JPH09124901A - Epoxy resin composition for semiconductor sealing - Google Patents

Epoxy resin composition for semiconductor sealing

Info

Publication number
JPH09124901A
JPH09124901A JP7281451A JP28145195A JPH09124901A JP H09124901 A JPH09124901 A JP H09124901A JP 7281451 A JP7281451 A JP 7281451A JP 28145195 A JP28145195 A JP 28145195A JP H09124901 A JPH09124901 A JP H09124901A
Authority
JP
Japan
Prior art keywords
formula
epoxy resin
resin composition
coupling agent
silane coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7281451A
Other languages
Japanese (ja)
Other versions
JP3568653B2 (en
Inventor
Masaru Ota
賢 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP28145195A priority Critical patent/JP3568653B2/en
Publication of JPH09124901A publication Critical patent/JPH09124901A/en
Application granted granted Critical
Publication of JP3568653B2 publication Critical patent/JP3568653B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PROBLEM TO BE SOLVED: To obtain an epoxy resin composition for semiconductor sealing, which can give a cured product having good adhesion to various metallic materials and various organic substrates and improved in soldering resistance by using a crystalline epoxy resin, a specified flexible curing agent, a cure accelerator, an inorganic filler, a specified silane coupling agent and a specified mold release as the essential components. SOLUTION: This resin composition essentially consists of a crystalline epoxy resin of a melting point of 50-150 deg.C, a flexible curing agent represented by formula I; a cure accelerator, 75-92wt.%, based on the entire composition, inorganic filler, a double-bond-containing silane coupling agent represented by formula II (wherein R<1> is H or CH3 , R<2> is a group of formula V or null; and A is CH3 or C2 H5 ), and mold releases represented by formulas III (wherein R<3> is a 17C or higher alkyl) and/or formula IV (wherein R<4> is a 17C or higher alkyl; and R<5> is CH2 , C2 H4 , or the like).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、各種金属材料(4
2合金、銅、シリコン、銀、金)や有機基材、特にポリ
イミドやポリメチルメタアクリレート(以下、PMMA
という)に良好に密着するために耐半田クラック性等の
耐湿信頼性に優れ、しかもボイドが少なく成形性が良好
な半導体封止用エポキシ樹脂組成物に関するものであ
る。
TECHNICAL FIELD The present invention relates to various metallic materials (4
2 alloys, copper, silicon, silver, gold) and organic base materials, especially polyimide and polymethylmethacrylate (hereinafter PMMA).
The present invention relates to an epoxy resin composition for semiconductor encapsulation, which has excellent moisture resistance reliability such as solder crack resistance and good moldability because it has excellent void resistance.

【0002】[0002]

【従来の技術】IC本体を機械的、化学的作用から保護
するために、エポキシ樹脂組成物は開発、生産されてき
た。これに要求される項目としては、封止されるICパ
ッケージの構造によって変化する。軽薄短小化、かつ多
ピン化の傾向のため、パッケージ構造は複雑多岐に変化
している。パッケージの内部構造に存在する各種基材を
列挙してみると、リードフレームの基材としての42合
金、銅、アセンブリに必要な基材としての金、銀、チッ
プの基材としてのアルミニウム、シリコン、窒化珪素、
シリコン、その他の有機構成材料としてのポリイミド、
PMMA等と多岐にわたっている。これらの材料と封止
用樹脂組成物は良好な密着力を発揮する必要がある。し
かし、従来の密着性付与の手法ではこれら有機基材に対
する密着性改善は十分ではなかった。密着性改善によく
用いられる手法としては、カップリング剤を封止樹脂組
成物に配合することである。例えば、特公昭59−43
062号公報によると、エポキシシランカップリング剤
とメルカプトシランカップリング剤を併用すると、各種
基材への密着力が改善され耐湿信頼性も改善できると記
載されている。
2. Description of the Related Art Epoxy resin compositions have been developed and produced in order to protect IC bodies from mechanical and chemical effects. Items required for this change depending on the structure of the sealed IC package. Due to the trend toward lightness, thinness, shortness, and high pin count, the package structure is changing in a variety of ways. A list of various base materials that exist in the internal structure of the package is as follows: 42 alloy as a base material of the lead frame, copper, gold and silver as a base material necessary for assembly, aluminum and silicon as a base material of the chip. , Silicon nitride,
Silicon, polyimide as other organic constituent material,
It covers a wide range of areas such as PMMA. These materials and the encapsulating resin composition must exhibit good adhesion. However, the conventional methods for imparting adhesion have not been sufficient to improve the adhesion to these organic substrates. A method often used to improve adhesion is to add a coupling agent to the encapsulating resin composition. For example, Japanese Patent Publication No. 59-43
According to Japanese Patent Laid-Open No. 062, when an epoxy silane coupling agent and a mercapto silane coupling agent are used in combination, the adhesion to various substrates is improved and the moisture resistance reliability is also improved.

【0003】しかし、これらのカップリング剤は、一部
の金属に対しては密着力が改善されるが、他の金属や有
機基材への密着力改善には効果がなかった。これら有機
基材に対する密着性改善の試みが種々なされてきたが、
未だ有効な手段は見つかっていなかった。しかし、これ
らの手法で改善されるのは上記基材の極一部に対しての
みであり、これらを全て改善できる手法は見つかってい
なかった。
However, these coupling agents improve the adhesion to some metals, but have no effect on the adhesion to other metals and organic substrates. Although various attempts have been made to improve adhesion to these organic substrates,
No effective means has been found yet. However, these methods improve only a small part of the above-mentioned substrate, and a method capable of improving all of them has not been found.

【0004】[0004]

【発明が解決しようとする課題】本発明は、各種金属材
料、有機基材に良好に密着し、耐半田性が向上し、更に
ボイド性、硬化性を改善し、かつ良好な成形性を有する
半導体封止用エポキシ樹脂組成物を提供するものであ
る。
The present invention has good adhesion to various metal materials and organic substrates, improved solder resistance, improved voidability and curability, and good moldability. An epoxy resin composition for semiconductor encapsulation is provided.

【0005】[0005]

【課題を解決するための手段】本発明は、(A)融点5
0〜150℃の結晶性エポキシ樹脂、(B)式(1)に
示す可撓性硬化剤、(C)硬化促進剤、(D)全組成物
中に75〜92重量%含有された無機充填材、(E)式
(2)に示す不飽和二重結合含有のシランカップリング
剤、及び(F)式(3)及び/又は式(4)の離型剤を
必須成分とする半導体封止用エポキシ樹脂組成物であ
る。
According to the present invention, (A) a melting point of 5
Crystalline epoxy resin at 0 to 150 ° C., (B) flexible curing agent represented by the formula (1), (C) curing accelerator, (D) inorganic composition in an amount of 75 to 92% by weight in the total composition. Material, (E) a silane coupling agent containing an unsaturated double bond represented by formula (2), and (F) a mold release agent of formula (3) and / or formula (4) as a semiconductor encapsulation which is an essential component It is an epoxy resin composition for use.

【0006】[0006]

【化5】 Embedded image

【0007】[0007]

【化6】 [Chemical 6]

【0008】[0008]

【化7】 Embedded image

【0009】[0009]

【化8】 Embedded image

【0010】[0010]

【発明の実施の態様】本発明で用いられるエポキシ樹脂
は、融点50〜150℃の結晶性エポキシ樹脂である。
結晶性エポキシ樹脂は、分子構造的には低分子で平面的
な構造の骨格を有するエポキシ化合物であり、常温では
結晶化している結晶固体であるが、昇温することによ
り、融点以上の温度域では急速に融解して低粘度(0.
1〜10ポイズ近辺)の液状に変化するものである。示
差走査熱量計で融解挙動を測定すると、結晶性エポキシ
樹脂は鋭い融解ピークを発現する。結晶性エポキシ樹脂
の融点は50〜150℃であり、50℃未満だと、常温
にて溶融しており、作業性の問題や樹脂組成物とした時
の常温保管特性の低下が懸念される。150℃を越える
と、混練時に充分融解せず、均一分散できないので硬化
性が低下して成形性が低下し、更に不均一な成形品とな
り、強度が各部によって異なるために半導体パッケージ
の性能が低下する。これらの条件を満たすエポキシ樹脂
として、ビスフェノールA型エポキシ樹脂、ビスフェノ
ールF型エポキシ樹脂、ナフタレン型エポキシ樹脂等が
挙げられる。耐湿信頼性向上のために、これらのエポキ
シ樹脂中に含有される塩素イオン、ナトリウムイオン、
その他フリーのイオンは極力少ないことが望ましい。ま
た、エポキシ当量は100〜350が好ましい。100
未満であると反応点が増えることにより樹脂組成物の吸
水率が高くなり、耐半田クラック特性が低下する。35
0を越えると反応性が低下して成形性が悪くなる。
BEST MODE FOR CARRYING OUT THE INVENTION The epoxy resin used in the present invention is a crystalline epoxy resin having a melting point of 50 to 150 ° C.
A crystalline epoxy resin is an epoxy compound that has a low molecular weight and a planar structure skeleton in terms of molecular structure, and is a crystalline solid that is crystallized at room temperature. Then melts rapidly and has a low viscosity (0.
It changes to a liquid around 1 to 10 poises). When measuring the melting behavior with a differential scanning calorimeter, the crystalline epoxy resin develops a sharp melting peak. The melting point of the crystalline epoxy resin is 50 to 150 ° C. If it is lower than 50 ° C., the crystalline epoxy resin is melted at room temperature, and there is a concern that workability may be deteriorated and the room temperature storage property of the resin composition may be deteriorated. If it exceeds 150 ° C, it will not melt sufficiently during kneading, and it will not be possible to uniformly disperse, so the curability will decrease and the moldability will decrease, resulting in a non-uniform molded product, and the strength of each part will vary and the performance of the semiconductor package will decrease. To do. Examples of epoxy resins that satisfy these conditions include bisphenol A type epoxy resins, bisphenol F type epoxy resins, and naphthalene type epoxy resins. Chloride ion, sodium ion contained in these epoxy resins for improving moisture resistance reliability,
It is desirable that the number of other free ions is as small as possible. The epoxy equivalent is preferably 100 to 350. 100
If it is less than the above range, the number of reaction points increases, so that the water absorption rate of the resin composition becomes high and the solder crack resistance is deteriorated. 35
If it exceeds 0, the reactivity decreases and the moldability deteriorates.

【0011】本発明で用いられる硬化剤は、式(1)で
示される可撓性硬化剤である。この可撓性硬化剤は、従
来のフェノールノボラック樹脂硬化剤と比べて成形品の
吸水率を顕著に低下せしめ、成形品の耐半田クラック特
性が向上することが判明している。分子量等について特
に限定するものではない。また、この硬化剤はシリコー
ン変性されていても問題ない。更に、耐湿信頼性向上の
ため、不純物として含有される塩素イオン、ナトリウム
イオン、その他フリーのイオンは極力少ないことが望ま
しい。無機充填材の配合量としては、全樹脂組成物に対
し、75〜92重量%が望ましい。75重量%未満であ
ると、樹脂の吸水率が高くなって耐半田クラック性が低
下する。92重量%を越えると球状フィラーを利用して
も樹脂組成物の溶融粘度が高くなり過ぎ成形できない。
The hardener used in the present invention is a flexible hardener represented by the formula (1). It has been found that this flexible curing agent significantly lowers the water absorption of the molded product as compared with the conventional phenol novolac resin curing agent and improves the solder crack resistance of the molded product. The molecular weight and the like are not particularly limited. Further, there is no problem even if this curing agent is modified with silicone. Furthermore, in order to improve the reliability of humidity resistance, it is desirable that chlorine ions, sodium ions, and other free ions contained as impurities are minimized. The content of the inorganic filler is preferably 75 to 92% by weight based on the total resin composition. If it is less than 75% by weight, the water absorption of the resin becomes high and the solder crack resistance is lowered. If it exceeds 92% by weight, the melt viscosity of the resin composition becomes too high and molding cannot be performed even if a spherical filler is used.

【0012】本発明で用いられる無機充填材としては、
溶融シリカ粉末、球状シリカ粉末、結晶シリカ粉末、2
次凝集シリカ粉末、アルミナ等が挙げられ、特に封止樹
脂組成物の流動性の向上という観点から球状シリカ粉末
が望ましい。球状シリカ粉末の形状は、流動性改善のた
めに粒子自体の形状は限りなく真球状であることが望ま
しく、更に粒度分布がブロードであるることが望まし
い。また、耐湿性の向上のためにアルカリ金属、アルカ
リ土類金属、ハロゲン等のイオン性不純物を出来るだけ
含まないことが望まれる。また、無機充填材は、不飽和
二重結合含有のシランカップリング剤やその他のシラン
系、チタン系、その他の表面処理剤によって予め表面処
理されていてもなんら問題はない。本発明で用いられる
硬化促進剤は、エポキシ基とフェノール性水酸基の化学
反応を促進させるものであれば特に限定しない。一般に
よく使用されるものとしては、トリフェニルホスフィ
ン、1,8−ジアザビシクロ(5,4,0)ウンデセン
−7、テトラフェニルホスホニウム・テトラボレート
塩、2−メチルイミダゾール等が挙げられる。樹脂組成
物の耐湿性向上のために、イオン性不純物が極力低いこ
とが望ましい。又、潜在性触媒的な作用をする硬化促進
剤であれば、更に好ましい。
The inorganic filler used in the present invention includes:
Fused silica powder, spherical silica powder, crystalline silica powder, 2
Examples of the secondary agglomerated silica powder, alumina and the like are preferable, and spherical silica powder is particularly preferable from the viewpoint of improving the fluidity of the encapsulating resin composition. For the shape of the spherical silica powder, it is desirable that the shape of the particles themselves be infinitely spherical in order to improve the fluidity, and further that the particle size distribution is broad. Further, in order to improve the moisture resistance, it is desired that ionic impurities such as alkali metals, alkaline earth metals and halogens are not included as much as possible. The inorganic filler may be surface-treated in advance with an unsaturated double bond-containing silane coupling agent, another silane-based agent, a titanium-based agent, or another surface-treating agent without causing any problems. The curing accelerator used in the present invention is not particularly limited as long as it accelerates the chemical reaction between the epoxy group and the phenolic hydroxyl group. Commonly used ones include triphenylphosphine, 1,8-diazabicyclo (5,4,0) undecene-7, tetraphenylphosphonium tetraborate salt, 2-methylimidazole and the like. In order to improve the moisture resistance of the resin composition, it is desirable that the ionic impurities are as low as possible. Further, a curing accelerator that acts as a latent catalyst is more preferable.

【0013】本発明で用いる式(2)の不飽和二重結合
含有のシランカップリング剤は、本発明の技術的重要ポ
イントであるので以下に詳細に説明する。分子中にC=
C結合が存在しているために、このカップリング剤はパ
ッケージ内部の有機構成材料に化学的な親和性を有す
る。特にC=C結合が表面に多く残っているものには化
学的に反応し、化学結合により強固な界面密着性を発現
することができる。特に、このシランカップリング剤を
用いると金属一般との密着性が向上することが判明し
た。C=C結合はむろん金属と反応性がなく、この基を
有するシランカップリング剤が、金属との密着性改善に
効果あるとは考えられていなかった。しかし、実験によ
り金属一般への密着性の改善に大きな効果を示すことが
判明した。しかも驚くべきことに、従来密着が極めて困
難であった金、銀等の非常に反応性の低い安定な金属に
対しても良好な密着性を示すことが判明した。このシラ
ンカップリング剤を配合することによって金属との密着
性が改善されるのか定かではないが、親水、疎水のバラ
ンスが取れていることに起因するものと推測される。C
=C結合を有するシランカップリング剤は、樹脂組成物
中に分散させることによって金属や有機構成材料への密
着性改善ができるが、更にシリカ等の無機充填材の表面
を予め処理することによっても密着性改善に効果があ
る。本発明のカップリング剤は、他の要求性能とのバラ
ンスを取るために他の種類のカップリング剤と併用する
ことができる。本発明のシランカップリング剤は、全カ
ップリング剤中の20重量%以上であることが好まし
い。20重量%未満であると良好な密着性が発現されな
い。
The unsaturated double bond-containing silane coupling agent of the formula (2) used in the present invention is a technically important point of the present invention and will be described in detail below. C = in the molecule
Due to the presence of the C-bond, this coupling agent has a chemical affinity for the organic constituent materials inside the package. In particular, a large amount of C═C bonds remaining on the surface chemically reacts with the surface, and strong interfacial adhesion can be exhibited by the chemical bonds. In particular, it has been found that the use of this silane coupling agent improves the adhesion to general metals. Of course, the C = C bond is not reactive with the metal, and the silane coupling agent having this group was not considered to be effective in improving the adhesion to the metal. However, experiments have shown that it has a great effect on improving the adhesion to general metals. In addition, it was surprisingly found that it exhibits good adhesion to stable metals with extremely low reactivity such as gold and silver, which have been extremely difficult to adhere to. It is not clear whether the adhesion with metal is improved by blending this silane coupling agent, but it is presumed that this is because the hydrophilicity and the hydrophobicity are balanced. C
A silane coupling agent having a ═C bond can improve adhesion to a metal or an organic constituent material by dispersing it in a resin composition, but also by pretreating the surface of an inorganic filler such as silica. Effective in improving adhesion. The coupling agent of the present invention can be used in combination with other types of coupling agents in order to balance with other performance requirements. The silane coupling agent of the present invention is preferably 20% by weight or more based on all coupling agents. If it is less than 20% by weight, good adhesion cannot be obtained.

【0014】本発明で用いる離型剤は、式(3)及び式
(4)で示される。本発明では、各基材に対する密着性
を改善のために、式(2)のシランカップリング剤を用
いるので離型性が顕著に低下する。式(3)及び式
(4)は、離型性改善に効果があり、かつ密着性の低下
も引き起こさない特徴がある。この離型剤は、アルキル
基の疎水基部分と、−COO−結合もしくは−NHCO
−結合の親水基部分との親水/疎水のバランスがよく取
れており、樹脂組成物から適度にブリードアウトするた
め、離型性の改善に最適であり、式(2)のような密着
性の良好なカップリング剤と併用すると非常に優れた効
果を示すことが判明した。
The release agent used in the present invention is represented by the formula (3) and the formula (4). In the present invention, since the silane coupling agent of the formula (2) is used to improve the adhesion to each substrate, the releasability is remarkably reduced. The formulas (3) and (4) are effective in improving the releasability and do not cause a decrease in adhesion. This mold release agent is composed of a hydrophobic group portion of an alkyl group, a -COO- bond or a -NHCO
The hydrophilic / hydrophobic balance with the hydrophilic group part of the bond is well balanced and the resin composition bleeds out appropriately, which is ideal for improving the releasability, and the adhesiveness of the formula (2) It has been found that when used in combination with a good coupling agent, a very excellent effect is exhibited.

【0015】本発明の組成物は前述の原料以外に、必要
に応じてカーボンブラック等の着色剤、ブロム化エポキ
シ樹脂、三酸化アンチモン等の難燃剤、シリコーンオイ
ル、ゴム等の低応力成分を添加することができる。本発
明のエポキシ樹脂組成物は、エポキシ樹脂、可撓性硬化
剤、無機充填材、硬化促進剤、シランカップリング剤、
離型剤、その他添加剤をミキサーにて常温混合し、ロー
ル、押し出し機等の一般混練機にて混練し、冷却後粉砕
し成形材料とすることができる。
In addition to the above-mentioned raw materials, the composition of the present invention may optionally contain a coloring agent such as carbon black, a brominated epoxy resin, a flame retardant such as antimony trioxide, a low stress component such as silicone oil and rubber. can do. The epoxy resin composition of the present invention is an epoxy resin, a flexible curing agent, an inorganic filler, a curing accelerator, a silane coupling agent,
A mold release agent and other additives may be mixed at room temperature with a mixer, kneaded with a general kneader such as a roll or an extruder, cooled, and then pulverized to obtain a molding material.

【0016】以下本発明を実施例にて具体的に説明す
る。 実施例1 エポキシ樹脂(E−1) 8.45重量部 パラキシリレン変性フェノールノボラック樹脂硬化剤(H−1) 8.25重量部 球状シリカ(平均粒径15μm) 80.0重量部 1,8−ジアザビシクロ(5,4,0)ウンデセン−7(DBU) 0.2重量部 カーボンブラック 0.3重量部 離型剤(R−1) 0.3重量部 臭素化フェノールノボラック型エポキシ樹脂 1.0重量部 三酸化アンチモン 1.0重量部 シランカップリング剤(S−1) 0.5重量部 をミキサーにて常温混合し、100℃で二軸ロールにて
混練し、冷却後粉砕し成形材料とした。得られた成形材
料の各種基材への密着性、耐半田クラック特性、流動
性、型汚れ性を評価した。
The present invention will be specifically described below with reference to examples. Example 1 Epoxy resin (E-1) 8.45 parts by weight Paraxylylene-modified phenol novolac resin curing agent (H-1) 8.25 parts by weight Spherical silica (average particle size 15 μm) 80.0 parts by weight 1,8-diazabicyclo (5,4,0) Undecene-7 (DBU) 0.2 parts by weight carbon black 0.3 parts by weight Release agent (R-1) 0.3 parts by weight Brominated phenol novolac type epoxy resin 1.0 parts by weight 1.0 part by weight of antimony trioxide and 0.5 part by weight of a silane coupling agent (S-1) were mixed at room temperature with a mixer, kneaded with a biaxial roll at 100 ° C., cooled and pulverized to obtain a molding material. The adhesion of the obtained molding material to various substrates, solder crack resistance, fluidity, and mold fouling were evaluated.

【0017】評価方法 基材への密着性:図1に示す成型品を成形する。金型温
度175℃、成形時間2分で成形し、その後ポストキュ
アとして175℃で8時間処理した後、引張り試験器に
て図2の様にして評価する。評価した基材は、42合
金、銅、42合金の表面にポリメチルメタアクリレート
を主成分とするソルダーレジストを塗布したもの。単位
は、kgf/mm2。 耐半田クラック性:80pQFP(厚み2mm、チップ
サイズ9mm×9mm)を成形する。成形温度175
℃,硬化時間2分、ポストキュアは175℃、8時間。
パッケージ8個を85℃、85%相対湿度、72時間処
理した後、IRリフロー処理(240℃)を行う。処理
後の内部の剥離、クラックの状況を超音波探傷機で観察
し、不良パッケージの個数をカウントした。 スパイラルフロー:EMMI−I−66に準じたスパイ
ラルフロー測定用の金型を用い、金型温度175℃、注
入圧力70kg/cm2、硬化時間2分で測定した。単
位はcm。 型汚れ:80pQFPを成形したときに、成形品の表面
状態を目視で観察した。成型品に型汚れがなければ○、
有れば×とした。
Evaluation Method Adhesion to Substrate: A molded product shown in FIG. 1 is molded. Molding was performed at a mold temperature of 175 ° C. for a molding time of 2 minutes, and after that, post-curing was performed at 175 ° C. for 8 hours, and then evaluated by a tensile tester as shown in FIG. The evaluated base materials were those of 42 alloy, copper, and 42 alloy coated with a solder resist containing polymethylmethacrylate as a main component. The unit is kgf / mm 2 . Solder crack resistance: 80 pQFP (thickness 2 mm, chip size 9 mm × 9 mm) is molded. Molding temperature 175
℃, curing time 2 minutes, post cure 175 ℃, 8 hours.
After treating eight packages at 85 ° C. and 85% relative humidity for 72 hours, IR reflow treatment (240 ° C.) is performed. The state of internal peeling and cracking after the treatment was observed with an ultrasonic flaw detector, and the number of defective packages was counted. Spiral flow: Measured at a mold temperature of 175 ° C., an injection pressure of 70 kg / cm 2 , and a curing time of 2 minutes using a mold for spiral flow measurement according to EMMI-I-66. The unit is cm. Mold stain: When 80 pQFP was molded, the surface condition of the molded product was visually observed. ○ If the molded product is clean,
If there is, it is marked as x.

【0018】実施例2〜12 表1、表2の処方に従って配合し、実施例1と同様にし
て成形材料を得、同様に評価した。なお、実施例9で用
いる処理シリカAは、球状シリカ(平均粒径15μm)
80.0重量部と、シランカップリング剤(S−1)
0.5重量部をハイスピードミキサーで混合後、125
℃、10時間処理したもの。実施例10で用いる処理シ
リカBは、球状シリカ(平均粒径15μm)80.0重
量部と、シランカップリング剤(S−2)0.5重量部
を上記と同一の条件で処理する。 比較例1〜7 表3の処方に従って配合し、実施例1と同様にして成形
材料を得、同様に評価した。実施例、比較例で用いた材
料は、以下の通りである。
Examples 2 to 12 Compounds were prepared according to the formulations shown in Tables 1 and 2, and molding materials were obtained in the same manner as in Example 1 and evaluated in the same manner. The treated silica A used in Example 9 was spherical silica (average particle size 15 μm).
80.0 parts by weight and silane coupling agent (S-1)
After mixing 0.5 parts by weight with a high speed mixer, 125
Treated at ℃ for 10 hours. The treated silica B used in Example 10 is treated with 80.0 parts by weight of spherical silica (average particle size 15 μm) and 0.5 parts by weight of the silane coupling agent (S-2) under the same conditions as above. Comparative Examples 1 to 7 Compounding was performed according to the formulation shown in Table 3, molding materials were obtained in the same manner as in Example 1, and evaluated in the same manner. The materials used in Examples and Comparative Examples are as follows.

【0019】[0019]

【化9】 Embedded image

【0020】[0020]

【化10】 Embedded image

【0021】[0021]

【化11】 Embedded image

【0022】[0022]

【化12】 Embedded image

【0023】[0023]

【化13】 Embedded image

【0024】[0024]

【化14】 Embedded image

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【表3】 [Table 3]

【0028】[0028]

【発明の効果】本発明に従うと、各種金属及び有機基材
に良好に密着し、各種基材を有する複雑な形状のパッケ
ージに対しても良好な密着性を示すため、耐湿信頼性や
機械的強度に優れる良好な半導体パッケージを得ること
ができる。
EFFECTS OF THE INVENTION According to the present invention, it adheres well to various metals and organic base materials, and also exhibits good adhesion to a package having a complicated shape having various base materials. A good semiconductor package with excellent strength can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】基材と封止材料を一体成形した成形品の概略
図。
FIG. 1 is a schematic view of a molded article obtained by integrally molding a base material and a sealing material.

【図2】成形品の引張り試験を示す概略図。FIG. 2 is a schematic diagram showing a tensile test of a molded product.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C08K 5/17 NLB C08K 5/17 NLB 5/54 NLC 5/54 NLC H01L 23/29 H01L 23/30 R 23/31 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C08K 5/17 NLB C08K 5/17 NLB 5/54 NLC 5/54 NLC H01L 23/29 H01L 23 / 30 R 23/31

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 (A)融点50〜150℃の結晶性エポ
キシ樹脂、(B)式(1)に示す可撓性硬化剤、(C)
硬化促進剤、(D)全組成物中に75〜92重量%含有
された無機充填材、(E)式(2)に示す不飽和二重結
合含有のシランカップリング剤、及び(F)式(3)及
び/又は式(4)の離型剤を必須成分とすることを特徴
とする半導体封止用エポキシ樹脂組成物。 【化1】 【化2】 【化3】 【化4】
1. A crystalline epoxy resin having a melting point of 50 to 150 ° C., (B) a flexible curing agent represented by the formula (1), and (C).
Curing accelerator, (D) Inorganic filler contained in the total composition in an amount of 75 to 92% by weight, (E) Unsaturated double bond-containing silane coupling agent represented by formula (2), and formula (F) An epoxy resin composition for semiconductor encapsulation, which comprises (3) and / or a release agent of the formula (4) as an essential component. Embedded image Embedded image Embedded image Embedded image
JP28145195A 1995-10-30 1995-10-30 Epoxy resin composition for semiconductor encapsulation Expired - Fee Related JP3568653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28145195A JP3568653B2 (en) 1995-10-30 1995-10-30 Epoxy resin composition for semiconductor encapsulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28145195A JP3568653B2 (en) 1995-10-30 1995-10-30 Epoxy resin composition for semiconductor encapsulation

Publications (2)

Publication Number Publication Date
JPH09124901A true JPH09124901A (en) 1997-05-13
JP3568653B2 JP3568653B2 (en) 2004-09-22

Family

ID=17639369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28145195A Expired - Fee Related JP3568653B2 (en) 1995-10-30 1995-10-30 Epoxy resin composition for semiconductor encapsulation

Country Status (1)

Country Link
JP (1) JP3568653B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002173578A (en) * 2000-12-04 2002-06-21 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2002275353A (en) * 2001-03-21 2002-09-25 Toray Ind Inc Epoxy resin composition for sealing semiconductor, and semiconductor device
JP2003073483A (en) * 2001-09-03 2003-03-12 Toray Ind Inc Method for producing thermosetting resin composition and semiconductor device
JP2003105168A (en) * 2001-09-28 2003-04-09 Nitto Denko Corp Semiconductor sealing resin composition and semiconductor device
US20140210060A1 (en) * 2013-01-29 2014-07-31 Fuji Electric Co., Ltd. Semiconductor device
US9178448B2 (en) 2013-01-18 2015-11-03 Fuji Electric Co., Ltd. Power conversion device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002173578A (en) * 2000-12-04 2002-06-21 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2002275353A (en) * 2001-03-21 2002-09-25 Toray Ind Inc Epoxy resin composition for sealing semiconductor, and semiconductor device
JP2003073483A (en) * 2001-09-03 2003-03-12 Toray Ind Inc Method for producing thermosetting resin composition and semiconductor device
JP2003105168A (en) * 2001-09-28 2003-04-09 Nitto Denko Corp Semiconductor sealing resin composition and semiconductor device
US9178448B2 (en) 2013-01-18 2015-11-03 Fuji Electric Co., Ltd. Power conversion device
US20140210060A1 (en) * 2013-01-29 2014-07-31 Fuji Electric Co., Ltd. Semiconductor device
CN103972182A (en) * 2013-01-29 2014-08-06 富士电机株式会社 Semiconductor device
US9355943B2 (en) * 2013-01-29 2016-05-31 Fuji Electric Co., Ltd. Manufacturing and evaluation method of a semiconductor device
US20160211201A1 (en) * 2013-01-29 2016-07-21 Fuji Electric Co., Ltd. Manufacturing and evaluation method of a semiconductor device

Also Published As

Publication number Publication date
JP3568653B2 (en) 2004-09-22

Similar Documents

Publication Publication Date Title
JP4692885B2 (en) Epoxy resin composition and semiconductor device
JPH0820673A (en) Inorganic filler for resin and epoxy resin composition
JP2006233016A (en) Epoxy resin composition and semiconductor device
JPH05148411A (en) Thermosetting resin composition and semiconductor device
KR100536538B1 (en) Epoxy Resin Compositions for Sealing Semiconductor and Semiconductor Devices
JPH0597970A (en) Thermosetting resin composition and semiconductor device
JPH06345847A (en) Epoxy resin composition and semiconductor device
JP3568653B2 (en) Epoxy resin composition for semiconductor encapsulation
JP4967353B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JPH0597969A (en) Thermosetting resin composition and semiconductor device
JP3565118B2 (en) Epoxy resin composition for semiconductor encapsulation
JP2003105059A (en) Epoxy resin composition and semiconductor device
JP4830202B2 (en) Epoxy resin composition and semiconductor device
JP2000044774A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JPH05148410A (en) Thermosetting resin composition and semiconductor device
JP2002309067A (en) Epoxy resin composition for sealing and semiconductor device
JPH09165499A (en) Epoxy resin composition for sealing of semiconductor
JPH08311159A (en) Epoxy resin composition, its production and semiconductor device using the same
JPH09221580A (en) Epoxy resin composition for semiconductor sealing
JPH0625385A (en) Epoxy resin composition and semiconductor device
JPH05206329A (en) Epoxy resin composition
JPH0625384A (en) Epoxy resin composition and semiconductor device
JPH093168A (en) Epoxy resin composition and its production
JPH0841292A (en) Production of epoxy resin composition and epoxy resin composition for sealing semiconductor
JP2003277583A (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040616

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140625

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees