JPS61104043A - Heat resistant and high-strength aluminum alloy - Google Patents

Heat resistant and high-strength aluminum alloy

Info

Publication number
JPS61104043A
JPS61104043A JP22369684A JP22369684A JPS61104043A JP S61104043 A JPS61104043 A JP S61104043A JP 22369684 A JP22369684 A JP 22369684A JP 22369684 A JP22369684 A JP 22369684A JP S61104043 A JPS61104043 A JP S61104043A
Authority
JP
Japan
Prior art keywords
weight
aluminum alloy
strength
forging
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22369684A
Other languages
Japanese (ja)
Other versions
JPS6326188B2 (en
Inventor
Haruo Shiina
治男 椎名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP22369684A priority Critical patent/JPS61104043A/en
Publication of JPS61104043A publication Critical patent/JPS61104043A/en
Publication of JPS6326188B2 publication Critical patent/JPS6326188B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the Al alloy having superior heat resistance, hot forgeability, and stress corrosion cracking resistance, by incorporating specific percentage of Si, Fe, Mn, Co, and Li to Al. CONSTITUTION:The Al alloy containing, by weight, 10-30% Si, 4-30% Fe, at least least 1 kind of element selected among 1.5-5.0% Mn, 0.5-3.0% Co, and 1.0-5.0% Li, and the balance Al with inevitable impurities is manufactured; the amounts of Cu and Mg in the inevitable impurities should be, respectively, <0.8% and <0.5%. In this way, the Al alloy suitable as parts material for an internal combustion engine can be obtained.

Description

【発明の詳細な説明】 【l二匹皿皿次1 本発明は、耐熱性、熱間鍛造性および耐応力腐蝕割れ性
に優れたアルミニウム合金に係り、特に、内燃機関用部
品であるピストン、コンロッドに適用して軽(6)化を
企図し得る材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [1] The present invention relates to an aluminum alloy having excellent heat resistance, hot forgeability, and stress corrosion cracking resistance. The present invention relates to a material that can be applied to connecting rods to make them lighter (6).

え来及韮 近時、内燃機関用部品材料として、運動部品の軽量化を
計るべく、軽合金材料、特にアルミニウム合金が広く使
用されている。就中、粉末冶金法により5、大ぎな自由
度をもって各゛種合金うL累を添加して耐熱性1強度、
ヤング率の向上を企図したアルミニウム合金H幾閏構成
部品は、機関性□能の向上に大ぎく貢献している。
Recently, light alloy materials, especially aluminum alloys, have been widely used as parts materials for internal combustion engines in order to reduce the weight of moving parts. In particular, using the powder metallurgy method, various types of alloys are added with a large degree of freedom to achieve heat resistance, strength, strength,
Aluminum alloy H-shaped components designed to improve Young's modulus greatly contribute to improving engine performance.

本出願人が、特願昭59−166979号において捉閑
した材料も、耐熱性、耐摩耗性、断熱性およびA7ング
率の向上を計った粉末冶金用アルミニウム合金である。
The material that the applicant investigated in Japanese Patent Application No. 59-166979 is also an aluminum alloy for powder metallurgy that is designed to improve heat resistance, abrasion resistance, heat insulation, and A7 rate.

口が ゛しよ とする口 占 しかるに、4≦Fe≦33@吊%の範囲の鉄を含む該ア
ルミニウム合金につき、その後種々検討を加えた結果、
特にFe≧6重准%の範囲で鍛造用素材(予備成形品)
の熱間鍛造性、J3よび最終成形品の耐応力腐蝕割れ特
性を改善する必要のあることが判明した。
As a matter of fact, as a result of various subsequent studies on the aluminum alloy containing iron in the range of 4≦Fe≦33@hang%,
Forging materials (preformed products) especially in the range of Fe≧6%
It was found that it was necessary to improve the hot forgeability of J3 and the stress corrosion cracking resistance of the final molded product.

すなわち、前記鍛造用素材(Fc≧6重徂%)は、これ
を高速熱間鍛造加工(加工速度= 75mm/ Sec
 )で成形すると、割れ等の欠陥が生じ易く、この不具
合を解消するには、加工速度の低減化、金ヤ温度の高温
化等の鍛造法案上の諸対策を講じな【プれけばならず、
量産性が損なわれ、部品製造費が高画になる。
That is, the forging material (Fc≧6%) is subjected to high-speed hot forging processing (processing speed = 75 mm/Sec
), defects such as cracks are likely to occur, and in order to eliminate these defects, it is necessary to take various measures in the forging bill, such as reducing the processing speed and increasing the temperature of the metal. figure,
Mass production will be impaired and parts manufacturing costs will be high.

また、連接棒におけるピン・ボス部(小端部)、あるい
はベアリング・キャップ締結部(大端部)の様に常時応
力が作用する箇所に応力腐蝕割れ(JIS応力腐蝕割れ
試験による)を生ずるおそれがあり、近年における機関
の高速化に伴なって機関構成部品の耐久性低下要因とな
る。
Additionally, there is a risk of stress corrosion cracking (according to the JIS stress corrosion cracking test) occurring at locations where stress is constantly applied, such as the pin boss portion (small end) or bearing cap fastening portion (large end) of the connecting rod. As the speed of engines has increased in recent years, this has become a factor in reducing the durability of engine component parts.

p  を ゛するための  および 本発明の目的は、高速熱間鍛造によって鍛造用素材の加
工を行うことが可能で、鍛造形成量の応力腐蝕割れが生
じ難い耐熱高強度アルミニウム合金を提供する点にある
An object of the present invention is to provide a heat-resistant, high-strength aluminum alloy that can be processed into a forging material by high-speed hot forging and that is less susceptible to stress corrosion cracking due to forging formation. be.

本発明による耐熱高強度アルミニウム合金は、Si、 
Feの他に、Mn、 Co、 Liなる群より選択され
る少なくとも一種の元素を、それぞれ組成範囲(中量%
):10≦Si≦30%、4≦Fe≦33%、15≦H
n≦5.0%、0.5≦CO≦3,0%、10≦Li≦
50%で含有する。
The heat-resistant high-strength aluminum alloy according to the present invention includes Si,
In addition to Fe, at least one element selected from the group consisting of Mn, Co, and Li is added within a composition range (median amount %).
): 10≦Si≦30%, 4≦Fe≦33%, 15≦H
n≦5.0%, 0.5≦CO≦3.0%, 10≦Li≦
Contains 50%.

アルミニウム中に鉄(Fe)を添加すると、FeA I
3なる針状晶の化合物を生じ、展延性と耐蝕性が阻害さ
れることは、良く知られており、本発明のアルミこラム
合金では、高鉄含有量範囲において、マンガ・ン、(H
n)を添加することにより、前記針状晶の発生を抑えて
高速熱間@造船工性を改善し、かつ焼結性の向上をもた
らすものの耐応力腐蝕割れ特性に対し悪影響を及ぼすこ
とが確認された銅(Cu)およびマグネシウム(Ha)
の含有量を不純物程度(0,10重ffi%未満)に抑
えることによって、該応力腐蝕割れ特性を改善すること
とした。
When iron (Fe) is added to aluminum, FeA I
It is well known that the aluminum ram alloy of the present invention produces acicular crystal compounds of 3, which impairs the malleability and corrosion resistance.
It has been confirmed that the addition of n) suppresses the generation of the above-mentioned needle crystals, improves high-speed hot working @ shipbuilding properties, and improves sinterability, but has a negative effect on stress corrosion cracking resistance. copper (Cu) and magnesium (Ha)
It was decided to improve the stress corrosion cracking characteristics by suppressing the content of F to an impurity level (less than 0.10% by weight).

本発明のアルミニウムー合金で添加される珪素(Si)
 、鉄(Fe) 、マンガン(Hn) 、]バルト(C
o)、リチウム(Li)の機能は、下記の通りである。
Silicon (Si) added in the aluminum alloy of the present invention
, Iron (Fe), Manganese (Hn),] Baltic (C
o) The functions of lithium (Li) are as follows.

(a)Si:珪素は、鉄単独添加による耐摩耗性の不足
を補い、またヤング率を向上させる上に有効である。但
し、10ψ量%を下回ると、耐摩耗性を改善することが
できず、30重量%を上回ると、成形性が悪化し、構造
部材にクラックが発生し易い。
(a) Si: Silicon is effective in compensating for the lack of wear resistance caused by the addition of iron alone and in improving Young's modulus. However, if the amount is less than 10% by weight, the wear resistance cannot be improved, and if it exceeds 30% by weight, the moldability deteriorates and cracks are likely to occur in the structural member.

ヤング率は、鉄と同様に、珪素添加縫の増加に応じて向
にするが、成形性を考慮して前記F限値にゐり限される
As with iron, the Young's modulus changes as the number of silicon-added stitches increases, but it is limited to the above-mentioned F limit value in consideration of formability.

(b) Fe:鉄は高温強度、断熱性およびヤング率を
向1−させるために必要である。但し、4重量%を下回
ると、高温強度はある程度確保できるものの、高温強度
が不足し、33重量%を上回ると、密度が増して軽舟化
が損なわれ、その土、熱間押出し加工、熱間鍛造加工等
において成形性が悪化する。また、A7ング率は、鉄の
添加…の増加に応じて向上するが、前記密度を考慮して
、鉄の添加量は前記上限値に制限される。
(b) Fe: Iron is necessary to improve high temperature strength, heat insulation properties, and Young's modulus. However, if it is less than 4% by weight, high-temperature strength can be secured to some extent, but the high-temperature strength is insufficient, and if it exceeds 33% by weight, the density will increase and the ability to make a light boat will be impaired, and the soil, hot extrusion processing, heat Formability deteriorates during inter-forging processing, etc. Further, the A7 rate improves as the amount of iron added increases, but the amount of iron added is limited to the upper limit value in consideration of the density.

(c)Hn:アトマイズ粉末製造においては、アルミニ
ウム合金粉末の冷却速度が最も大きくなるように設定す
る必要があるが、量産性を考慮した場合103〜10”
C/secが限度である。この冷却速度の範囲において
、Fe≦6重山%では、Al−Fe−3i系金属間化合
物が熱間押出加工工程で充分に分断されると共にその化
合物の析出状態も塊状であることから、ある程度の高速
熱間鍛造加工が可能であり、Fe>6重塁%では、前記
金属間化合物の析出形曝が針状となり、熱間変形抵抗が
増大するため高速熱間鍛造加工が不可能となる。
(c) Hn: In the production of atomized powder, it is necessary to set the cooling rate of aluminum alloy powder to be the highest, but when considering mass production, it is 103 to 10".
C/sec is the limit. In this cooling rate range, when Fe≦6%, the Al-Fe-3i intermetallic compound is sufficiently divided in the hot extrusion process and the precipitated state of the compound is also lumpy, so there is a certain amount of High-speed hot forging is possible, but when Fe>6%, the intermetallic compound has a needle-like precipitate shape and hot deformation resistance increases, making high-speed hot forging impossible.

マンガンは、前記金属間化合物の析出形態をコントロー
ルするために有効である。すなわち、マンガンを前記特
定量添加することによって、針状のAl31”c相およ
びβ−AI5 FeSi相に代えて、塊状の^1. (
Fe、Hn)相およびCI −AL+z(Fe、Hn)
* Si相を。
Manganese is effective for controlling the precipitation form of the intermetallic compound. That is, by adding the specified amount of manganese, instead of the acicular Al31"c phase and the β-AI5 FeSi phase, a lumpy ^1.
Fe, Hn) phase and CI-AL+z(Fe, Hn)
*Si phase.

優先的に析出させ、これにより高速熱間tR造加工性を
良好にし、構造部材の強度を向トさせることができる。
By preferentially precipitating it, it is possible to improve the high-speed hot truncation processability and improve the strength of the structural member.

但し、1,5重量%を下回ると前記効果が1Sられす、
5.0重量%を上回ると熱間変形抵抗が増大し、高速熱
間鍛造加工が困靴となる。
However, if it is less than 1.5% by weight, the above effect will be reduced by 1S.
When it exceeds 5.0% by weight, hot deformation resistance increases and high-speed hot forging becomes difficult.

(d)Co:コバルトは鍛造加工性を改善するために鉄
含有量を減少させた場合の高温偏向改善に右効であり、
伸び特性を損することなく、引張強さ、耐力、疲労強度
を向ヒさせることができ、耐応力腐蝕割れ特性と鍛造加
工性を悪化させることなく高温強度を向上させることが
可能である。但し、0.5重量%を下回ると、効果が少
なく、30重ρ%を上回ると、改善効果が添加量の増加
はどに顕著ではなくなり、特にコバルトは高価であるこ
とから、3.0重量%に制限される。
(d) Co: Cobalt has a positive effect on improving high-temperature deflection when reducing iron content to improve forging workability,
It is possible to improve tensile strength, yield strength, and fatigue strength without impairing elongation properties, and it is possible to improve high-temperature strength without deteriorating stress corrosion cracking resistance and forging workability. However, if it is less than 0.5% by weight, the effect will be small, and if it exceeds 30% by weight, the improvement effect will not be as noticeable as the increase in the amount added. Especially since cobalt is expensive, 3.0% by weight limited to %.

(e)Li:リチウムは、鉄添加−による合金の密度の
上昇を抑えるために用いられ、その抑制効果はリチウム
の添加量の増加に応じて向」−する。またリチウムはヤ
ング率を向ヒさせて高い剛性を付与する効果をも有する
。但し、1.0型部%を下回ると、密度の上昇抑制効果
が少なく、5.0゛重看%を上回ると、リチウムが活性
であることから製造工程が複雑となるといった問題があ
る。
(e) Li: Lithium is used to suppress the increase in density of the alloy due to the addition of iron, and its suppressing effect increases as the amount of lithium added increases. Lithium also has the effect of increasing Young's modulus and imparting high rigidity. However, if it is less than 1.0% by weight, the effect of suppressing the increase in density is small, and if it exceeds 5.0% by weight, there is a problem that the manufacturing process becomes complicated because lithium is active.

なお、アルミニウム合金中の銅(Cu)、マグネシウム
(Ha)は、耐応力腐蝕割れ特性を考慮し不可避不純物
程度に抑え、銅(Cu)は0.8重1%未満、マグネシ
ウム(Ha)は05重量%未満とする。
Copper (Cu) and magnesium (Ha) in the aluminum alloy are kept to the level of unavoidable impurities in consideration of stress corrosion cracking resistance, and copper (Cu) is less than 0.8% by weight and magnesium (Ha) is less than 0.5% by weight. Less than % by weight.

耐応力腐蝕割れ特性を特に改善する必要がある構造部材
にあっては銅(Cu)、マグネシウム(h)ともに01
重量%未満に抑える口とが望ましい。
01 for both copper (Cu) and magnesium (h) for structural members that require particularly improved stress corrosion cracking resistance.
It is desirable to suppress the amount to less than % by weight.

また、本発明によるアルミニウム合金の好ントシい組成
は下記の通りである。
Further, a preferred composition of the aluminum alloy according to the present invention is as follows.

■15 ≦Si≦18重ω%、4≦「e≦8重二%、1
.5<Hn≦2.5重量%: この範囲のマンガン(Hn)は、鉄(Fe)の増加に伴
う成形性の悪化を改善し、かつ部材強度を向にさせるこ
とができる。
■15 ≦Si≦18 double ω%, 4≦“e≦8 double %, 1
.. 5<Hn≦2.5% by weight: Manganese (Hn) in this range can improve the deterioration of formability caused by an increase in iron (Fe) and improve the strength of the member.

■ 15≦Si≦18重量%、4≦Fe≦8Φ量%、2
≦[i≦4重口%: この範囲のリチウム([i)は、鉄(Fe)の添加に伴
う合金密度のに昇を抑制することができる。
■ 15≦Si≦18% by weight, 4≦Fe≦8Φ amount%, 2
≦[i≦4% by weight: Lithium ([i) in this range can suppress the increase in alloy density caused by the addition of iron (Fe).

■15≦Si≦18重量%、4≦Fe≦6重量%、1.
5<Hn≦ 2.5重量%、2≦[i≦4明帛%:この
組成範囲の合金は、密向上昇が抑制され、強度、成形性
に優れている。
■15≦Si≦18% by weight, 4≦Fe≦6% by weight, 1.
5<Hn≦2.5% by weight, 2≦[i≦4% by weight: Alloys in this composition range suppress the increase in density, and are excellent in strength and formability.

■ 15≦Si≦18重量%、4≦「e≦6手量%、1
≦CO≦2重ω%: この範囲のコバルト(CO)は、鉄(Fe)添加率を、
成形性に悪影響をおよぼさない範囲に抑えた場合の高温
強度を改善することができる。
■ 15≦Si≦18% by weight, 4≦“e≦6% by weight, 1
≦CO≦double ω%: Cobalt (CO) in this range has an iron (Fe) addition rate of
High-temperature strength can be improved within a range that does not adversely affect moldability.

■15≦Si≦18重9%、4≦Fe≦6重量%1.5
<Hn≦ 2.5重ffi%、−2≦[i≦4重岱%1
≦CO≦2重量%: この組成範囲の合金は、密度上昇が抑υ1されるととも
に強度、特に高温強度が改善され、伸び特性および成形
性に優れている。
■15≦Si≦18 weight 9%, 4≦Fe≦6 weight% 1.5
<Hn≦2.5 fold ffi%, -2≦[i≦4 fold ffi%1
≦CO≦2% by weight: Alloys in this composition range have suppressed increase in density υ1, improved strength, especially high-temperature strength, and are excellent in elongation properties and formability.

隨腋旦 第一段階:表1に示した組成の各合金粉末を用いて、冷
間静水圧プレス成形法(C11,P、法)または金型圧
縮成形法により、密度比75%、直径225mm、長さ
300IRIRの押出し加工用素材を成形する。
First step: using each alloy powder with the composition shown in Table 1, it was formed into a mold with a density ratio of 75% and a diameter of 225 mm by cold isostatic pressing (C11, P, method) or mold compression molding. , an extrusion material having a length of 300IRIR is formed.

冷間静水圧プレス成形法においては、ゴム性チューブ内
に合金粉末を入れ、1,5〜3.Ot/Ci稈度の静水
圧下で成形を行い、金型圧縮成形においては、金型内に
合金粉末を入れて、常温大気中で、1.5〜3.0t/
i程度の圧力下で成形を行う。
In the cold isostatic press molding method, alloy powder is placed in a rubber tube and 1.5 to 3. Molding is carried out under hydrostatic pressure with Ot/Ci culm. In mold compression molding, alloy powder is placed in the mold and 1.5 to 3.0 t/h is molded in the atmosphere at room temperature.
Molding is carried out under a pressure of about i.

第二段階:各押出し加工用素材を、炉内温度350℃の
均熱炉°に設置して10時間保持し・、次いで、各押出
し加工用素材に熱間押出し加工を施して鍛造用素材を製
造するっ この場合の押出し方法は、直接押出しく nrr i)
押出し)、間接押出しく後方押出し)のいずれでもよい
が、押出し比は5以上を必要とする。°押出し比が5以
下では、強度のばらつきが大きくなるので好ましくない
。押出し加工用素材の温度は、300〜400℃に設定
される。300℃を下回ると、素材の変形抵抗が大きく
なり押出し加工性が悪化し、400℃を上回ると、l1
ii!の粗大化が起り、高強度品が得られない。押出し
加工後においては、&i造用素材を、空冷または水冷に
より所定の冷却速度で冷却する。
Second stage: Each extrusion material is placed in a soaking furnace with an internal temperature of 350°C and held for 10 hours.Next, each extrusion material is hot extruded to form a forging material. The extrusion method in this case is direct extrusion nrr i)
Extrusion), indirect extrusion or backward extrusion) may be used, but the extrusion ratio must be 5 or more. If the extrusion ratio is less than 5, the strength will vary widely, which is not preferable. The temperature of the extrusion material is set at 300 to 400°C. Below 300°C, the deformation resistance of the material increases and extrusion processability deteriorates, and above 400°C, l1
ii! coarsening occurs, making it impossible to obtain a high-strength product. After the extrusion process, the &i construction material is cooled at a predetermined cooling rate by air cooling or water cooling.

第三段階:その後、各tR造用素材を460〜470℃
に加熱しで、加工速度75mm/sec  (ジュラル
ミンの鍛造加工とほぼ同一加工速度)のクランクプレス
を用いて、高速熱間鍛l:z加工を施した。
Third stage: After that, each tR building material is heated to 460-470℃
Then, high-speed hot forging l:z processing was performed using a crank press at a processing speed of 75 mm/sec (almost the same processing speed as forging of duralumin).

表   1 斯くしてIIられた各R造成形量につき、鍛造クラック
(割れ)の有無、空冷後の硬度を調べるとともに応力腐
蝕割れ試験を実施し、その結果を表1に示した。
Table 1 For each of the R molding amounts thus determined, the presence or absence of forging cracks and the hardness after air cooling were examined, and a stress corrosion cracking test was conducted, and the results are shown in Table 1.

なお、応力腐蝕割れ試験は、J I S H8711に
より行った。すなわち、各@造成形量から長さa o 
mm、幅10mm、厚さ2Mの板状試験片を切り出し、
負荷応力をσ、、JLx O,9(但し、σ1.2は各
合金a−d、T〜Vの0.2%耐力1直である)として
、液温30℃、濃度3,5%の塩化ナトリウム水溶液中
で28日間放置した後、クラック発生の有無を確認した
Note that the stress corrosion cracking test was conducted according to JIS H8711. In other words, the length a o from each @molding amount
Cut out a plate-shaped test piece with a width of 10 mm and a thickness of 2 m.
Assuming that the applied stress is σ, JLx O,9 (however, σ1.2 is the 0.2% yield strength of each alloy ad, T to V), the liquid temperature is 30°C and the concentration is 3.5%. After being left in an aqueous sodium chloride solution for 28 days, the presence or absence of cracks was checked.

表1から明らかな様に、本発明による合金(T〜V)で
は、鍛造加工性、硬度共に優れ、応力+17!。
As is clear from Table 1, the alloys (T to V) according to the present invention have excellent forging workability and hardness, and have a stress of +17! .

蝕割れが生じ難い。Erosion cracking is less likely to occur.

なお、サンプルd、■を比較すると、マグネシウム(h
>および銅(Cur@が低いためクラックが発生せず、
コバルト(CO)添加量を増すことによって硬度が増大
することが判る。
In addition, when comparing samples d and ■, it is found that magnesium (h
> and copper (no cracks occur due to low Cur@),
It can be seen that hardness increases by increasing the amount of cobalt (CO) added.

また、サンプルb1■の比較によって、マンガン(Hn
)を添加しない場合、鉄量が6重量%を越えると鍛造加
工性が損なわれることが判り、lj−ンプルa、Tの比
較によって、鉄量が多くどし、マンガン(Hn)を添加
することによってWfi ill、加工f1が改善され
ることが判る。
In addition, by comparing sample b1■, manganese (Hn
), it was found that forging workability was impaired if the iron content exceeded 6% by weight, and by comparing lj-mples a and T, it was found that the iron content was increased and manganese (Hn) was added. It can be seen that Wfill and machining f1 are improved.

さらにサンプルVについてみると、鍛造加工性、硬度共
゛に優れており、耐応力腐蝕割れ特例が改善されている
ことが判る。
Furthermore, when looking at Sample V, it can be seen that both forging workability and hardness are excellent, and the special stress corrosion cracking resistance has been improved.

1且立激1 以上の説明から明らかな様に1本発明によるアルミニウ
ム合金では、鉄添加による鍛造加工性の低下をマンガン
添加によって改善し、!lli造加工性を向上させるた
めに鉄添加吊を抑制した場合の高温強度の低下をコバル
トの添加によって補い、かつ銅、マグネシウム含有看を
不可避不純物程度に留めることによって耐応力腐蝕割れ
特性を改善したので、高速熱間鍛造加工を実施すること
ができ、耐熱性、耐久性良好なる高強度構造部材を得る
ことが可能である。
As is clear from the above explanation, in the aluminum alloy according to the present invention, the decrease in forging workability caused by the addition of iron is improved by the addition of manganese, and! The reduction in high-temperature strength caused by suppressing the addition of iron in order to improve processability was compensated by the addition of cobalt, and the stress corrosion cracking resistance was improved by keeping the copper and magnesium content to the level of unavoidable impurities. Therefore, high-speed hot forging can be performed, and a high-strength structural member with good heat resistance and durability can be obtained.

Claims (2)

【特許請求の範囲】[Claims] (1)Si、Feの他に、Mn、Co、Liなる群より
選択される少なくとも一種の元素を、それぞれ 組成範囲(重量%):10≦Si≦30%、4≦Fe≦
33%、1.5≦Mn≦5.0%、0.5≦Co≦3.
0%、1.0≦Li≦5.0%で含み、 残部が、不可避不純物を含むAlより成る耐熱高強度ア
ルミニウム合金。
(1) In addition to Si and Fe, at least one element selected from the group consisting of Mn, Co, and Li is added in the composition range (wt%): 10≦Si≦30%, 4≦Fe≦
33%, 1.5≦Mn≦5.0%, 0.5≦Co≦3.
0%, 1.0≦Li≦5.0%, and the remainder is Al containing inevitable impurities.
(2)前記不可避不純物中のCu量が0.8wt%未満
であり、Mg量が0.5wt%未満であることを特徴と
する特許請求の範囲第1項に記載された耐熱高強度アル
ミニウム合金。
(2) The heat-resistant, high-strength aluminum alloy according to claim 1, wherein the amount of Cu in the inevitable impurities is less than 0.8 wt%, and the amount of Mg is less than 0.5 wt%. .
JP22369684A 1984-10-24 1984-10-24 Heat resistant and high-strength aluminum alloy Granted JPS61104043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22369684A JPS61104043A (en) 1984-10-24 1984-10-24 Heat resistant and high-strength aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22369684A JPS61104043A (en) 1984-10-24 1984-10-24 Heat resistant and high-strength aluminum alloy

Publications (2)

Publication Number Publication Date
JPS61104043A true JPS61104043A (en) 1986-05-22
JPS6326188B2 JPS6326188B2 (en) 1988-05-28

Family

ID=16802215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22369684A Granted JPS61104043A (en) 1984-10-24 1984-10-24 Heat resistant and high-strength aluminum alloy

Country Status (1)

Country Link
JP (1) JPS61104043A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230839A (en) * 1985-07-30 1987-02-09 Sumitomo Light Metal Ind Ltd Heat-and wear-resisting aluminum alloy stock suitable for hot working
JPS6342344A (en) * 1986-08-06 1988-02-23 Honda Motor Co Ltd Al alloy for powder metallurgy excellent in high temperature strength characteristic
JPS6342343A (en) * 1986-08-06 1988-02-23 Honda Motor Co Ltd High-strength aluminum alloy for member for machine structural use
US4926242A (en) * 1984-10-03 1990-05-15 Sumitomo Electric Industries, Ltd. Aluminum-silicon alloy heatsink for semiconductor devices
JP2003105470A (en) * 2001-09-27 2003-04-09 Toyo Aluminium Kk Al-Si BASED POWDER ALLOY MATERIAL, AND PRODUCTION METHOD THEREFOR
CN111826556A (en) * 2020-07-15 2020-10-27 宣城建永精密金属有限公司 High-voltage electrical system conductor and casting process thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6682033B1 (en) 2019-11-05 2020-04-15 日本たばこ産業株式会社 Power supply unit for aerosol inhalers
JP6868077B1 (en) 2019-11-05 2021-05-12 日本たばこ産業株式会社 Power supply unit for aerosol aspirators, aerosol aspirators, and charging units for aerosol aspirators
JP6957577B2 (en) 2019-11-05 2021-11-02 日本たばこ産業株式会社 Power supply unit for aerosol aspirator
JP6706712B1 (en) 2019-11-05 2020-06-10 日本たばこ産業株式会社 Power supply unit for aerosol inhalers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913041A (en) * 1982-07-12 1984-01-23 Showa Denko Kk Aluminum alloy powder having high resistance to heat and abrasion and high strength and molding of said alloy powder and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913041A (en) * 1982-07-12 1984-01-23 Showa Denko Kk Aluminum alloy powder having high resistance to heat and abrasion and high strength and molding of said alloy powder and its production

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4926242A (en) * 1984-10-03 1990-05-15 Sumitomo Electric Industries, Ltd. Aluminum-silicon alloy heatsink for semiconductor devices
JPS6230839A (en) * 1985-07-30 1987-02-09 Sumitomo Light Metal Ind Ltd Heat-and wear-resisting aluminum alloy stock suitable for hot working
JPS6342344A (en) * 1986-08-06 1988-02-23 Honda Motor Co Ltd Al alloy for powder metallurgy excellent in high temperature strength characteristic
JPS6342343A (en) * 1986-08-06 1988-02-23 Honda Motor Co Ltd High-strength aluminum alloy for member for machine structural use
JPH0558049B2 (en) * 1986-08-06 1993-08-25 Honda Motor Co Ltd
JP2003105470A (en) * 2001-09-27 2003-04-09 Toyo Aluminium Kk Al-Si BASED POWDER ALLOY MATERIAL, AND PRODUCTION METHOD THEREFOR
CN111826556A (en) * 2020-07-15 2020-10-27 宣城建永精密金属有限公司 High-voltage electrical system conductor and casting process thereof

Also Published As

Publication number Publication date
JPS6326188B2 (en) 1988-05-28

Similar Documents

Publication Publication Date Title
US4867806A (en) Heat-resisting high-strength Al-alloy and method for manufacturing a structural member made of the same alloy
US8168013B2 (en) Al-Mg-Si aluminum alloy extruded product exhibiting excellent fatigue strength and impact fracture resistance
US7892482B2 (en) Material on the basis of an aluminum alloy, method for its production, as well as use therefor
JP2697400B2 (en) Aluminum alloy for forging
JPH0660371B2 (en) Low temperature aging of lithium-containing aluminum alloys
EP0657558A1 (en) Fe-base superalloy
JPS61104043A (en) Heat resistant and high-strength aluminum alloy
JP4201434B2 (en) Method for producing high-strength aluminum alloy extruded material with excellent corrosion resistance
KR101277456B1 (en) Aluminium-based alloy and moulded part consisting of said alloy
JP2007169699A (en) High strength and high toughness aluminum alloy forging material having excellent corrosion resistance, its production method and suspension component
JPH07197165A (en) High wear resistant free cutting aluminum alloy and its production
JP5476452B2 (en) High strength, high toughness aluminum alloy forging material with excellent corrosion resistance, its manufacturing method, and suspension parts
JP4351609B2 (en) Aluminum alloy, heat-resistant and high-strength aluminum alloy part, and manufacturing method thereof
JP3114576B2 (en) Torque rod and method of manufacturing the same
JPH0734169A (en) Wear resistant aluminum alloy excellent in strength
JPH0860313A (en) Production of aluminum alloy tube excellent in strength and form rollability
JP3504917B2 (en) Aluminum-beryllium-silicon alloy for automotive engine moving parts and casing members
JPH108174A (en) Torque rod made of aluminum and its production
JPH1017975A (en) Aluminum alloy for casting
JPH06212336A (en) Al alloy extruded material excellent in strength and bendability
JP7126915B2 (en) Aluminum alloy extruded material and its manufacturing method
JPS61243138A (en) Production of structural member made of heat-resistant high-strength al sintered alloy
JPS6233302B2 (en)
JPH03170636A (en) Aluminum alloy for cold forging
JPH0913137A (en) Torque rod and its production