JPH0911721A - Torque rod and manufacture thereof - Google Patents

Torque rod and manufacture thereof

Info

Publication number
JPH0911721A
JPH0911721A JP18478495A JP18478495A JPH0911721A JP H0911721 A JPH0911721 A JP H0911721A JP 18478495 A JP18478495 A JP 18478495A JP 18478495 A JP18478495 A JP 18478495A JP H0911721 A JPH0911721 A JP H0911721A
Authority
JP
Japan
Prior art keywords
weight
alloy
connecting rod
torque rod
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18478495A
Other languages
Japanese (ja)
Other versions
JP3114576B2 (en
Inventor
Masayuki Kobayashi
正幸 小林
Hajime Kamio
一 神尾
Tatsu Yamada
達 山田
Kenji Tsuchiya
健二 土屋
Harumichi Hino
治道 樋野
Motoji Hotta
元司 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP07184784A priority Critical patent/JP3114576B2/en
Publication of JPH0911721A publication Critical patent/JPH0911721A/en
Application granted granted Critical
Publication of JP3114576B2 publication Critical patent/JP3114576B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/10Constructional features of arms
    • B60G2206/11Constructional features of arms the arm being a radius or track or torque or steering rod or stabiliser end link
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/80Manufacturing procedures
    • B60G2206/82Joining
    • B60G2206/8201Joining by welding

Abstract

PURPOSE: To make a torque rod light by welding or pressure welding an end to a connecting part. CONSTITUTION: This is a torque rod that ends 1, 2 made of an Al alloy are welded or pressure-welded to the both ends of a connecting bar 3 made of extruded pipe of an Al alloy. An Al-Mg-Si alloy and an Al-Zn-Mg alloy are combined and used as the Al alloy. The Al-Mg-Si alloy contains Si, Cu, Mn, Mg, Cr and restricts Fe content not more than 0.25% and also restricts the total content of Mn+Cr not more than 1.2%. The Al-Mg-Si alloy is forged from a cast material or an extruded material and is heated at 510 to 555 deg.C and is cooled by water and is held at 155 to 190 deg.C for 5 to 20 hours. The Al-Zn- Mn alloy contains Zn, Mg, Cu, Mn, Cr, Zr, Fe and one or more than two elements selected from Ti, B and V and is heated at 430 to 470 deg.C and then is cooled by air or in the furnace.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、トラックのサスペンシ
ョンに装備されるトルクロッド等として使用され、両端
にリング状のエンド部材が設けられたトルクロッド及び
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a torque rod used as a torque rod or the like mounted on a truck suspension and provided with ring-shaped end members at both ends and a method of manufacturing the same.

【0002】[0002]

【従来の技術】トラック等の後部サスペンションの構成
部品の一つであるトルクロッドは、棒状又はパイプ状の
両端部にリング状のエンドが設けられた構造を持ってい
る。トルクロッドとしては、鍛造によって一体に作られ
た鉄系材料が従来から使用されてきた。しかし、近年の
過積載規制の問題からトラック及びトラック部品の軽量
化が求められており、トルクロッドもその例外ではな
い。そこで、図1及び図2に示すように、トルクロッド
を二つのエンド1,2及び連結棒3に三分割した軽量化
構造が検討されている。この構造では、軽量かを図るた
めに連結棒3を鉄製の薄肉パイプで作製し、この連結棒
3にエンド1,2を溶接又は圧接している。
2. Description of the Related Art A torque rod, which is one of the components of a rear suspension such as a truck, has a structure in which rod-shaped or pipe-shaped ends are provided with ring-shaped ends. As the torque rod, an iron-based material integrally formed by forging has been conventionally used. However, due to the recent problem of overloading regulations, it is required to reduce the weight of trucks and truck parts, and torque rods are no exception. Therefore, as shown in FIGS. 1 and 2, a light weight structure in which the torque rod is divided into two ends 1 and 2 and a connecting rod 3 has been studied. In this structure, the connecting rod 3 is made of a thin pipe made of iron in order to reduce the weight, and the ends 1 and 2 are welded or pressure-welded to the connecting rod 3.

【0003】[0003]

【発明が解決しようとする課題】図1,2に示したトル
クロッドは、連結棒3に薄肉の鉄製パイプを使用してい
るので、従来の鋳鍛造でできた中実のトルクロッドに比
較すると軽くなっている。しかし、素材として鉄を使用
していることから、軽量化には限界がある。更なる軽量
化を図るためには、鉄に匹敵する強度をもち、しかも鉄
よりも軽い素材を使用する必要がある。また、サスペン
ションは車体に対して車軸を保持する機能を受け持つ部
品であることから、その構成部品の一つであるトルクロ
ッドとしても、ただ単に軽い材料だけでは要求特性が満
足されない。すなわち、所定の寸法及び形状をもつ製品
として、強度,伸び,耐応力腐食割れ性等の要求特性を
満足する必要がある。具体的には、現在使用されている
鉄製トルクロッドとしては、エンド1,2の中心間距離
が522mmのもので、32,000kgf以上の引張
り強さ及び圧縮強度、±6,000kgfの繰返し負荷
に2×106 回以上耐える引張り・圧縮疲労強度及び1
0%以上の伸びをもつことが要求される。本発明は、こ
のような要求特性を満足するAl材料を使用してトルク
ロッドを作製することにより、トルクロッドを軽量化す
ることを目的とする。
The torque rod shown in FIGS. 1 and 2 uses a thin-walled iron pipe for the connecting rod 3, so that it can be compared with a conventional solid torque rod made by casting and forging. It is getting lighter. However, since iron is used as a material, there is a limit to weight reduction. In order to achieve further weight reduction, it is necessary to use a material having strength comparable to iron and lighter than iron. In addition, since the suspension is a part having a function of holding the axle with respect to the vehicle body, the required characteristics of the torque rod, which is one of the components thereof, cannot be satisfied only with a light material. That is, it is necessary for a product having a predetermined size and shape to satisfy required characteristics such as strength, elongation, and stress corrosion cracking resistance. Specifically, the iron torque rod currently used has a center-to-center distance between the ends 1 and 2 of 522 mm, and has a tensile strength and a compressive strength of 32,000 kgf or more, and a repetitive load of ± 6,000 kgf. Tensile and compressive fatigue strength to withstand 2 × 10 6 times or more and 1
It is required to have an elongation of 0% or more. An object of the present invention is to reduce the weight of a torque rod by producing a torque rod using an Al material satisfying such required characteristics.

【0004】[0004]

【課題を解決するための手段】本発明のトルクロッド
は、その目的を達成するため、Al合金の押出しパイプ
から作製された連結棒の両端部にAl合金製のエンドが
溶接又は圧接されたトルクロッドであり、エンドがS
i:1.0〜1.5重量%,Cu:0.4〜0.9重量
%,Mn:0.2〜0.6重量%,Mg:0.8〜1.
5重量%,Cr:0.3〜0.9重量%を含み、Fe含
有量を0.25重量%以下に規制すると共に、Mn+C
rの合計含有量が1.2重量%以下に規制された組成を
もつAl合金(以下、Al−Mg−Si系という)製
で、前記連結棒がZn:4.0〜6.5重量%,Mg:
0.5〜2.0重量%,Cu:0.01〜0.2重量
%,Mn:0.2〜0.7重量%,Cr:0.05〜
0.3重量%,Zr:0.05〜0.25重量%,F
e:0.01〜0.4重量%を含むAl合金(以下、A
l−Zn−Mg系という)製であることを特徴とする。
In order to achieve the object, the torque rod of the present invention is a torque in which an Al alloy end is welded or pressure welded to both ends of a connecting rod made of an Al alloy extruded pipe. It is a rod and the end is S
i: 1.0 to 1.5% by weight, Cu: 0.4 to 0.9% by weight, Mn: 0.2 to 0.6% by weight, Mg: 0.8 to 1.
5 wt%, Cr: 0.3 to 0.9 wt%, Fe content is regulated to 0.25 wt% or less, and Mn + C
It is made of an Al alloy (hereinafter referred to as Al-Mg-Si system) having a composition in which the total content of r is regulated to 1.2% by weight or less, and the connecting rod has Zn: 4.0 to 6.5% by weight. , Mg:
0.5 to 2.0% by weight, Cu: 0.01 to 0.2% by weight, Mn: 0.2 to 0.7% by weight, Cr: 0.05 to
0.3% by weight, Zr: 0.05 to 0.25% by weight, F
e: Al alloy containing 0.01 to 0.4 wt% (hereinafter referred to as A
1-Zn-Mg system).

【0005】エンド用Al合金としては、更にTi:
0.005〜0.05重量%,B:0.0001〜0.
01重量%及びZr:0.1〜0.2重量%の1種又は
2種以上を含むものが使用される。連結棒用Al合金と
しては、更にTi:0.005〜0.2重量%,B:
0.0001〜0.05重量%及びV:0.01〜0.
1重量%の1種又は2種以上を含むものが使用される。
また、Al−Mg−Si系のAl合金をエンドに、Al
−Zn−Mg系のAl合金を連結棒に使用することもで
きる。Al−Mg−Si系のAl合金では、鋳造材又は
押出し材を鍛造し、次いで510〜555℃に加熱後、
水冷して155〜190℃に5〜20時間保持する熱処
理を施し、該熱処理後のAl合金からエンド又は連結棒
が作製される。Al−Zn−Mn系では、鋳造材又は押
出し材を鍛造し、次いで430〜470℃に加熱後、空
冷又は炉冷してエンド又は連結棒が作製される。Al−
Zn−Mn系では、更に110〜130℃に23〜25
時間保持し、次いで150〜160℃に8〜16時間保
持する二段時効処理を施すことにより、強度を向上させ
ることができる。
As the Al alloy for the end, Ti:
0.005 to 0.05% by weight, B: 0.0001 to 0.
Those containing one kind or two or more kinds of 01 wt% and Zr: 0.1 to 0.2 wt% are used. As the Al alloy for the connecting rod, Ti: 0.005 to 0.2% by weight, B:
0.0001-0.05% by weight and V: 0.01-0.
Those containing 1% by weight of one kind or two or more kinds are used.
Also, with an Al-Mg-Si-based Al alloy as the end, Al
A -Zn-Mg-based Al alloy can also be used for the connecting rod. With an Al-Mg-Si-based Al alloy, a cast material or an extruded material is forged, and after heating to 510 to 555 ° C,
A heat treatment of cooling with water and holding at 155 to 190 ° C. for 5 to 20 hours is performed, and an end or a connecting rod is produced from the Al alloy after the heat treatment. In the Al-Zn-Mn system, a cast material or an extruded material is forged, then heated to 430 to 470 ° C and then air-cooled or furnace-cooled to produce an end or a connecting rod. Al-
In the case of Zn-Mn system, it is 23-25 at 110-130 ° C.
The strength can be improved by performing a two-step aging treatment in which the material is held for a time and then held at 150 to 160 ° C. for 8 to 16 hours.

【0006】[0006]

【作用】本発明では、Al−Mg−Si系のAl合金を
エンド又は連結棒の材料として、Al−Zn−Mn系の
Al合金を他方の連結棒又はエンドの材料として使用す
る。Al−Mg−Si系のAl合金は、微細なMg2
iの析出によって必要な強度が確保される。この系統の
Al合金にCu,Cr,Mn等を添加すると、マトリッ
クスの固溶,晶出及び組織制御によって強度が向上す
る。そこで、トルクロッドとしての用途に応じてより高
いAl合金にするためには、先ずSi及びMgを増量し
てMg2 Siの析出量を増加させることが考えられる。
しかし、単純にSi及びMgの含有量を増加させるだけ
では、伸び,靭性等が低下するばかりでなく、目標とす
る強度も得られない。本発明者等は、Mg2 Si系析出
物が機械的性質に与える影響や、熱処理が鍛造材・押出
し材のマクロ組織の結晶成長に与える影響を種々の観点
から調査した。その結果、Mg2 Si系析出物の作用を
有効に活用し、且つマクロ組織の結晶成長を抑制するた
めには、合金成分,その含有量及び熱処理条件を相互の
関連を考慮しながら定める必要があるとの結論に至っ
た。
In the present invention, the Al-Mg-Si based Al alloy is used as the material of the end or the connecting rod, and the Al-Zn-Mn based Al alloy is used as the material of the other connecting rod or the end. Al-Mg-Si based Al alloy is a fine Mg 2 S
The required strength is secured by the precipitation of i. When Cu, Cr, Mn, etc. are added to this type of Al alloy, the strength is improved by solid solution of the matrix, crystallization and structure control. Therefore, in order to obtain a higher Al alloy depending on the application as the torque rod, it is conceivable to first increase the amounts of Si and Mg to increase the precipitation amount of Mg 2 Si.
However, simply increasing the contents of Si and Mg not only lowers elongation, toughness, etc., but also fails to achieve the desired strength. The present inventors investigated from various viewpoints the influence of Mg 2 Si based precipitates on the mechanical properties and the influence of heat treatment on the crystal growth of macrostructure of forged and extruded materials. As a result, in order to effectively utilize the action of the Mg 2 Si-based precipitates and suppress the crystal growth of the macrostructure, it is necessary to determine the alloy components, their contents and the heat treatment conditions in consideration of their mutual relation. I came to the conclusion that there is.

【0007】必要とするMg2 Si系析出物の作用及び
マクロ組織の微細化を図るためには、本発明者等の実験
から、Si及びMg含有量をそれぞれ1.0〜1.5重
量%及び0.8〜1.5重量%に規定する必要があるこ
とを見い出した。しかし、Si及びMgの含有量がこの
範囲にあっても、熱間押出し後のAl合金にT6 処理を
施したり、熱間又は冷間鍛造したAl合金をT6 処理す
るとき、急激な結晶粒の成長によってマクロ組織が粗大
化し、強度,伸び等の機械的性質が低下する現象がみら
れる。熱処理によって加工組織の再結晶粒が粗大化する
ことは、Cr及びMnの複合添加と熱処理条件の適正化
によって抑制される。その結果、得られたAl合金は、
微細な結晶粒をもつ組織となり、強度及び伸びが顕著に
改善される。Cr及びMnの複合添加による性質改善
は、熱間又は冷間での加工を行った後で溶体化処理した
際に再結晶の粗大成長を抑制する作用に起因するものと
推察される。Cr及びMnの複合添加に加え、更にZr
を併用添加すると、伸びが一層向上すると共に結晶組織
がより微細になる。これは、Mn及びCrが再結晶粒の
粗大化を抑制する作用を呈するのに対し、Mn及びCr
の結晶粒成長抑制効果を超えるような高加工領域におい
て再結晶する場合に、Zrが再結晶粒の微細化を促進さ
せることに起因する。
In order to achieve the required action of the Mg 2 Si based precipitate and the refinement of the macrostructure, the experiments by the present inventors show that the Si and Mg contents are 1.0 to 1.5% by weight, respectively. And 0.8 to 1.5% by weight have to be specified. However, even if the contents of Si and Mg are in this range, when the Al alloy after hot extrusion is subjected to T 6 treatment or the hot or cold forged Al alloy is subjected to T 6 treatment, abrupt crystal formation occurs. There is a phenomenon in which the macrostructure becomes coarse due to the growth of grains, and mechanical properties such as strength and elongation deteriorate. The coarsening of the recrystallized grains of the processed structure due to the heat treatment is suppressed by adding Cr and Mn in combination and optimizing the heat treatment conditions. As a result, the obtained Al alloy is
The structure has fine crystal grains, and the strength and elongation are remarkably improved. It is presumed that the property improvement due to the combined addition of Cr and Mn is due to the effect of suppressing the coarse growth of recrystallization when the solution treatment is performed after hot or cold working. In addition to the combined addition of Cr and Mn, Zr
When added together, the elongation is further improved and the crystal structure becomes finer. This is because Mn and Cr have the effect of suppressing the coarsening of the recrystallized grains, whereas Mn and Cr
This is because Zr promotes the refinement of the recrystallized grains when recrystallized in a high working region that exceeds the effect of suppressing the crystal grain growth.

【0008】以下、本発明で使用されるAl−Mg−S
i系Al合金の合金成分,含有量等について説明する。
Si:1.0〜1.5重量% 析出効果によりAl合金の強度を向上させる合金元素で
ある。本発明の合金系ではMgと併用添加しているの
で、Mg2 Si系化合物が析出し、強度が向上する。こ
のようなSi添加の作用は、1.0重量%以上の添加で
顕著になる。しかし、1.5重量%を超える過剰のSi
添加は、Al合金の液相線温度を上昇させ、溶製や鋳造
等を困難にする。また、Si含有量が過剰になると、押
出し性,鍛造加工性等が劣化する。 Cu:0.4〜0.9重量% マトリックスを固溶強化し、強度向上に有効なMg2
iの析出を促進させる有効な合金元素である。Cuの作
用は、0.4重量%以上の添加で顕著になる。しかし、
0.9重量%を超える多量のCu含有は、焼入れ感受
性,耐食性等を劣化させる。
Hereinafter, Al-Mg-S used in the present invention
The alloy components and content of the i-based Al alloy will be described.
Si: 1.0 to 1.5 wt% It is an alloying element that improves the strength of the Al alloy by the precipitation effect. In the alloy system of the present invention, since it is added in combination with Mg, the Mg 2 Si-based compound precipitates and the strength is improved. The effect of such Si addition becomes significant when 1.0 wt% or more is added. However, excess Si over 1.5% by weight
The addition raises the liquidus temperature of the Al alloy and makes melting and casting difficult. Further, if the Si content is excessive, extrudability, forgeability and the like deteriorate. Cu: 0.4 to 0.9% by weight Mg 2 S effective for strengthening the matrix by solid solution strengthening and improving the strength
It is an effective alloying element that promotes the precipitation of i. The effect of Cu becomes significant when added at 0.4% by weight or more. But,
A large amount of Cu exceeding 0.9% by weight deteriorates quenching sensitivity, corrosion resistance and the like.

【0009】Mn:0.2〜0.6重量% 結晶粒の成長を抑制し、熱処理後の組織を微細に維持す
る上で有効な合金元素であり、0.2重量%以上の添加
でMnの作用が顕著になる。しかし、0.6重量%を超
える多量のMnを含有させると、鍛造時の加工性が悪化
する。 Mg:0.8〜1.5重量% Siと反応してMg2 Si系化合物となってマトリック
スに析出し、Al合金の強度を向上させる。この析出効
果を得るためには、0.8重量%以上のMg含有量が必
要とされる。しかし、1.5重量%を超える多量のMg
を含有させると、析出効果が飽和するばかりでなく、焼
入れ感受性が低下する。 Cr:0.3〜0.9重量%でMn+Cr≦1.2重量
%以下 Mnと共同して結晶粒の粗大化を抑制する作用を呈する
合金元素である。Crの添加効果は、0.3重量%以上
の含有量で顕著になる。しかし、0.9重量%を超える
多量添加は、加工性を悪化させる。また、Cr含有量
は、Mn含有量との合計で1.2重量%以下に規制する
必要がある。Cr+Mnの合計含有量を1.2重量%に
維持しておくとき、他に悪影響を与えることなく、前述
したCr及びMnの複合添加による効果が得られる。こ
れに対して、Cr+Mn含有量が1.2重量%を超える
と、巨大なAl−Mn−Cr系の化合物が晶出し易くな
り、Al合金の伸びが著しく低下する。
Mn: 0.2-0.6% by weight Mn is an effective alloying element for suppressing the growth of crystal grains and maintaining a fine structure after heat treatment. The effect of becomes significant. However, if a large amount of Mn exceeding 0.6% by weight is contained, the workability during forging deteriorates. Mg: 0.8-1.5 wt% Reacts with Si to form a Mg 2 Si-based compound that precipitates in the matrix and improves the strength of the Al alloy. In order to obtain this precipitation effect, a Mg content of 0.8% by weight or more is required. However, a large amount of Mg exceeding 1.5% by weight
In addition to saturation of precipitation effect, quenching sensitivity decreases. Cr: 0.3 to 0.9% by weight and Mn + Cr ≦ 1.2% by weight or less It is an alloying element that acts in cooperation with Mn to suppress the coarsening of crystal grains. The effect of adding Cr becomes remarkable at a content of 0.3% by weight or more. However, addition of a large amount exceeding 0.9% by weight deteriorates processability. Further, the Cr content needs to be regulated to 1.2% by weight or less in total with the Mn content. When the total content of Cr + Mn is maintained at 1.2% by weight, the above-described effect of the combined addition of Cr and Mn can be obtained without adversely affecting other components. On the other hand, if the Cr + Mn content exceeds 1.2% by weight, a huge Al-Mn-Cr-based compound is likely to crystallize, and the elongation of the Al alloy is significantly reduced.

【0010】Fe:0.25重量%以下 不純物としてAl合金に混入するFeは、伸び,耐食性
等に悪影響を及ぼすAl−Fe−Si系化合物となって
マトリックスに分散される。この点、Fe含有量は、少
なければ少ないほど好ましいが、過度にFe含有量を低
減することは合金の溶製を困難にする。そこで、本発明
にあっては、Fe含有量の上限を実質的な悪影響がみら
れない0.25重量%に設定した。 Ti:0.005〜0.05重量% 必要に応じて添加される合金元素であり、組織を安定さ
せると共に、溶接部又は圧接部の機械的性質を向上させ
る作用を呈する。このような作用は、0.005重量%
以上のTi添加で顕著になる。しかし、0.05重量%
を超える多量のTiを添加すると、Al合金の靭性が劣
化する。
Fe: 0.25% by weight or less Fe mixed in the Al alloy as an impurity is dispersed in the matrix as an Al-Fe-Si compound which adversely affects elongation, corrosion resistance and the like. In this respect, the Fe content is preferably as small as possible, but excessively reducing the Fe content makes it difficult to melt the alloy. Therefore, in the present invention, the upper limit of the Fe content is set to 0.25% by weight where no substantial adverse effect is observed. Ti: 0.005 to 0.05% by weight An alloying element that is added as necessary, and has the effect of stabilizing the structure and improving the mechanical properties of the welded portion or the pressed portion. Such an effect is 0.005% by weight.
It becomes remarkable with the above Ti addition. However, 0.05% by weight
If a large amount of Ti exceeding the range is added, the toughness of the Al alloy deteriorates.

【0011】B:0.0001〜0.01重量% Tiと同様に組織の安定化に有効な合金元素であり、
0.0001重量%以上のB添加でその効果が顕著にな
る。しかし、0.01重量%を超える多量のBを添加す
ると、Al合金の靭性が劣化する。 Zr:0.1〜0.2重量% 必要に応じて添加される合金元素であり、Mn及びCr
と共同して結晶粒の粗大化を抑制する作用を呈する。Z
rは、特に押出し工程を経た鍛造品に押出しによって形
成された繊維組織を残存させることにより、引っ張り強
度を向上させることにも作用する。このような添加作用
は、0.1重量%以上のZr添加で顕著になる。しか
し、多量のZr含有は加工性に悪影響を与えるので、Z
rを添加する場合には0.2重量%を上限とする。
B: 0.0001 to 0.01% by weight Like Ti, it is an alloy element effective for stabilizing the structure.
The effect becomes remarkable when 0.0001% by weight or more of B is added. However, if a large amount of B exceeding 0.01% by weight is added, the toughness of the Al alloy deteriorates. Zr: 0.1-0.2% by weight Alloying element added as necessary, such as Mn and Cr
In cooperation with the above, an effect of suppressing the coarsening of crystal grains is exhibited. Z
The r also acts to improve the tensile strength by allowing the fiber structure formed by extrusion to remain in the forged product that has undergone the extrusion process. Such an addition effect becomes significant when Zr is added in an amount of 0.1% by weight or more. However, if a large amount of Zr is contained, the workability is adversely affected.
When adding r, the upper limit is 0.2% by weight.

【0012】溶体化処理及び焼入れの条件:前述した組
成をもつAl合金の強度を向上させるためには、先ず強
度改善元素を完全に固溶させる必要がある。そのために
は、少なくとも510℃以上の温度にAl合金を加熱す
ることが必要となる。しかし、555℃を超える温度で
は、部分的な溶解が生じ、欠陥が発生する。溶体化処理
後のAl合金は、粗大なMgSi系析出物が生じないよ
うに水焼入れすることが要求される。仮に溶体化後のA
l合金を徐冷すると、析出したMg2 Si系析出物が粗
大に成長し、目標とする強度が得られない。 時効処理条件:水焼入れされたAl合金は、合金元素が
過飽和で固溶した状態にある。このAl合金を155〜
190℃に5〜20時間保持すると、組織全体に微細な
Mg2 Si系化合物が析出し、目標とする強度が得られ
る。しかし、温度条件又は保持時間が155〜190℃
又は5〜20時間から外れると、析出したMg2 Siが
大きく成長し、或いは十分なMg2 Siが析出せず、目
標とする強度が得られない。このようにして成分・組成
が調整され、熱処理されたAl合金は、38kgf/c
2 以上の引張り強さ及び13%以上の伸びを示し、ト
ルクロッドの連結棒やエンドとしての要求特性を十分に
満足する。
Conditions for solution treatment and quenching: In order to improve the strength of the Al alloy having the above-mentioned composition, it is first necessary to completely dissolve the strength improving element into a solid solution. For that purpose, it is necessary to heat the Al alloy to a temperature of at least 510 ° C. or higher. However, at a temperature above 555 ° C, partial melting occurs and defects occur. After the solution treatment, the Al alloy is required to be water-quenched so that coarse MgSi-based precipitates are not generated. If A after solution treatment
When the 1-alloy is gradually cooled, the precipitated Mg 2 Si-based precipitate grows coarsely and the target strength cannot be obtained. Aging treatment conditions: The water-quenched Al alloy is in a state where the alloying elements are supersaturated and solid-solved. This Al alloy is 155-
When the temperature is maintained at 190 ° C. for 5 to 20 hours, fine Mg 2 Si-based compound is precipitated in the entire structure and the target strength is obtained. However, the temperature condition or the holding time is 155 to 190 ° C.
Otherwise, if it is out of the range of 5 to 20 hours, the deposited Mg 2 Si grows large, or sufficient Mg 2 Si does not precipitate, and the target strength cannot be obtained. The heat-treated Al alloy, whose components and compositions have been adjusted in this way, is 38 kgf / c
It exhibits a tensile strength of m 2 or more and an elongation of 13% or more, and sufficiently satisfies the required characteristics as a connecting rod or end of a torque rod.

【0013】他方、Al−Zn−Mn系のAl合金に含
まれる合金成分等の作用・効果は、次の通りである。 Zn:4.0〜6.5重量% Mgと共にZn−Mg系の微細な析出物を形成し、Al
合金の強度を向上させる合金元素である。このような強
度向上の効果は、Zn含有量4.0重量%以上で顕著に
なる。しかし、6.5重量%を超える多量のZnが含ま
れると、耐応力腐食割れ性や加工性が劣化する。 Mg:0.5〜2.0重量% Znと同様に強度向上に不可欠の合金元素であり、0.
5重量%以上の含有量で十分な強度が得られる。しか
し、2.0重量%を超える多量のMgが含まれると、耐
応力腐食割れ性や加工性が劣化する。 Cu:0.01〜0.2重量% 耐応力腐食割れ性を改善する合金元素であり、0.01
重量%以上でCuの添加効果が顕著になる。しかし、C
u含有量が0.2重量%を超えると、却って耐応力腐食
割れ性が劣化し、また溶接性も劣化する。
On the other hand, the actions and effects of the alloy components and the like contained in the Al-Zn-Mn-based Al alloy are as follows. Zn: 4.0-6.5 wt% Zn-Mg-based fine precipitates are formed together with Mg to form Al.
It is an alloying element that improves the strength of the alloy. Such an effect of improving the strength becomes remarkable when the Zn content is 4.0% by weight or more. However, when a large amount of Zn exceeding 6.5% by weight is contained, the stress corrosion cracking resistance and the workability deteriorate. Mg: 0.5 to 2.0% by weight Like Zn, it is an alloy element indispensable for improving the strength.
Sufficient strength can be obtained with a content of 5% by weight or more. However, when a large amount of Mg exceeding 2.0% by weight is contained, stress corrosion cracking resistance and workability deteriorate. Cu: 0.01 to 0.2% by weight An alloying element for improving the stress corrosion cracking resistance.
The effect of adding Cu becomes remarkable when the content is not less than% by weight. But C
If the u content exceeds 0.2% by weight, the stress corrosion cracking resistance deteriorates and the weldability also deteriorates.

【0014】Mn:0.2〜0.7重量% 組織の安定化を図り、強度を向上させる作用を呈する。
Mnの添加効果は、0.2重量%以上の含有量で顕著に
なる。しかし、0.7重量%を超える多量のMnが含ま
れると、巨大化合物が生成し、靭性や加工性を劣化させ
る虞れがある。 Cr:0.05〜0.3重量% Mnと同様に組織安定化のために有効な合金元素であ
り、0.05重量%以上の含有量でCuの添加効果が顕
著になる。しかし、0.3重量%を超える多量のCr含
有は、組織安定化効果が飽和するばかりでなく、靭性や
加工性に有害な巨大化合物を生成させる原因となる。 Zr:0.05〜0.25重量% Mnと同様に組織の安定化に有効な合金元素であり、
0.05重量%以上の含有量でZrの添加効果が顕著に
なる。しかし、0.25重量%をこえる多量のZrを含
有させると、組織安定化効果が飽和するばかりでなく、
靭性や加工性に有害な巨大化合物を生成させる原因とな
る。
Mn: 0.2-0.7% by weight It has the function of stabilizing the structure and improving the strength.
The effect of adding Mn becomes remarkable at a content of 0.2% by weight or more. However, when a large amount of Mn exceeding 0.7% by weight is contained, a giant compound may be generated, and toughness and workability may be deteriorated. Cr: 0.05 to 0.3% by weight Similar to Mn, Cr is an effective alloying element for stabilizing the structure. At a content of 0.05% by weight or more, the effect of adding Cu becomes remarkable. However, the presence of a large amount of Cr exceeding 0.3% by weight not only saturates the structure stabilizing effect but also causes the formation of a giant compound harmful to toughness and workability. Zr: 0.05-0.25% by weight Like Mn, it is an alloy element effective for stabilizing the structure.
When the content is 0.05% by weight or more, the effect of adding Zr becomes remarkable. However, when a large amount of Zr exceeds 0.25% by weight, not only the tissue stabilizing effect is saturated, but also
It can cause the formation of giant compounds harmful to toughness and workability.

【0015】Fe:0.01〜0.4重量% 組織を安定化させ、耐応力腐食割れ性を改善する合金元
素である。このような効果は、0.01重量%以上の含
有量で顕著になる。しかし、0.4重量%を超える多量
のFe含有量は、却って靭性や加工性を劣化させる。 Ti:0.005〜0.2重量% 必要に応じて添加される合金元素であり、組織の安定化
を図り、溶接部又は圧接部の機械的性質を向上させる作
用を呈する。このような効果は、0.005重量%以上
の含有量で顕著になる。しかし、0.2重量%を超える
多量のTi含有量は、靭性や加工性に有害な巨大化合物
を生成させる原因となる。 B:0.0001〜0.05重量% 必要に応じて添加される合金元素であり、0.0001
重量%以上のB添加で組織安定化の効果が顕著になる。
しかし、0.05重量%を超えて過剰に添加しても、B
の添加効果が飽和するばかりでなく、靭性や加工性に有
害な巨大化合物を生成させる原因となる。 V:0.01〜0.1重量% 必要に応じて添加される合金元素であり、耐応力腐食割
れ性を改善する作用を呈する。このような添加効果は、
0.01重量%以上で顕著になる。しかし、0.1重量
%を超える過剰添加は、却って加工性及び靭性を劣化さ
せる。
Fe: 0.01 to 0.4% by weight It is an alloying element that stabilizes the structure and improves the stress corrosion cracking resistance. Such effects become remarkable at a content of 0.01% by weight or more. However, a large content of Fe exceeding 0.4% by weight deteriorates toughness and workability. Ti: 0.005 to 0.2% by weight An alloy element added as necessary, and has a function of stabilizing the structure and improving the mechanical properties of the welded portion or the press-welded portion. Such effects become remarkable at a content of 0.005% by weight or more. However, a large Ti content exceeding 0.2% by weight causes formation of a giant compound harmful to toughness and workability. B: 0.0001 to 0.05% by weight An alloy element added as necessary,
The effect of stabilizing the structure becomes remarkable when B is added in an amount of not less than% by weight.
However, even if it is added in excess of 0.05% by weight, B
Not only saturates the effect of addition, but also causes the formation of giant compounds harmful to toughness and workability. V: 0.01 to 0.1% by weight An alloy element added as needed, and has an effect of improving stress corrosion cracking resistance. Such an addition effect
It becomes remarkable at 0.01% by weight or more. However, excessive addition exceeding 0.1% by weight rather deteriorates workability and toughness.

【0016】Al−Zn−Mn系のAl合金は、以上の
合金元素の他に、不純物として0.3重量%未満のS
i、単独で0.05重量%未満の他の元素を含むことが
許容される。これら不純物元素を許容範囲に規制してお
くとき、トルクロッドとしての要求特性が満足される。 溶体化処理及び焼入れの条件:前述した組成をもつAl
合金の強度を向上させるためには、先ず強度改善元素を
完全に固溶させる必要がある。そのためには、少なくと
も430℃以上の温度にAl合金を加熱することが必要
となる。しかし、470℃を超える温度では、部分的な
溶解が生じ、欠陥が発生する。溶体化処理後のAl合金
は、水冷のような急冷を施すと、内部歪みが大きくなり
すぎて応力腐食割れの原因となることから、空冷又は炉
冷により冷却される。ただし、押出し材では、押出し工
程中に各合金元素が固溶されることから、溶体化処理工
程を省略することができる。
Al-Zn-Mn-based Al alloys, in addition to the above alloy elements, contain less than 0.3% by weight of S as impurities.
i, it is acceptable to include less than 0.05% by weight of other elements alone. When these impurity elements are restricted to an allowable range, required characteristics as a torque rod are satisfied. Conditions for solution treatment and quenching: Al having the above-mentioned composition
In order to improve the strength of the alloy, it is first necessary to completely dissolve the strength improving element in solid solution. For that purpose, it is necessary to heat the Al alloy to a temperature of at least 430 ° C. or higher. However, at a temperature above 470 ° C., partial melting occurs and defects occur. If the Al alloy after the solution treatment is subjected to rapid cooling such as water cooling, the internal strain becomes too large and causes stress corrosion cracking. Therefore, the Al alloy is cooled by air cooling or furnace cooling. However, in the extruded material, each alloy element is solid-solved during the extruding step, so that the solution treatment step can be omitted.

【0017】時効処理条件:冷却されたAl合金は、合
金元素が過飽和で固溶した状態にある。このAl合金
は、室温に保持しておくとZn−Mg系の微細な析出物
が形成され、品質が安定して目標とする強度が得られ
る。しかし、このような自然時効は1か月以上の長期間
が必要とされる。そこで、Zn−Mg系微細析出物の生
成を促進させるため、110〜130℃に23〜25時
間保持した後、150〜160℃に8〜16時間保持す
る人工時効によって、早期に品質を安定化させることが
好ましい。また、押出し材のように溶体化処理を省略し
た材料では、Zn−Mg系の微細化合物を均一に析出さ
せると共に、応力腐食割れの原因になることもある押出
し加工時の内部歪みを除去する上でも時効処理が有効で
ある。時効温度及び保持時間が前述した範囲を外れる
と、時効効果が十分でなく、或いは過時効による問題が
発生する。このようにして成分・組成が調整され、熱処
理されたAl合金は、32kgf/cm2 以上の引張り
強さ及び11%以上の伸びを示し、トルクロッドの連結
棒やエンドとしての要求特性を十分に満足する。
Aging treatment conditions: The cooled Al alloy is in a state where the alloying elements are in a supersaturated and solid solution state. When this Al alloy is kept at room temperature, Zn-Mg-based fine precipitates are formed, and the quality is stable and the target strength is obtained. However, such natural aging requires a long period of one month or more. Therefore, in order to promote the formation of Zn-Mg-based fine precipitates, the quality is stabilized early by artificial aging which is held at 110 to 130 ° C for 23 to 25 hours and then at 150 to 160 ° C for 8 to 16 hours. Preferably. In addition, in the case of a material such as an extruded material which is not subjected to the solution treatment, Zn-Mg-based fine compounds are uniformly precipitated, and internal strain at the time of extruding which may cause stress corrosion cracking is removed. But aging treatment is effective. If the aging temperature and the holding time deviate from the ranges described above, the aging effect is insufficient or a problem due to overaging occurs. The heat-treated Al alloy, whose components and compositions have been adjusted in this way, exhibits a tensile strength of 32 kgf / cm 2 or more and an elongation of 11% or more, and has sufficient properties required as a connecting rod or end of a torque rod. Be satisfied.

【0018】[0018]

【実施例】表1に示した組成をもつAl−Mg−Si系
の各種Al合金及び表2に示した組成をもつAl−Zn
−Mn系の各種Al合金を熱処理し、図3(a)及び
(b)に示すように外径φ1 =130mm,内径φ2
105mm及び幅W=51mmのエンド1,2を作製し
た。エンド1,2の環状部4の一側に、曲率半径50m
mで立ち上がった先端径60mmの接合用突出部5を形
成した。他方、連結棒3としては、熱処理した同様なA
l合金押出し材から作製された外径60mmのパイプを
使用した。接合用突出部5の端面に連結棒3を押し当
て、MIG溶接又は摩擦圧接によって接合部6を形成
し、エンド1,2を連結棒3に一体化した。なお、連結
棒3としては、MIG溶接による場合は内径35mm、
摩擦圧接による場合は内径40mmのパイプを使用し
た。MIG溶接条件は、溶接棒A5356を使用し、電
圧28V,電流280A,溶接速度1m/分に設定し
た。摩擦圧接には、加熱圧力500kgf/cm2 ,加
熱時間5秒,アプセット圧力1000kgf/cm2
びアプセット量10mmを採用した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Various Al-Mg-Si Al alloys having the compositions shown in Table 1 and Al-Zn having the compositions shown in Table 2
As shown in FIGS. 3 (a) and 3 (b), various Mn-based Al alloys are heat treated to have an outer diameter φ 1 = 130 mm and an inner diameter φ 2 =
Ends 1 and 2 having a width of 105 mm and a width of W = 51 mm were produced. 50m radius of curvature on one side of the annular part 4 of the ends 1 and 2
The joining protrusion 5 having a tip diameter of 60 mm, which stood up at m, was formed. On the other hand, as the connecting rod 3, a similar heat-treated A
A pipe having an outer diameter of 60 mm made from an extruded material of 1 alloy was used. The connecting rod 3 was pressed against the end face of the joining projection 5, and the joining portion 6 was formed by MIG welding or friction welding, and the ends 1 and 2 were integrated with the joining rod 3. The connecting rod 3 has an inner diameter of 35 mm in the case of MIG welding,
In the case of friction welding, a pipe having an inner diameter of 40 mm was used. The MIG welding conditions were set to a voltage of 28 V, a current of 280 A, and a welding speed of 1 m / min using a welding rod A5356. For the friction welding, a heating pressure of 500 kgf / cm 2 , a heating time of 5 seconds, an upset pressure of 1000 kgf / cm 2 and an upset amount of 10 mm were employed.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】実施例1:合金番号1の鋳造棒を熱間鍛造
してエンドを作製した後、530℃に加熱し、水冷し、
180℃に8時間保持する熱処理を施した。連結棒は、
合金番号6の鋳造棒を押出し加工した後、冷却し、12
0℃に24時間保持する時効処理によって製造した。こ
れらエンド及び連結棒をMIG溶接して得られたトルク
ロッドは、引張り強さ41,000kgf,圧縮強度3
5,500kgf,エンド部の伸び15.0%,連結棒
部の伸び14.1%,接合部の伸び13.1%で、±
6,000kgfの繰返し負荷を2×06 回与えた後で
も疲労により破損することがなかった。また、接合され
たトルクロッドから試験片を切り出し、JIS H87
11に準拠した応力腐食割れ試験に供した。すなわち、
耐力の75%を加えた状態で3.5%NaCl溶液に浸
漬し、10分浸漬→50分乾燥の繰返しを30日間継続
させた。そして、試験後のトルクロッドを観察したとこ
ろ、エンド部,連結棒部,接合部共に応力腐食割れが検
出されなかった。他方、摩擦圧接によって連結棒にエン
ドを接合したトルクロッドは、引張り強さ41,000
kgf,圧縮強度34,500kgf,エンド部の伸び
15.1%,連結棒部の伸び14.0%,接合部の伸び
11.0%で、±6,000kgfの繰返し負荷を2×
6 回与えた後でも疲労により破損することがなかっ
た。また、同様な応力腐食割れ試験の結果では、エンド
部,連結棒部,接合部共に応力腐食割れが検出されなか
った。
Example 1 A casting rod of Alloy No. 1 was hot forged to prepare an end, which was then heated to 530 ° C. and cooled with water.
A heat treatment of holding at 180 ° C. for 8 hours was performed. The connecting rod is
After extruding a casting rod of Alloy No. 6, cool it down to 12
It was manufactured by an aging treatment which was kept at 0 ° C. for 24 hours. The torque rod obtained by MIG welding these ends and connecting rods has a tensile strength of 41,000 kgf and a compression strength of 3
5,500 kgf, end part elongation 15.0%, connecting rod part elongation 14.1%, joint part elongation 13.1%, ±
The repeated load of 6,000kgf even after giving 2 × 0 6 times had never damaged by fatigue. Also, a test piece was cut out from the joined torque rod, and JIS H87
It was subjected to a stress corrosion cracking test according to 11. That is,
Immersion in a 3.5% NaCl solution with 75% of the proof stress added, 10 minutes immersion → 50 minutes drying was repeated for 30 days. When the torque rod after the test was observed, no stress corrosion cracking was detected in any of the end, the connecting rod, and the joint. On the other hand, the torque rod whose end is joined to the connecting rod by friction welding has a tensile strength of 41,000.
kgf, compressive strength 34,500 kgf, end part elongation 15.1%, connecting rod part elongation 14.0%, joint part elongation 11.0%, and repeated load of ± 6,000 kgf 2 ×.
Even after giving 0 6 times had never damaged by fatigue. Further, in the results of the similar stress corrosion cracking test, no stress corrosion cracking was detected in any of the end portion, the connecting rod portion, and the joint portion.

【0022】実施例2:合金番号2の押出し棒を冷間鍛
造してエンドを作製した後、555℃に加熱し、水冷
し、190℃に8時間保持する熱処理を施した。連結棒
は、実施例1と同様な工程によって製造した。これらエ
ンド及び連結棒をMIG溶接して得られたトルクロッド
は、引張り強さ39,000kgf,圧縮強度35,0
00kgf,エンド部の伸び16.5%,連結棒部の伸
び14.0%,接合部の伸び13.6%で、±6,00
0kgfの繰返し負荷を2×06 回与えた後でも疲労に
より破損することがなかった。また、実施例1と同じ応
力腐食割れ試験に供したところ、エンド部,連結棒部,
接合部共に応力腐食割れが検出されなかった。他方、摩
擦圧接によって連結棒にエンドを接合したトルクロッド
は、引張り強さ41,000kgf,圧縮強度34,0
00kgf,エンド部の伸び16.3%,連結棒部の伸
び13.9%,接合部の伸び11.1%で、±6,00
0kgfの繰返し負荷を2×06 回与えた後でも疲労に
より破損することがなかった。また、同様な応力腐食割
れ試験の結果では、エンド部,連結棒部,接合部共に応
力腐食割れが検出されなかった。
Example 2 An extruded rod of Alloy No. 2 was cold forged to prepare an end, which was then heated to 555 ° C., water cooled, and heat-treated at 190 ° C. for 8 hours. The connecting rod was manufactured by the same process as in Example 1. The torque rod obtained by MIG welding these ends and connecting rods has a tensile strength of 39,000 kgf and a compressive strength of 35,0.
00 kgf, end portion elongation 16.5%, connecting rod portion elongation 14.0%, joint portion elongation 13.6%, ± 6.00
The repeated load of 0kgf even after giving 2 × 0 6 times had never damaged by fatigue. When the same stress corrosion cracking test as in Example 1 was performed, the end portion, the connecting rod portion,
No stress corrosion cracking was detected at the joints. On the other hand, the torque rod whose end is joined to the connecting rod by friction welding has a tensile strength of 41,000 kgf and a compressive strength of 34.0.
+/- 600 at 00 kgf, end part elongation 16.3%, connecting rod part elongation 13.9%, and joint part elongation 11.1%.
The repeated load of 0kgf even after giving 2 × 0 6 times had never damaged by fatigue. Further, in the results of the similar stress corrosion cracking test, no stress corrosion cracking was detected in any of the end portion, the connecting rod portion, and the joint portion.

【0023】実施例3:合金番号6の押出し棒を熱間鍛
造してエンドを作製した後、450℃に加熱し、空冷し
た。連結棒は、合金番号2の押出しパイプを540℃に
加熱し、水冷した後、185℃で7時間保持する時効処
理によって製造した。これらエンド及び連結棒をMIG
溶接して得られたトルクロッドは、引張り強さ37,0
00kgf,圧縮強度36,000kgf,エンド部の
伸び13.2%,連結棒部の伸び17.0%,接合部の
伸び12.5%で、±6,000kgfの繰返し負荷を
2×06 回与えた後でも疲労により破損することがなか
った。また、実施例1と同じ応力腐食割れ試験に供した
ところ、エンド部,連結棒部,接合部共に応力腐食割れ
が検出されなかった。他方、摩擦圧接によって連結棒に
エンドを接合したトルクロッドは、引張り強さ37,0
00kgf,圧縮強度35,000kgf,エンド部の
伸び13.5%,連結棒部の伸び16.8%,接合部の
伸び11.4%で、±6,000kgfの繰返し負荷を
2×06 回与えた後でも疲労により破損することがなか
った。また、同様な応力腐食割れ試験の結果では、エン
ド部,連結棒部,接合部共に応力腐食割れが検出されな
かった。
Example 3 An extruded rod of Alloy No. 6 was hot forged to form an end, which was then heated to 450 ° C. and air-cooled. The connecting rod was manufactured by an aging treatment in which an extruded pipe of Alloy No. 2 was heated to 540 ° C, cooled with water, and then held at 185 ° C for 7 hours. MIG these end and connecting rod
The torque rod obtained by welding has a tensile strength of 37,0.
00kgf, compressive strength 36,000kgf, end part elongation 13.2%, connecting rod part elongation 17.0%, joint part elongation 12.5%, repeated load of ± 6,000kgf 2 × 0 6 times. It was not damaged by fatigue even after being given. When subjected to the same stress corrosion cracking test as in Example 1, no stress corrosion cracking was detected in any of the end portion, the connecting rod portion, and the joint portion. On the other hand, the torque rod whose end is joined to the connecting rod by friction welding has a tensile strength of 37,0.
00kgf, compressive strength 35,000kgf, end part elongation 13.5%, connecting rod part elongation 16.8%, joint part elongation 11.4%, repeated load of ± 6,000kgf 2 × 0 6 times. It was not damaged by fatigue even after being given. Further, in the results of the similar stress corrosion cracking test, no stress corrosion cracking was detected in any of the end portion, the connecting rod portion, and the joint portion.

【0024】実施例4:合金番号7の押出し棒を熱間鍛
造してエンドを作製した後、冷却し、次いで90℃×8
時間→160℃×8時間の時効処理を施した。連結棒
は、実施例3と同様に製造した。これらエンド及び連結
棒をMIG溶接して得られたトルクロッドは、引張り強
さ33,000kgf,圧縮強度36,000kgf,
エンド部の伸び12.1%,連結棒部の伸び16.8
%,接合部の伸び11.5%で、±6,000kgfの
繰返し負荷を2×06 回与えた後でも疲労により破損す
ることがなかった。また、実施例1と同じ応力腐食割れ
試験に供したところ、エンド部,連結棒部,接合部共に
応力腐食割れが検出されなかった。他方、摩擦圧接によ
って連結棒にエンドを接合したトルクロッドは、引張り
強さ33,500kgf,圧縮強度35,000kg
f,エンド部の伸び12.0%,連結棒部の伸び16.
8%,接合部の伸び11.2%で、±6,000kgf
の繰返し負荷を2×06 回与えた後でも疲労により破損
することがなかった。また、同様な応力腐食割れ試験の
結果では、エンド部,連結棒部,接合部共に応力腐食割
れが検出されなかった。
Example 4 An extruded rod of Alloy No. 7 was hot forged to form an end, which was then cooled and then 90 ° C. × 8.
Time → 160 ° C. × 8 hours of aging treatment. The connecting rod was manufactured as in Example 3. The torque rod obtained by MIG welding these ends and connecting rods has a tensile strength of 33,000 kgf, a compressive strength of 36,000 kgf,
Elongation of end part 12.1%, Elongation of connecting rod part 16.8
%, The elongation of the joint was 11.5%, and even after a cyclic load of ± 6,000 kgf was applied 2 × 0 6 times, it did not break due to fatigue. When subjected to the same stress corrosion cracking test as in Example 1, no stress corrosion cracking was detected in any of the end portion, the connecting rod portion, and the joint portion. On the other hand, the torque rod whose end is joined to the connecting rod by friction welding has a tensile strength of 33,500 kgf and a compressive strength of 35,000 kg.
f, elongation of the end portion 12.0%, elongation of the connecting rod portion 16.
± 6,000 kgf at 8% and 11.2% elongation of the joint
It had never be damaged by the fatigue of repeated load, even after giving 2 × 0 6 times. Further, in the results of the similar stress corrosion cracking test, no stress corrosion cracking was detected in any of the end portion, the connecting rod portion, and the joint portion.

【0025】[0025]

【発明の効果】以上に説明したように、本発明において
は、成分が規制され、特定条件下で熱処理が施されたA
l−Mg−Si系及びAl−Zn−Mn系のAl合金を
組み合わせてエンド部材及び連結棒部材を作製し、これ
らエンド部材及び連結棒部材を溶接又は圧接することに
より、従来から使用されている鉄製のトルクロッドとほ
ぼ同じ寸法・形状で鉄製に匹敵する特性をもつアルミ合
金製のトルクロッドを得ている。このアルミ合金製トル
クロッドは、鉄製に比較して55〜60%程度に軽量化
されており、しかもエンド部に圧入するブッシュやトル
クロッドを固定する部品に対する設計変更の必要性がな
く、従来の鉄製トルクロッドと同様に使用され、トラッ
クの軽量化に寄与する。
INDUSTRIAL APPLICABILITY As described above, in the present invention, the components are regulated and the heat treatment is performed under a specific condition A.
It has been conventionally used by combining end-members and connecting rod members by combining 1-Mg-Si-based and Al-Zn-Mn-based Al alloys, and welding or pressure-welding these end members and connecting rod members. We have obtained a torque rod made of aluminum alloy, which has almost the same dimensions and shape as the torque rod made of iron and has characteristics comparable to those made of iron. This aluminum alloy torque rod is 55 to 60% lighter than that made of iron, and there is no need to change the design of the bushing that is press-fitted into the end portion or the parts that fix the torque rod. Used in the same way as an iron torque rod, it contributes to weight reduction of trucks.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 エンド及び連結棒に三分割した従来の鉄製ト
ルクロッドの側面図
FIG. 1 is a side view of a conventional iron torque rod divided into three parts, an end and a connecting rod.

【図2】 同鉄製トルクロッドの平面図FIG. 2 is a plan view of the iron torque rod.

【図3】 本発明実施例でアルミ製エンド(a)をアル
ミ製連結棒に溶接又は圧接したトルクロッドの一部
(b)
FIG. 3 is a part (b) of a torque rod in which an aluminum end (a) is welded or pressure welded to an aluminum connecting rod in the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,2:エンド 3:連結棒 4:環状部
5:接続用突出部 6:MIG溶接又は摩擦圧接した接合部
1,2: end 3: connecting rod 4: annular part
5: Connecting protrusion 6: MIG welded or friction welded joint

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 達 静岡県庵原郡蒲原町蒲原1丁目34番1号 日本軽金属株式会社グループ技術センター 内 (72)発明者 土屋 健二 静岡県庵原郡蒲原町蒲原1丁目34番1号 日本軽金属株式会社グループ技術センター 内 (72)発明者 樋野 治道 静岡県庵原郡蒲原町蒲原1丁目34番1号 日本軽金属株式会社グループ技術センター 内 (72)発明者 堀田 元司 静岡県庵原郡蒲原町蒲原1丁目34番1号 日本軽金属株式会社グループ技術センター 内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tatsu Yamada 1-34-1 Kambara, Kambara-cho, Anbara-gun, Shizuoka Prefecture Inside the Nippon Light Metal Co., Ltd. Group Technology Center (72) Inventor Kenji Tsuchiya 1 Kambara-cho, Kambara-cho, Abara-gun, Shizuoka Chome 34-1, Nippon Light Metal Co., Ltd. Group Technology Center (72) Inventor Jindo Hino 1-34-1, Kambara-cho, Kambara-cho, Anbara-gun, Shizuoka Prefecture Nippon Light Metal Co., Ltd. Group Technology Center (72) Inventor Motoji Hotta Shizuoka 1-34-1 Kambara, Kambara-cho, Abara-gun Nippon Light Metal Co., Ltd. Group Technology Center

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 Al合金の押出しパイプから作製された
連結棒の両端部にAl合金製のエンドが溶接又は圧接さ
れたトルクロッドであり、エンドがSi:1.0〜1.
5重量%,Cu:0.4〜0.9重量%,Mn:0.2
〜0.6重量%,Mg:0.8〜1.5重量%,Cr:
0.3〜0.9重量%を含み、Fe含有量を0.25重
量%以下に規制すると共に、Mn+Crの合計含有量が
1.2重量%以下に規制された組成をもつAl合金製
で、前記連結棒がZn:4.0〜6.5重量%,Mg:
0.5〜2.0重量%,Cu:0.01〜0.2重量
%,Mn:0.2〜0.7重量%,Cr:0.05〜
0.3重量%,Zr:0.05〜0.25重量%,F
e:0.01〜0.4重量%を含むAl合金製であるト
ルクロッド。
1. A torque rod in which Al alloy ends are welded or pressure-welded to both ends of a connecting rod made of an Al alloy extruded pipe, and the ends are Si: 1.0 to 1.
5% by weight, Cu: 0.4 to 0.9% by weight, Mn: 0.2
~ 0.6 wt%, Mg: 0.8-1.5 wt%, Cr:
It is made of an Al alloy containing 0.3 to 0.9% by weight, the Fe content is regulated to 0.25% by weight or less, and the total content of Mn + Cr is regulated to 1.2% by weight or less. , The connecting rod is Zn: 4.0 to 6.5 wt%, Mg:
0.5 to 2.0% by weight, Cu: 0.01 to 0.2% by weight, Mn: 0.2 to 0.7% by weight, Cr: 0.05 to
0.3% by weight, Zr: 0.05 to 0.25% by weight, F
e: A torque rod made of an Al alloy containing 0.01 to 0.4% by weight.
【請求項2】 請求項1記載のエンド用Al合金が更に
Ti:0.005〜0.05重量%,B:0.0001
〜0.01重量%及びZr:0.1〜0.2重量%の1
種又は2種以上を含むトルクロッド。
2. The Al alloy for an end according to claim 1, further comprising Ti: 0.005 to 0.05% by weight and B: 0.0001.
-0.01 wt% and Zr: 0.1-0.2 wt% 1
Or a torque rod containing two or more species.
【請求項3】 請求項1記載の連結棒用Al合金が更に
Ti:0.005〜0.2重量%,B:0.0001〜
0.05重量%及びV:0.01〜0.1重量%の1種
又は2種以上を含むトルクロッド。
3. The Al alloy for a connecting rod according to claim 1, further comprising Ti: 0.005 to 0.2% by weight and B: 0.0001 to.
A torque rod containing one or more of 0.05% by weight and V: 0.01 to 0.1% by weight.
【請求項4】 Al合金の押出しパイプから作製された
連結棒の両端部にAl合金製のエンドが溶接又は圧接さ
れたトルクロッドであり、前記連結棒がSi:1.0〜
1.5重量%,Cu:0.4〜0.9重量%,Mn:
0.2〜0.6重量%,Mg:0.8〜1.5重量%,
Cr:0.3〜0.9重量%を含み、Fe含有量を0.
25重量%以下に規制すると共に、Mn+Crの合計含
有量が1.2重量%以下に規制された組成をもつAl合
金製で、前記エンドがZn:4.0〜6.5重量%,M
g:0.5〜2.0重量%,Cu:0.01〜0.2重
量%,Mn:0.2〜0.7重量%,Cr:0.05〜
0.3重量%,Zr:0.05〜0.25重量%,F
e:0.01〜0.4重量%を含むAl合金製であるト
ルクロッド。
4. A torque rod in which Al alloy ends are welded or pressure-welded to both ends of a connecting rod made of an extruded pipe of Al alloy, and the connecting rod has a Si: 1.0-.
1.5% by weight, Cu: 0.4 to 0.9% by weight, Mn:
0.2-0.6% by weight, Mg: 0.8-1.5% by weight,
Cr: 0.3-0.9 wt% and Fe content of 0.
It is made of an Al alloy whose composition is regulated to 25 wt% or less and the total content of Mn + Cr is regulated to 1.2 wt% or less, and the end is Zn: 4.0 to 6.5 wt%, M
g: 0.5-2.0 wt%, Cu: 0.01-0.2 wt%, Mn: 0.2-0.7 wt%, Cr: 0.05-
0.3% by weight, Zr: 0.05 to 0.25% by weight, F
e: A torque rod made of an Al alloy containing 0.01 to 0.4% by weight.
【請求項5】 請求項4記載の連結棒用Al合金が更に
Ti:0.005〜0.05重量%,B:0.0001
〜0.01重量%及びZr:0.1〜0.2重量%の1
種又は2種以上を含むトルクロッド。
5. The Al alloy for a connecting rod according to claim 4, further comprising Ti: 0.005 to 0.05% by weight and B: 0.0001.
-0.01 wt% and Zr: 0.1-0.2 wt% 1
Or a torque rod containing two or more species.
【請求項6】 請求項4記載のエンド用Al合金が更に
Ti:0.005〜0.2重量%,B:0.0001〜
0.05重量%及びV:0.01〜0.1重量%の1種
又は2種以上を含むトルクロッド。
6. The Al alloy for an end according to claim 4, further comprising Ti: 0.005 to 0.2% by weight and B: 0.0001 to.
A torque rod containing one or more of 0.05% by weight and V: 0.01 to 0.1% by weight.
【請求項7】 請求項1又は2記載のエンド用Al合金
の鋳造材又は押出し材を鍛造し、次いで510〜555
℃に加熱後、水冷して155〜190℃に5〜20時間
保持する熱処理を施し、該熱処理後のAl合金から作製
したエンドに、請求項1又は3記載の組成をもつ連結棒
用Al合金の鋳造材又は押出し材を鍛造し、次いで43
0〜470℃に加熱後、空冷又は炉冷して作製した連結
棒を溶接又は圧接することを特徴とするトルクロッドの
製造方法。
7. A cast material or extruded material of the Al alloy for an end according to claim 1 or 2 is forged, and then 510 to 555.
An aluminum alloy for connecting rods having the composition according to claim 1 or 3 is applied to the end made from the Al alloy after the heat treatment in which the water is cooled to 155 ° C and kept at 155 to 190 ° C for 5 to 20 hours after being heated to ℃. Forged castings or extrudates of
A method for manufacturing a torque rod, which comprises welding or pressure welding a connecting rod produced by air-cooling or furnace-cooling after heating to 0 to 470 ° C.
【請求項8】 請求項7記載の連結棒として、更に11
0〜130℃に23〜25時間保持し、次いで150〜
160℃に8〜16時間保持する二段時効処理を施した
ものを使用するトルクロッドの製造方法。
8. The connecting rod according to claim 7, further comprising:
Hold at 0-130 ° C for 23-25 hours, then 150-
A method of manufacturing a torque rod, which uses a product subjected to a two-step aging treatment in which it is held at 160 ° C. for 8 to 16 hours.
【請求項9】 請求項4又は5記載の連結棒用Al合金
の鋳造材又は押出し材を鍛造し、次いで510〜555
℃に加熱後、水冷して155〜190℃に5〜20時間
保持する熱処理を施し、該熱処理後のAl合金から作製
した連結棒に、請求項4又は6記載の組成をもつエンド
用Al合金の鋳造材又は押出し材を鍛造し、次いで43
0〜470℃に加熱後、空冷又は炉冷して作製したエン
ドを溶接又は圧接することを特徴とするトルクロッドの
製造方法。
9. A cast or extruded material of the Al alloy for a connecting rod according to claim 4 or 5 is forged, and then 510 to 555.
An aluminum alloy for an end having the composition according to claim 4 or 6 is applied to a connecting rod made from the aluminum alloy after the heat treatment, which is performed by heating to ℃, water cooling, and holding at 155 to 190 ° C for 5 to 20 hours. Forged castings or extrudates of
A method for manufacturing a torque rod, comprising welding or pressure-welding an end produced by air cooling or furnace cooling after heating to 0 to 470 ° C.
【請求項10】 請求項9記載のエンドとして、更に1
10〜130℃に23〜25時間保持し、次いで150
〜160℃に8〜16時間保持する二段時効処理を施し
たものを使用するトルクロッドの製造方法。
10. The end according to claim 9, further 1
Hold at 10-130 ° C for 23-25 hours, then 150
A method for manufacturing a torque rod, which uses a material subjected to a two-step aging treatment of holding at 160 ° C for 8 to 16 hours.
JP07184784A 1995-06-28 1995-06-28 Torque rod and method of manufacturing the same Expired - Fee Related JP3114576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07184784A JP3114576B2 (en) 1995-06-28 1995-06-28 Torque rod and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07184784A JP3114576B2 (en) 1995-06-28 1995-06-28 Torque rod and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0911721A true JPH0911721A (en) 1997-01-14
JP3114576B2 JP3114576B2 (en) 2000-12-04

Family

ID=16159236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07184784A Expired - Fee Related JP3114576B2 (en) 1995-06-28 1995-06-28 Torque rod and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3114576B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1317988A2 (en) * 2001-12-10 2003-06-11 Sachsenring Fahrzeugtechnik GmbH Component in vehicle parts with a joint achieved by pressure welding
EP1318035A3 (en) * 2001-12-05 2003-09-17 Benteler Automobiltechnik GmbH & Co. KG Arm and method of manufacturing an arm
KR20060108179A (en) * 2005-04-12 2006-10-17 현대자동차주식회사 Radius rod structure
JP2010120075A (en) * 2008-11-21 2010-06-03 Nippon Light Metal Co Ltd Base shape for suspension component, method for manufacturing the same, and bar-like compound material
CN105163996A (en) * 2013-05-01 2015-12-16 布莱肯资源私人有限公司 Drawbar for rail wagons
CN114454678A (en) * 2022-01-24 2022-05-10 天润工业技术股份有限公司 Cast thrust rod for automobile

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1318035A3 (en) * 2001-12-05 2003-09-17 Benteler Automobiltechnik GmbH & Co. KG Arm and method of manufacturing an arm
EP1317988A2 (en) * 2001-12-10 2003-06-11 Sachsenring Fahrzeugtechnik GmbH Component in vehicle parts with a joint achieved by pressure welding
EP1317988A3 (en) * 2001-12-10 2004-01-21 Sachsenring Fahrzeugtechnik GmbH Component in vehicle parts with a joint achieved by pressure welding
KR20060108179A (en) * 2005-04-12 2006-10-17 현대자동차주식회사 Radius rod structure
JP2010120075A (en) * 2008-11-21 2010-06-03 Nippon Light Metal Co Ltd Base shape for suspension component, method for manufacturing the same, and bar-like compound material
CN105163996A (en) * 2013-05-01 2015-12-16 布莱肯资源私人有限公司 Drawbar for rail wagons
CN114454678A (en) * 2022-01-24 2022-05-10 天润工业技术股份有限公司 Cast thrust rod for automobile
CN114454678B (en) * 2022-01-24 2023-12-29 天润工业技术股份有限公司 Cast thrust rod for automobile

Also Published As

Publication number Publication date
JP3114576B2 (en) 2000-12-04

Similar Documents

Publication Publication Date Title
JP2697400B2 (en) Aluminum alloy for forging
JP2002543289A (en) Peel-resistant aluminum-magnesium alloy
JP3114576B2 (en) Torque rod and method of manufacturing the same
JP4676906B2 (en) Heat-resistant aluminum alloy for drawing
KR100703130B1 (en) Non heat treatable high ductility aluminum cast alloys and manufacturing method thereof
JP3235442B2 (en) High strength, low ductility non-heat treated steel
JPH07145440A (en) Aluminum alloy forging stock
JPH108174A (en) Torque rod made of aluminum and its production
JPH07150312A (en) Manufacture of aluminum alloy forged base stock
JPH0913137A (en) Torque rod and its production
JPH03122248A (en) High strength aluminum alloy for welding excellent in stress corrosion cracking resistance
JPH0913139A (en) Torque rod and its production
JPH08269608A (en) High strength aluminum alloy excellent in formability and corrosion resistance
JPH0413830A (en) High strength aluminum alloy for welding excellent in stress corrosion cracking resistance
JPH0247235A (en) Seamless rim of autobicycle or the like using al-zn-mg-cu alloy
JPH09202933A (en) High strength aluminum alloy excellent in hardenability
JP3216837B2 (en) Iron-based super heat-resistant alloy for heat-resistant bolts
JPH09176769A (en) Wear resistant aluminum alloy
JPH108173A (en) Torque rod made of aluminum and its production
JPH03122247A (en) High strength aluminum alloy for welding excellent in stress corrosion cracking resistance
JPH1017975A (en) Aluminum alloy for casting
JP3754946B2 (en) Aluminum alloy for welding and welding method thereof
JP3123682B2 (en) High strength aluminum alloy material for welding
JPH0413833A (en) High strength aluminum alloy for welding excellent in stress corrosion cracking resistance
JPH05247576A (en) Aluminum alloy for drive mechanism parts

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080929

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090929

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees