として1モル/lのL
iPF6を溶解したものを注液した。そして電池を封口
し完成電池とした。
As the electrolytic solution, ethylene carbonate (EC) is used.
And ethyl methyl carbonate (EMC) at 20:80
1 mol / l of L as an electrolyte in a solvent mixed in a volume ratio of
a solution obtained by dissolving iPF 6 was injected. Then, the battery was sealed to obtain a completed battery.

【0020】(比較例1)共沈法ではなく従来の合成法
を用いてNiの一部をCoで置換したLiNi0. 85Co
0.152の組成を有する正極活物質を合成した。まず、
水酸化ニッケルと水酸化コバルトと水酸化リチウムとを
Ni:Co:Liの原子比が0.85:0.15:1.
0となるように秤量し、ボールミルで充分に混合した。
そしてこの混合物をアルミナ製のるつぼに入れ空気中に
おいて種々の温度および時間で熱処理を行った。そして
自然冷却後、粉砕、分級を行い平均粒径約10μmの正
極活物質粉末とした。これらの活物質の粉末X線回折の
結果、一部未反応相と思われるピークの存在が確認され
た。これらの活物質についても実施例1と同様に正極板
を作製し、他の条件はすべて実施例1と同様に電池を構
成し電池H〜電池Jとした。
The LiNi part of Ni using conventional synthetic methods rather than (Comparative Example 1) coprecipitation was replaced with Co 0. 85 Co
A positive electrode active material having a composition of 0.15 O 2 was synthesized. First,
The atomic ratio of Ni: Co: Li of nickel hydroxide, cobalt hydroxide, and lithium hydroxide is 0.85: 0.15: 1.
It was weighed so as to be 0, and thoroughly mixed with a ball mill.
Then, this mixture was placed in an alumina crucible and heat-treated in air at various temperatures and times. Then, after natural cooling, pulverization and classification were performed to obtain a positive electrode active material powder having an average particle size of about 10 μm. As a result of powder X-ray diffraction of these active materials, the existence of some peaks which are considered to be an unreacted phase was confirmed. With respect to these active materials, a positive electrode plate was produced in the same manner as in Example 1, and the other conditions were the same as in Example 1 to form a battery, and batteries B to J were obtained.

【0021】これら電池A〜電池Jについて以下の条件
で充放電試験を行った。充電は4.2Vで2時間の定電
圧充電を行い、電池電圧が4.2Vに達するまでは42
0mAの定電流充電となるように設定した。そして放電
は610mAの定電流放電を行い、放電終止電圧を3.
0Vとした。このような充放電を20℃の環境下で10
サイクル行い、11サイクル目の充電状態で試験を中止
し、電池の表面に熱電対を取り付け恒温槽内に設置し
た。そして恒温槽の温度を5℃/min.の速度で昇温
し、150℃で60分間維持する設定とした。そして各
電池が発火あるいは破裂に至った時間(槽温度が150
℃に到達後の時間)と発火しなかった場合は、電池の最
高発熱温度および各電池の放電容量の値を表1に示し
た。なお、0分というのは槽温度が150℃に到達する
以前に電池が発火、破裂を起こしたことを示している。
A charging / discharging test was performed on these batteries A to J under the following conditions. Charged at 4.2V for 2 hours with constant voltage charging, until the battery voltage reaches 4.2V, 42
It was set to be a constant current charge of 0 mA. The discharge is a constant current discharge of 610 mA, and the discharge end voltage is 3.
0 V was applied. Such charging / discharging is performed under an environment of 20 ° C. for 10
Cycle was performed, and the test was stopped in the charged state of the 11th cycle, and a thermocouple was attached to the surface of the battery and installed in a constant temperature bath. Then, the temperature of the constant temperature bath is 5 ° C./min. The temperature was raised at the rate of and the temperature was maintained at 150 ° C. for 60 minutes. And the time it took for each battery to ignite or explode (battery temperature was 150
Table 1 shows the maximum exothermic temperature of the battery and the value of the discharge capacity of each battery when the ignition did not occur. It should be noted that 0 minute means that the battery ignited and exploded before the tank temperature reached 150 ° C.

【0022】[0022]

【表1】 [Table 1]

【0023】表1より共沈法によって得られた正極活物
質を用いた電池A〜電池Gでは熱安定性が高いものが多
いが、真の半価幅β(003)が比較的大きい電池Aお
よび電池Bでは発火に至っており、熱安定性を確保する
ことはできない。これらは充電状態において単一相では
あるものの結晶性が低いために構造が幾分不安定とな
り、熱安定性が低下したものと考えられる。β(00
3)の値が0.10deg.以下である電池C〜電池G
では単一相であり、且つ高結晶性であるために熱安定性
が充分に確保されており、中でもβ(003)の値が
0.07deg.以下である電池D〜電池Gは最高発熱
温度も低く、より熱安定性が高いことがわかる。しかし
ながら、β(003)の値が最も小さい電池Gは熱安定
性は高いものの電池の放電容量が極端に小さくなってい
る。これは正極活物質の結晶性が高すぎるためにリチウ
ムのデインターカレート/インターカレートが阻害され
る形となり容量低下につながったものと考えられる。
From Table 1, many of the batteries A to G using the positive electrode active material obtained by the coprecipitation method have high thermal stability, but the true half width β (003) is relatively large. Also, the battery B has ignited, and thermal stability cannot be secured. It is considered that, although they are a single phase in the charged state, their crystallinity is low, so that their structures are somewhat unstable and their thermal stability is lowered. β (00
The value of 3) is 0.10 deg. Battery C to Battery G which are the following
Has a single phase and has high crystallinity, so that sufficient thermal stability is ensured. Among them, the value of β (003) is 0.07 deg. It can be seen that the following batteries D to G have low maximum heat generation temperatures and higher thermal stability. However, although the battery G having the smallest value of β (003) has high thermal stability, the discharge capacity of the battery is extremely small. It is considered that this is because the crystallinity of the positive electrode active material was too high, and deintercalation / intercalation of lithium was hindered, resulting in a decrease in capacity.

【0024】一方、共沈法ではなく従来の合成法によっ
て得られた正極活物質を用いた電池H〜電池Jでは真の
半価幅β(003)の値にかかわらず、すべて発火、破
裂に至っており、熱安定性を確保することはできなかっ
た。これは得られた活物質が完全に単一相の固溶体とな
っておらず、一部未反応相との混合物であるために充電
状態においてはこの2相領域がより顕著となり、いかに
結晶性を向上させても構造の安定化は不十分であり熱安
定性を確保するには至らないものと考えられる。
On the other hand, in the batteries H to J using the positive electrode active material obtained by the conventional synthesis method instead of the coprecipitation method, regardless of the value of the true half-value width β (003), they all ignite and burst. However, the thermal stability could not be ensured. This is because the obtained active material is not completely a single-phase solid solution and is partially a mixture with an unreacted phase, so that the two-phase region becomes more remarkable in the charged state, and how the crystallinity is improved. Even if it is improved, the stabilization of the structure is insufficient and it is considered that the thermal stability cannot be secured.

【0025】以上のことから、熱安定性を確保し、正極
特性の優れた正極活物質を得るためには共沈法による合
成が不可欠であり、且つ真の半価幅β(003)の値が
0.01〜0.10deg.であることが必要であるこ
とがわかる。
From the above, synthesis by the coprecipitation method is indispensable for ensuring thermal stability and obtaining a positive electrode active material having excellent positive electrode characteristics, and the true half-value width β (003) value. Is 0.01 to 0.10 deg. It turns out that it is necessary to be.

【0026】(実施例2)次に本共沈法において、Ni
/Coのモル比を変化させ、一般式のxの値が0〜0.
50までの複合水酸化物を合成し、これらに所定量の水
酸化リチウムを混合し、750℃、5時間の熱処理を行
い、種々の組成比を持ったリチウム含有複合酸化物正極
活物質を得た。(x=0とはCoを全く固溶させていな
いものである。)そしてそれぞれ実施例1と同様に正極
板を作製し、他の条件はすべて実施例1と同様に電池を
構成した。得られた電池は実施例1と同様の熱安定試験
を行うと共に放電容量の値を表2に示した。
Example 2 Next, in the present coprecipitation method, Ni
The value of x in the general formula is 0 to 0.
A composite hydroxide of up to 50 was synthesized, and a predetermined amount of lithium hydroxide was mixed with these, and heat treatment was performed at 750 ° C. for 5 hours to obtain a lithium-containing composite oxide positive electrode active material having various composition ratios. It was (X = 0 means that Co was not solid-dissolved at all.) Then, a positive electrode plate was produced in the same manner as in Example 1, and a battery was constructed in the same manner as in Example 1 under all other conditions. The battery obtained was subjected to the same thermal stability test as in Example 1, and the discharge capacity values are shown in Table 2.

【0027】[0027]

【表2】 [Table 2]

【0028】表2より、xの値が0.03以下である電
池Kおよび電池Lは熱安定試験において電池が発火に至
っており、これはCoの固溶量が少ないために結晶構造
の安定化が不十分となり、熱安定性が確保できなかった
ものと考えられる。一方、xの値が0.05以上ではい
ずれの場合も熱安定性は高いが、x値が0.30を越え
た場合、放電容量の低下が著しく好ましくないことがわ
かる。これはNi系のリチウム含有酸化物が本来有する
可逆容量がCoの影響を大きく受けるようになり、充電
電圧の上昇と共に可逆容量が低下することに起因するも
のと考えられる。
From Table 2, in the battery K and the battery L in which the value of x is 0.03 or less, the battery was ignited in the thermal stability test. This is because the solid solution amount of Co is small and the crystal structure is stabilized. It is probable that the thermal stability could not be ensured due to insufficient heating. On the other hand, when the value of x is 0.05 or more, the thermal stability is high in any case, but when the value of x exceeds 0.30, the decrease of the discharge capacity is remarkably unfavorable. It is considered that this is because the reversible capacity originally possessed by the Ni-based lithium-containing oxide is greatly affected by Co, and the reversible capacity decreases as the charging voltage increases.

【0029】従って、Coの固溶量、つまりxの値とし
ては0.05〜0.30であることが重要であり、放電
容量の観点から好ましくは0.05〜0.20である。
Therefore, it is important that the solid solution amount of Co, that is, the value of x is 0.05 to 0.30, and preferably 0.05 to 0.20 from the viewpoint of discharge capacity.

【0030】なお、本実施例および比較例において負極
にメソフェーズ黒鉛を用いたが、もちろん他の黒鉛材料
やコークス類、炭素繊維などリチウムをインターカレー
ト/デインターカレートし得る炭素材料であればいずれ
も使用可能である。更に電解液の溶媒としてECとEM
Cの混合溶媒を使用したが、他の溶媒としてプロピレン
カーボネート、ジエチルカーボネートなどのカーボネー
ト類、1、2−ジメトキシエタン、2−メチルテトラヒ
ドロフランなどのエーテル類、プリピオン酸メチル、酢
酸エチルなどの脂肪族カルボン酸エステルなど従来より
公知の溶媒がいずれも単独あるいは混合溶媒として使用
できる。同様に電解質についてもLIBF4、LiCl
4、LiCF3SO3など従来より公知のものがいずれ
も使用可能である。
Although mesophase graphite was used for the negative electrode in the present examples and comparative examples, it is needless to say that other graphite materials, cokes, carbon fibers, and other carbon materials capable of intercalating / deintercalating lithium. Both can be used. Furthermore, EC and EM are used as the solvent for the electrolyte.
Although the mixed solvent of C was used, other solvents such as carbonates such as propylene carbonate and diethyl carbonate, ethers such as 1,2-dimethoxyethane and 2-methyltetrahydrofuran, aliphatic carboxylic acids such as methyl prepionate and ethyl acetate. Any conventionally known solvent such as acid ester can be used alone or as a mixed solvent. Similarly for the electrolyte, LIBF 4 , LiCl
Any of conventionally known materials such as O 4 and LiCF 3 SO 3 can be used.

【0031】[0031]

【発明の効果】以上のように本発明による非水電解液二
次電池用正極活物質の製造法により、CoがNiの一部
を置換し、完全に固溶した単一相のLiNi(1-x)Cox
2(xの値は0.05〜0.30)を得ることが可能
であり、そのX線回折による003面の回折ピークの真
の半価幅β(003)の値が0.01〜0.10とする
ことにより、これを正極に用いた場合、高容量を与え熱
安定性に優れた非水電解液二次電池を提供することがで
きる。
As described above, according to the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention, Co replaces a part of Ni and completely forms a solid solution LiNi (1 -x) Co x
It is possible to obtain O 2 (the value of x is 0.05 to 0.30), and the true half-value width β (003) of the diffraction peak of the 003 plane by the X-ray diffraction is 0.01 to By setting it to 0.10, when this is used for the positive electrode, it is possible to provide a non-aqueous electrolyte secondary battery that gives a high capacity and is excellent in thermal stability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例および比較例における円筒形電
池の縦断面図
FIG. 1 is a longitudinal sectional view of a cylindrical battery according to an example of the present invention and a comparative example.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 絶縁パッキング 4 極板群 5 正極リード 6 負極リード 7 絶縁リング DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Insulation packing 4 Electrode group 5 Positive electrode lead 6 Negative electrode lead 7 Insulation ring

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】ニッケル塩とコバルト塩との混合水溶液に
アルカリ溶液を加えてニッケルとコバルトの水酸化物を
共沈させることによって得た複合水酸化物Ni (1-x)
x(OH)2とリチウム化合物とを混合し、この混合物
を熱処理して得られるリチウム含有複合酸化物LiNi
(1-x)Cox2を正極活物質とし、その003面の回折
ピークの真の半価幅β(003)が0.01〜0.10
deg.であることを特徴とする非水電解液二次電池用
正極活物質の製造法。
1. A mixed aqueous solution of nickel salt and cobalt salt
Add an alkaline solution to remove the nickel and cobalt hydroxides.
Composite hydroxide Ni obtained by coprecipitation (1-x)C
ox(OH)TwoAnd a lithium compound are mixed, and this mixture
Li-containing composite oxide LiNi obtained by heat treatment of
(1-x)CoxOTwoIs used as the positive electrode active material, and the 003 plane diffraction
True half-value width β (003) of the peak is 0.01 to 0.10.
deg. For non-aqueous electrolyte secondary batteries characterized by
Manufacturing method of positive electrode active material.
【請求項2】上記複合水酸化物およびリチウム含有複合
酸化物のxの値が0.05〜0.30である請求項1記
載の非水電解液二次電池用正極活物質の製造法。
2. The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the value of x of the composite hydroxide and the lithium-containing composite oxide is 0.05 to 0.30.
【請求項3】上記リチウム化合物は水酸化リチウムであ
る請求項1または2に記載の非水電解液二次電池用正極
活物質の製造法。
3. The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the lithium compound is lithium hydroxide.
【請求項4】ニッケル塩とコバルト塩との混合水溶液に
アルカリ溶液を加えてニッケルとコバルトの水酸化物を
共沈させることによって得た複合水酸化物Ni (1-x)
x(OH)2(xが0.05〜0.30)と水酸化リチ
ウムとを混合し、この混合物を熱処理することによって
得られるリチウム含有複合酸化物LiNi(1-x)Cox
2(xが0.05〜0.30)を正極活物質とし、その
003面の回折ピークの真の半価幅β(003)が0.
01〜0.10deg.であることを特徴とする非水電
解液二次電池用正極活物質の製造法。
4. A mixed aqueous solution of nickel salt and cobalt salt
Add an alkaline solution to remove the nickel and cobalt hydroxides.
Composite hydroxide Ni obtained by coprecipitation (1-x)C
ox(OH)Two(X is 0.05 to 0.30) and lithium hydroxide
By mixing with um and heat treating this mixture
Obtained lithium-containing composite oxide LiNi(1-x)CoxO
Two(X is 0.05 to 0.30) as a positive electrode active material,
The true full width at half maximum β (003) of the diffraction peak on the 003 plane is 0.
01-0.10 deg. Non-hydroelectricity characterized by
A method for producing a positive electrode active material for a resolving secondary battery.
【請求項5】上記請求項1〜4の何れかに記載の製造法
によって得られた正極活物質を主体とした正極と、非水
電解液と、リチウムをインターカレート/デインターカ
レートし得る炭素材料からなることを特徴とした非水電
解液二次電池。
5. A positive electrode mainly composed of the positive electrode active material obtained by the manufacturing method according to any one of claims 1 to 4, a non-aqueous electrolyte, and lithium are intercalated / deintercalated. A non-aqueous electrolyte secondary battery comprising the obtained carbon material.
JP28277595A 1995-10-31 1995-10-31 Non-aqueous electrolyte secondary battery and method for producing its positive electrode active material Expired - Fee Related JP3185635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28277595A JP3185635B2 (en) 1995-10-31 1995-10-31 Non-aqueous electrolyte secondary battery and method for producing its positive electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28277595A JP3185635B2 (en) 1995-10-31 1995-10-31 Non-aqueous electrolyte secondary battery and method for producing its positive electrode active material

Publications (2)

Publication Number Publication Date
JPH09129231A true JPH09129231A (en) 1997-05-16
JP3185635B2 JP3185635B2 (en) 2001-07-11

Family

ID=17656920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28277595A Expired - Fee Related JP3185635B2 (en) 1995-10-31 1995-10-31 Non-aqueous electrolyte secondary battery and method for producing its positive electrode active material

Country Status (1)

Country Link
JP (1) JP3185635B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008257902A (en) * 2007-04-02 2008-10-23 Sumitomo Metal Mining Co Ltd Positive active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008257902A (en) * 2007-04-02 2008-10-23 Sumitomo Metal Mining Co Ltd Positive active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using it

Also Published As

Publication number Publication date
JP3185635B2 (en) 2001-07-11

Similar Documents

Publication Publication Date Title
KR101587293B1 (en) Li-Ni-BASED COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
JP3008793B2 (en) Manufacturing method of positive electrode active material for lithium secondary battery
US9160031B2 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery comprising the same
US7655358B2 (en) Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same
JP4326041B2 (en) Doped intercalation compound and method for producing the same
US6193946B1 (en) Process for the preparation of a lithium composite metal oxide
JPH11307094A (en) Lithium secondary battery positive electrode active material and lithium secondary battery
JP2001148249A (en) Negative electrode active material for lithium secondary battery and lithium secondary battery
JP3047693B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
JP2000133262A (en) Nonaqueous electrolyte secondary battery
JP2003017060A (en) Positive electrode active material and non-aqueous electrolyte battery
JP2000173599A (en) Manufacture of active material for lithium secondary battery positive electrode and lithium secondary battery
JP3257350B2 (en) Non-aqueous electrolyte secondary battery and method for producing its positive electrode active material
JP3232943B2 (en) Manufacturing method of positive electrode active material for lithium secondary battery
JP2012209242A (en) Lithium manganese titanium nickel composite oxide and production method therefor, and lithium secondary battery using the same as member
KR101298719B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP3185609B2 (en) Manufacturing method of positive electrode active material for lithium secondary battery
JP4553095B2 (en) Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
JP4479874B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2001064020A (en) Production of lithium manganate
JP3751133B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2000154022A (en) Lithium manganese double oxide, its production and its use
JP3185635B2 (en) Non-aqueous electrolyte secondary battery and method for producing its positive electrode active material
JPH09259928A (en) Manufacture of secondary lithium battery
JP2001266871A (en) Manufacturing method of complex oxide for non-aqueous lithium secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees