JPH0913137A - Torque rod and its production - Google Patents

Torque rod and its production

Info

Publication number
JPH0913137A
JPH0913137A JP18478295A JP18478295A JPH0913137A JP H0913137 A JPH0913137 A JP H0913137A JP 18478295 A JP18478295 A JP 18478295A JP 18478295 A JP18478295 A JP 18478295A JP H0913137 A JPH0913137 A JP H0913137A
Authority
JP
Japan
Prior art keywords
alloy
connecting rod
torque rod
weight
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18478295A
Other languages
Japanese (ja)
Inventor
Masayuki Kobayashi
正幸 小林
Hajime Kamio
一 神尾
Tatsu Yamada
達 山田
Kenji Tsuchiya
健二 土屋
Harumichi Hino
治道 樋野
Motoji Hotta
元司 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP18478295A priority Critical patent/JPH0913137A/en
Publication of JPH0913137A publication Critical patent/JPH0913137A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/10Constructional features of arms
    • B60G2206/11Constructional features of arms the arm being a radius or track or torque or steering rod or stabiliser end link

Landscapes

  • Vehicle Body Suspensions (AREA)
  • Forging (AREA)

Abstract

PURPOSE: To lighten a torque rod by welding or pressure-welding ends and the connected part made of aluminum. CONSTITUTION: This torque rod is the one in which ends 1 and 2 made of an Al alloy are welded or pressure-welded to both end parts of a connecting rod 3 produced from an extruded pipe made of an Al alloy, and an aluminum alloy having a compsn. contg. 1.0 to 1.5% Si, 0.4 to 0.9% Cu, 0.2 to 0.6% Mn, 0.8 to 1.5% Mg and 0.3 to 0.9% Cr, and in which the content of Fe is regulated to <=0.25%, and also, the total content of Mn+Cu is regulated to <=1.2% is used. This aluminum alloy may furthermore contain one or >=two kinds among 0.005 to 0.05% Ti, 0.0001 to 0.01% B and 0.1 to 0.2%. Zr. The ends are prepd. by forging the cast material or extruded material of the Al alloy and next executing heat treatment by heating at 510 to 555 deg.C, thereafter executing water cooling and holding at 155 to 190 deg.C for 5 to 20hr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、トラックのサスペンシ
ョンに装備されるトルクロッド等として使用され、両端
にリング状のエンド部材が設けられたトルクロッド及び
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a torque rod used as a torque rod or the like mounted on a truck suspension and provided with ring-shaped end members at both ends and a method of manufacturing the same.

【0002】[0002]

【従来の技術】トラック等の後部サスペンションの構成
部品の一つであるトルクロッドは、棒状又はパイプ状の
両端部にリング状のエンドが設けられた構造を持ってい
る。トルクロッドとしては、鍛造によって一体に作られ
た鉄系材料が従来から使用されてきた。しかし、近年の
過積載規制の問題からトラック及びトラック部品の軽量
化が求められており、トルクロッドもその例外ではな
い。そこで、図1及び図2に示すように、トルクロッド
を二つのエンド1,2及び連結棒3に三分割した軽量化
構造が検討されている。この構造では、軽量かを図るた
めに連結棒3を鉄製の薄肉パイプで作製し、この連結棒
3にエンド1,2を溶接又は圧接している。
2. Description of the Related Art A torque rod, which is one of the components of a rear suspension such as a truck, has a structure in which rod-shaped or pipe-shaped ends are provided with ring-shaped ends. As the torque rod, an iron-based material integrally formed by forging has been conventionally used. However, due to the recent problem of overloading regulations, it is required to reduce the weight of trucks and truck parts, and torque rods are no exception. Therefore, as shown in FIGS. 1 and 2, a light weight structure in which the torque rod is divided into two ends 1 and 2 and a connecting rod 3 has been studied. In this structure, the connecting rod 3 is made of a thin pipe made of iron in order to reduce the weight, and the ends 1 and 2 are welded or pressure-welded to the connecting rod 3.

【0003】[0003]

【発明が解決しようとする課題】図1,2に示したトル
クロッドは、連結棒3に薄肉の鉄製パイプを使用してい
るので、従来の鋳鍛造でできた中実のトルクロッドに比
較すると軽くなっている。しかし、素材として鉄を使用
していることから、軽量化には限界がある。更なる軽量
化を図るためには、鉄に匹敵する強度をもち、しかも鉄
よりも軽い素材を使用する必要がある。また、サスペン
ションは車体に対して車軸を保持する機能を受け持つ部
品であることから、その構成部品の一つであるトルクロ
ッドとしても、ただ単に軽い材料だけでは要求特性が満
足されない。すなわち、所定の寸法及び形状をもつ製品
として、強度,伸び,耐応力腐食割れ性等の要求特性を
満足する必要がある。具体的には、現在使用されている
鉄製トルクロッドとしては、エンド1,2の中心間距離
が522mmのもので、32,000kgf以上の引張
り強さ及び圧縮強度、±6,000kgfの繰返し負荷
に2×106 回以上耐える引張り・圧縮疲労強度及び1
0%以上の伸びをもつことが要求される。本発明は、こ
のような要求特性を満足するAl材料を使用してトルク
ロッドを作製することにより、トルクロッドを軽量化す
ることを目的とする。
The torque rod shown in FIGS. 1 and 2 uses a thin-walled iron pipe for the connecting rod 3, so that it can be compared with a conventional solid torque rod made by casting and forging. It is getting lighter. However, since iron is used as a material, there is a limit to weight reduction. In order to achieve further weight reduction, it is necessary to use a material having strength comparable to iron and lighter than iron. In addition, since the suspension is a part having a function of holding the axle with respect to the vehicle body, the required characteristics of the torque rod, which is one of the components thereof, cannot be satisfied only with a light material. That is, it is necessary for a product having a predetermined size and shape to satisfy required characteristics such as strength, elongation, and stress corrosion cracking resistance. Specifically, the iron torque rod currently used has a center-to-center distance between the ends 1 and 2 of 522 mm, and has a tensile strength and a compressive strength of 32,000 kgf or more, and a repetitive load of ± 6,000 kgf. Tensile and compressive fatigue strength to withstand 2 × 10 6 times or more and 1
It is required to have an elongation of 0% or more. An object of the present invention is to reduce the weight of a torque rod by producing a torque rod using an Al material satisfying such required characteristics.

【0004】[0004]

【課題を解決するための手段】本発明のトルクロッド
は、その目的を達成するため、Al合金の押出しパイプ
から作製された連結棒の両端部にAl合金製のエンドが
溶接又は圧接されたトルクロッドであり、前記Al合金
がSi:1.0〜1.5重量%,Cu:0.4〜0.9
重量%,Mn:0.2〜0.6重量%,Mg:0.8〜
1.5重量%,Cr:0.3〜0.9重量%を含み、F
e含有量を0.25重量%以下に規制すると共に、Mn
+Crの合計含有量が1.2重量%以下に規制された組
成をもつことを特徴とする。エンド及び連結棒に使用さ
れるAl合金としては、更にTi:0.005〜0.0
5重量%,B:0.0001〜0.01重量%及びZ
r:0.1〜0.2重量%の1種又は2種以上を含むこ
とができる。このトルクロッドは、前述した組成をもつ
Al合金の鋳造材又は押出し材を鍛造し、次いで510
〜555℃に加熱後、水冷して155〜190℃に5〜
20時間保持する熱処理を施し、該熱処理後のAl合金
から作製したエンドに、同じ組成をもち同じ熱処理が施
された押出しパイプ製の連結棒を溶接又は圧接すること
により製造される。
In order to achieve the object, the torque rod of the present invention is a torque in which an Al alloy end is welded or pressure welded to both ends of a connecting rod made of an Al alloy extruded pipe. Rod, the Al alloy is Si: 1.0 to 1.5 wt%, Cu: 0.4 to 0.9
% By weight, Mn: 0.2-0.6% by weight, Mg: 0.8-
1.5 wt%, Cr: 0.3 to 0.9 wt% inclusive, F
e content is regulated to 0.25% by weight or less, and Mn
The composition is characterized in that the total content of + Cr is regulated to 1.2% by weight or less. As an Al alloy used for the end and the connecting rod, Ti: 0.005 to 0.0
5% by weight, B: 0.0001 to 0.01% by weight and Z
r: 0.1 to 0.2% by weight of one kind or two or more kinds may be contained. This torque rod is obtained by forging a cast material or an extruded material of an Al alloy having the above-mentioned composition, and then 510
After heating to ~ 555 ℃, water-cooling to 155 ~ 190 ℃
It is manufactured by performing a heat treatment of holding for 20 hours, and welding or pressure-welding an extruded pipe connecting rod having the same composition and subjected to the same heat treatment to the end made from the Al alloy after the heat treatment.

【0005】[0005]

【作用】本発明では、Al−Mg−Si系のAl合金を
エンド及び連結棒の材料として使用する。このAl合金
は、微細なMg2 Siの析出によって必要な強度が確保
される。この系統のAl合金にCu,Cr,Mn等を添
加すると、マトリックスの固溶,晶出及び組織制御によ
って強度が向上する。そこで、トルクロッドとしての用
途に応じてより高いAl合金にするためには、先ずSi
及びMgを増量してMg2 Siの析出量を増加させるこ
とが考えられる。しかし、単純にSi及びMgの含有量
を増加させるだけでは、伸び,靭性等が低下するばかり
でなく、目標とする強度も得られない。本発明者等は、
Mg2 Si系析出物が機械的性質に与える影響や、熱処
理が鍛造材・押出し材のマクロ組織の結晶成長に与える
影響を種々の観点から調査した。その結果、Mg2 Si
系析出物の作用を有効に活用し、且つマクロ組織の結晶
成長を抑制するためには、合金成分,その含有量及び熱
処理条件を相互の関連を考慮しながら定める必要がある
との結論に至った。
In the present invention, an Al-Mg-Si based Al alloy is used as the material of the end and the connecting rod. This Al alloy secures the required strength by the fine precipitation of Mg 2 Si. When Cu, Cr, Mn, etc. are added to this type of Al alloy, the strength is improved by solid solution of the matrix, crystallization and structure control. Therefore, in order to obtain a higher Al alloy depending on the application as the torque rod, first, Si
It is conceivable to increase the amount of Mg and Mg to increase the amount of precipitation of Mg 2 Si. However, simply increasing the contents of Si and Mg not only lowers elongation, toughness, etc., but also fails to achieve the desired strength. The present inventors
The effects of the Mg 2 Si-based precipitates on the mechanical properties and the effects of heat treatment on the crystal growth of the macrostructure of the forged and extruded materials were investigated from various viewpoints. As a result, Mg 2 Si
In order to effectively utilize the action of the system precipitates and suppress the crystal growth of the macrostructure, it is concluded that the alloy components, their contents, and the heat treatment conditions must be determined in consideration of their mutual relationships. It was

【0006】必要とするMg2 Si系析出物の作用及び
マクロ組織の微細化を図るためには、本発明者等の実験
から、Si及びMg含有量をそれぞれ1.0〜1.5重
量%及び0.8〜1.5重量%に規定する必要があるこ
とを見い出した。しかし、Si及びMgの含有量がこの
範囲にあっても、熱間押出し後のAl合金にT6 処理を
施したり、熱間又は冷間鍛造したAl合金をT6 処理す
るとき、急激な結晶粒の成長によってマクロ組織が粗大
化し、強度,伸び等の機械的性質が低下する現象がみら
れる。熱処理によって加工組織の再結晶粒が粗大化する
ことは、Cr及びMnの複合添加と熱処理条件の適正化
によって抑制される。その結果、得られたAl合金は、
微細な結晶粒をもつ組織となり、強度及び伸びが顕著に
改善される。Cr及びMnの複合添加による性質改善
は、熱間又は冷間での加工を行った後で溶体化処理した
際に再結晶の粗大成長を抑制する作用に起因するものと
推察される。Cr及びMnの複合添加に加え、更にZr
を併用添加すると、伸びが一層向上すると共に結晶組織
がより微細になる。これは、Mn及びCrが再結晶粒の
粗大化を抑制する作用を呈するのに対し、Mn及びCr
の結晶粒成長抑制効果を超えるような高加工領域におい
て再結晶する場合に、Zrが再結晶粒の微細化を促進さ
せることに起因する。
In order to achieve the required action of the Mg 2 Si based precipitates and the refinement of the macrostructure, the experiments by the present inventors show that the Si and Mg contents are 1.0 to 1.5% by weight, respectively. And 0.8 to 1.5% by weight have to be specified. However, even if the contents of Si and Mg are in this range, when the Al alloy after hot extrusion is subjected to T 6 treatment or the hot or cold forged Al alloy is subjected to T 6 treatment, abrupt crystal formation occurs. There is a phenomenon in which the macrostructure becomes coarse due to the growth of grains, and mechanical properties such as strength and elongation deteriorate. The coarsening of the recrystallized grains of the processed structure due to the heat treatment is suppressed by adding Cr and Mn in combination and optimizing the heat treatment conditions. As a result, the obtained Al alloy is
The structure has fine crystal grains, and the strength and elongation are remarkably improved. It is presumed that the property improvement due to the combined addition of Cr and Mn is due to the effect of suppressing the coarse growth of recrystallization when the solution treatment is performed after hot or cold working. In addition to the combined addition of Cr and Mn, Zr
When added together, the elongation is further improved and the crystal structure becomes finer. This is because Mn and Cr have the effect of suppressing the coarsening of the recrystallized grains, whereas Mn and Cr
This is because Zr promotes the refinement of the recrystallized grains when recrystallized in a high working region that exceeds the effect of suppressing the crystal grain growth.

【0007】以下、本発明で使用されるAl合金の合金
成分,含有量等について説明する。 Si:1.0〜1.5重量% 析出効果によりAl合金の強度を向上させる合金元素で
ある。本発明の合金系ではMgと併用添加しているの
で、Mg2 Si系化合物が析出し、強度が向上する。こ
のようなSi添加の作用は、1.0重量%以上の添加で
顕著になる。しかし、1.5重量%を超える過剰のSi
添加は、Al合金の液相線温度を上昇させ、溶製や鋳造
等を困難にする。また、Si含有量が過剰になると、押
出し性,鍛造加工性等が劣化する。 Cu:0.4〜0.9重量% マトリックスを固溶強化し、強度向上に有効なMg2
iの析出を促進させる有効な合金元素である。Cuの作
用は、0.4重量%以上の添加で顕著になる。しかし、
0.9重量%を超える多量のCu含有は、焼入れ感受
性,耐食性等を劣化させる。
The alloy components and contents of the Al alloy used in the present invention will be described below. Si: 1.0 to 1.5 wt% It is an alloying element that improves the strength of the Al alloy by the precipitation effect. In the alloy system of the present invention, since it is added in combination with Mg, the Mg 2 Si-based compound precipitates and the strength is improved. The effect of such Si addition becomes significant when 1.0 wt% or more is added. However, excess Si over 1.5% by weight
The addition raises the liquidus temperature of the Al alloy and makes melting and casting difficult. Further, if the Si content is excessive, extrudability, forgeability and the like deteriorate. Cu: 0.4 to 0.9% by weight Mg 2 S effective for strengthening the matrix by solid solution strengthening and improving the strength
It is an effective alloying element that promotes the precipitation of i. The effect of Cu becomes significant when added at 0.4% by weight or more. But,
A large amount of Cu exceeding 0.9% by weight deteriorates quenching sensitivity, corrosion resistance and the like.

【0008】Mn:0.2〜0.6重量% 結晶粒の成長を抑制し、熱処理後の組織を微細に維持す
る上で有効な合金元素であり、0.2重量%以上の添加
でMnの作用が顕著になる。しかし、0.6重量%を超
える多量のMnを含有させると、鍛造時の加工性が悪化
する。 Mg:0.8〜1.5重量% Siと反応してMg2 Si系化合物となってマトリック
スに析出し、Al合金の強度を向上させる。この析出効
果を得るためには、0.8重量%以上のMg含有量が必
要とされる。しかし、1.5重量%を超える多量のMg
を含有させると、析出効果が飽和するばかりでなく、焼
入れ感受性が低下する。 Cr:0.3〜0.9重量%でMn+Cr≦1.2重量
%以下 Mnと共同して結晶粒の粗大化を抑制する作用を呈する
合金元素である。Crの添加効果は、0.3重量%以上
の含有量で顕著になる。しかし、0.9重量%を超える
多量添加は、加工性を悪化させる。また、Cr含有量
は、Mn含有量との合計で1.2重量%以下に規制する
必要がある。Cr+Mnの合計含有量を1.2重量%に
維持しておくとき、他に悪影響を与えることなく、前述
したCr及びMnの複合添加による効果が得られる。こ
れに対して、Cr+Mn含有量が1.2重量%を超える
と、巨大なAl−Mn−Cr系の化合物が晶出し易くな
り、Al合金の伸びが著しく低下する。
Mn: 0.2 to 0.6% by weight An alloying element effective in suppressing the growth of crystal grains and maintaining a fine structure after heat treatment. The effect of becomes remarkable. However, if a large amount of Mn exceeding 0.6% by weight is contained, the workability during forging deteriorates. Mg: 0.8-1.5 wt% Reacts with Si to form a Mg 2 Si-based compound that precipitates in the matrix and improves the strength of the Al alloy. In order to obtain this precipitation effect, a Mg content of 0.8% by weight or more is required. However, a large amount of Mg exceeding 1.5% by weight
In addition to saturation of precipitation effect, quenching sensitivity decreases. Cr: 0.3 to 0.9% by weight and Mn + Cr ≦ 1.2% by weight or less It is an alloying element that acts in cooperation with Mn to suppress the coarsening of crystal grains. The effect of adding Cr becomes remarkable at a content of 0.3% by weight or more. However, addition of a large amount exceeding 0.9% by weight deteriorates processability. Further, the Cr content needs to be regulated to 1.2% by weight or less in total with the Mn content. When the total content of Cr + Mn is maintained at 1.2% by weight, the above-described effect of the combined addition of Cr and Mn can be obtained without adversely affecting other components. On the other hand, if the Cr + Mn content exceeds 1.2% by weight, a huge Al-Mn-Cr-based compound is likely to crystallize, and the elongation of the Al alloy is significantly reduced.

【0009】Fe:0.25重量%以下 不純物としてAl合金に混入するFeは、伸び,耐食性
等に悪影響を及ぼすAl−Fe−Si系化合物となって
マトリックスに分散される。この点、Fe含有量は、少
なければ少ないほど好ましいが、過度にFe含有量を低
減することは合金の溶製を困難にする。そこで、本発明
にあっては、Fe含有量の上限を実質的な悪影響がみら
れない0.25重量%に設定した。 Ti:0.005〜0.05重量% 必要に応じて添加される合金元素であり、組織を安定さ
せると共に、溶接部又は圧接部の機械的性質を向上させ
る作用を呈する。このような作用は、0.005重量%
以上のTi添加で顕著になる。しかし、0.05重量%
を超える多量のTiを添加すると、Al合金の靭性が劣
化する。
Fe: 0.25% by weight or less Fe mixed in the Al alloy as an impurity is dispersed in the matrix as an Al-Fe-Si type compound that adversely affects elongation, corrosion resistance and the like. In this respect, the Fe content is preferably as small as possible, but excessively reducing the Fe content makes it difficult to melt the alloy. Therefore, in the present invention, the upper limit of the Fe content is set to 0.25% by weight where no substantial adverse effect is observed. Ti: 0.005 to 0.05% by weight An alloying element that is added as necessary, and has the effect of stabilizing the structure and improving the mechanical properties of the welded portion or the pressed portion. Such an effect is 0.005% by weight.
It becomes remarkable with the above Ti addition. However, 0.05% by weight
If a large amount of Ti exceeding the range is added, the toughness of the Al alloy deteriorates.

【0010】B:0.0001〜0.01重量% Tiと同様に組織の安定化に有効な合金元素であり、
0.0001重量%以上のB添加でその効果が顕著にな
る。しかし、0.01重量%を超える多量のBを添加す
ると、Al合金の靭性が劣化する。 Zr:0.1〜0.2重量% 必要に応じて添加される合金元素であり、Mn及びCr
と共同して結晶粒の粗大化を抑制する作用を呈する。Z
rは、特に押出し工程を経た鍛造品に押出しによって形
成された繊維組織を残存させることにより、引っ張り強
度を向上させることにも作用する。このような添加作用
は、0.1重量%以上のZr添加で顕著になる。しか
し、多量のZr含有は加工性に悪影響を与えるので、Z
rを添加する場合には0.2重量%を上限とする。
B: 0.0001 to 0.01 wt% Like Ti, it is an alloying element effective for stabilizing the structure,
The effect becomes remarkable when 0.0001% by weight or more of B is added. However, if a large amount of B exceeding 0.01% by weight is added, the toughness of the Al alloy deteriorates. Zr: 0.1-0.2% by weight Alloying element added as necessary, such as Mn and Cr
In cooperation with the above, an effect of suppressing the coarsening of crystal grains is exhibited. Z
The r also acts to improve the tensile strength by allowing the fiber structure formed by extrusion to remain in the forged product that has undergone the extrusion process. Such an addition effect becomes significant when Zr is added in an amount of 0.1% by weight or more. However, if a large amount of Zr is contained, the workability is adversely affected.
When adding r, the upper limit is 0.2% by weight.

【0011】溶体化処理及び焼入れの条件:前述した組
成をもつAl合金の強度を向上させるためには、先ず強
度改善元素を完全に固溶させる必要がある。そのために
は、少なくとも510℃以上の温度にAl合金を加熱す
ることが必要となる。しかし、555℃を超える温度で
は、部分的な溶解が生じ、欠陥が発生する。溶体化処理
後のAl合金は、粗大なMgSi系析出物が生じないよ
うに水焼入れすることが要求される。仮に溶体化後のA
l合金を徐冷すると、析出したMg2 Si系析出物が粗
大に成長し、目標とする強度が得られない。 時効処理条件:水焼入れされたAl合金は、合金元素が
過飽和で固溶した状態にある。このAl合金を155〜
190℃に5〜20時間保持すると、組織全体に微細な
Mg2 Si系化合物が析出し、目標とする強度が得られ
る。しかし、温度条件又は保持時間が155〜190℃
又は5〜20時間から外れると、析出したMg2 Siが
大きく成長し、或いは十分なMg2 Siが析出せず、目
標とする強度が得られない。このようにして成分・組成
が調整され、熱処理されたAl合金は、38kgf/c
2 以上の引張り強さ及び13%以上の伸びを示し、ト
ルクロッドの連結棒やエンドとしての要求特性を十分に
満足する。
Conditions for solution treatment and quenching: In order to improve the strength of the Al alloy having the above-mentioned composition, it is first necessary to completely dissolve the strength improving element into a solid solution. For that purpose, it is necessary to heat the Al alloy to a temperature of at least 510 ° C. or higher. However, at a temperature above 555 ° C, partial melting occurs and defects occur. After the solution treatment, the Al alloy is required to be water-quenched so that coarse MgSi-based precipitates are not generated. If A after solution treatment
When the 1-alloy is gradually cooled, the precipitated Mg 2 Si-based precipitate grows coarsely and the target strength cannot be obtained. Aging treatment conditions: The water-quenched Al alloy is in a state where the alloying elements are supersaturated and solid-solved. This Al alloy is 155-
When the temperature is maintained at 190 ° C. for 5 to 20 hours, fine Mg 2 Si-based compound is precipitated in the entire structure and the target strength is obtained. However, the temperature condition or the holding time is 155 to 190 ° C.
Otherwise, if it is out of the range of 5 to 20 hours, the deposited Mg 2 Si grows large, or sufficient Mg 2 Si does not precipitate, and the target strength cannot be obtained. The heat-treated Al alloy, whose components and compositions have been adjusted in this way, is 38 kgf / c
It exhibits a tensile strength of m 2 or more and an elongation of 13% or more, and sufficiently satisfies the required characteristics as a connecting rod or end of a torque rod.

【0012】[0012]

【実施例】表1に示した組成をもつ各種Al合金を熱処
理し、図3(a)及び(b)に示すように外径φ1 =1
30mm,内径φ2 =105mm及び幅W=51mmの
エンド1,2を作製した。エンド1,2の環状部4の一
側に、曲率半径50mmで立ち上がった先端径60mm
の接合用突出部5を形成した。他方、連結棒3として
は、熱処理した同様なAl合金押出し材から作製された
外径60mmのパイプを使用した。接合用突出部5の端
面に連結棒3を押し当て、MIG溶接又は摩擦圧接によ
って接合部6を形成し、エンド1,2を連結棒3に一体
化した。なお、連結棒3としては、MIG溶接による場
合は内径35mm、摩擦圧接による場合は内径40mm
のパイプを使用した。MIG溶接条件は、溶接棒A53
56を使用し、電圧28V,電流280A,溶接速度1
m/分に設定した。摩擦圧接には、加熱圧力500kg
f/cm2 ,加熱時間5秒,アプセット圧力1000k
gf/cm2及びアプセット量10mmを採用した。
EXAMPLES Various Al alloys having the compositions shown in Table 1 were heat treated to give an outer diameter φ 1 = 1 as shown in FIGS. 3 (a) and 3 (b).
Ends 1 and 2 having a diameter of 30 mm, an inner diameter φ 2 of 105 mm and a width W of 51 mm were produced. One end of the annular part 4 of the ends 1 and 2 with a radius of curvature of 50 mm and a tip diameter of 60 mm
The joining protrusion 5 was formed. On the other hand, as the connecting rod 3, a pipe having an outer diameter of 60 mm made of the same heat-treated Al alloy extruded material was used. The connecting rod 3 was pressed against the end face of the joining projection 5, and the joining portion 6 was formed by MIG welding or friction welding, and the ends 1 and 2 were integrated with the joining rod 3. The connecting rod 3 has an inner diameter of 35 mm in the case of MIG welding, and an inner diameter of 40 mm in the case of friction welding.
I used a pipe. MIG welding conditions are welding rod A53
56, voltage 28V, current 280A, welding speed 1
It was set to m / min. Heating pressure of 500 kg for friction welding
f / cm 2 , heating time 5 seconds, upset pressure 1000k
A gf / cm 2 and upset amount of 10 mm were adopted.

【0013】[0013]

【表1】 [Table 1]

【0014】実施例1:合金番号1の鋳造棒を熱間鍛造
してエンドを作製した後、510℃に加熱し、水冷し、
150℃に20時間保持する熱処理を施した。連結棒
も、同様な工程によって製造した。これらエンド及び連
結棒をMIG溶接して得られたトルクロッドは、引張り
強さ41,000kgf,圧縮強度35,000kg
f,エンド部の伸び14.5%,連結棒部の伸び15.
5%,接合部の伸び13.0%で、±6,000kgf
の繰返し負荷を2×06 回与えた後でも疲労により破損
することがなかった。また、接合されたトルクロッドか
ら試験片を切り出し、JIS H8711に準拠した応
力腐食割れ試験に供した。すなわち、耐力の75%を加
えた状態で3.5%NaCl溶液に浸漬し、10分浸漬
→50分乾燥の繰返しを30日間継続させた。そして、
試験後のトルクロッドを観察したところ、エンド部,連
結棒部,接合部共に応力腐食割れが検出されなかった。
他方、摩擦圧接によって連結棒にエンドを接合したトル
クロッドは、引張り強さ40,000kgf,圧縮強度
34,000kgf,エンド部の伸び14.5%,連結
棒部の伸び15.5%,接合部の伸び11.0%で、±
6,000kgfの繰返し負荷を2×06 回与えた後で
も疲労により破損することがなかった。また、同様な応
力腐食割れ試験の結果では、エンド部,連結棒部,接合
部共に応力腐食割れが検出されなかった。
Example 1 A casting rod of Alloy No. 1 was hot forged to prepare an end, which was then heated to 510 ° C. and cooled with water.
A heat treatment of holding at 150 ° C. for 20 hours was performed. The connecting rod was also manufactured by the same process. The torque rod obtained by MIG welding these ends and connecting rods has a tensile strength of 41,000 kgf and a compressive strength of 35,000 kg.
f, end portion elongation 14.5%, connecting rod portion elongation 15.
± 6,000 kgf at 5% and joint elongation 13.0%
It had never be damaged by the fatigue of repeated load, even after giving 2 × 0 6 times. Further, a test piece was cut out from the joined torque rod and subjected to a stress corrosion cracking test in accordance with JIS H8711. That is, with 75% of the proof stress added, it was dipped in a 3.5% NaCl solution, and soaked for 10 minutes and dried for 50 minutes was repeated for 30 days. And
When the torque rod after the test was observed, no stress corrosion cracking was detected in the end portion, the connecting rod portion, and the joint portion.
On the other hand, the torque rod in which the end is joined to the connecting rod by friction welding has a tensile strength of 40,000 kgf, a compressive strength of 34,000 kgf, an end portion elongation of 14.5%, a connecting rod portion elongation of 15.5%, and a joint portion. Elongation of 11.0%, ±
The repeated load of 6,000kgf even after giving 2 × 0 6 times had never damaged by fatigue. Further, in the results of the similar stress corrosion cracking test, no stress corrosion cracking was detected in any of the end portion, the connecting rod portion, and the joint portion.

【0015】実施例2:合金番号1の押出し棒を熱間鍛
造してエンドを作製した後、555℃に加熱し、水冷
し、190℃に5時間保持する熱処理を施した。連結棒
は、実施例1と同様な工程によって製造した。これらエ
ンド及び連結棒をMIG溶接して得られたトルクロッド
は、引張り強さ39,000kgf,圧縮強度34,5
00kgf,エンド部の伸び18.0%,連結棒部の伸
び15.5%,接合部の伸び13.0%で、±6,00
0kgfの繰返し負荷を2×06 回与えた後でも疲労に
より破損することがなかった。また、実施例1と同じ応
力腐食割れ試験に供したところ、エンド部,連結棒部,
接合部共に応力腐食割れが検出されなかった。他方、摩
擦圧接によって連結棒にエンドを接合したトルクロッド
は、引張り強さ38,000kgf,圧縮強度34,0
00kgf,エンド部の伸び18.0%,連結棒部の伸
び15.5%,接合部の伸び11.0%で、±6,00
0kgfの繰返し負荷を2×06 回与えた後でも疲労に
より破損することがなかった。また、同様な応力腐食割
れ試験の結果では、エンド部,連結棒部,接合部共に応
力腐食割れが検出されなかった。
Example 2 An extruded rod of Alloy No. 1 was hot forged to form an end, which was then heated to 555 ° C., cooled with water, and heat-treated at 190 ° C. for 5 hours. The connecting rod was manufactured by the same process as in Example 1. The torque rod obtained by MIG welding these ends and the connecting rod has a tensile strength of 39,000 kgf and a compressive strength of 34.5.
+/- 600 at 00 kgf, end part elongation 18.0%, connecting rod part elongation 15.5%, and joint part elongation 13.0%.
The repeated load of 0kgf even after giving 2 × 0 6 times had never damaged by fatigue. When the same stress corrosion cracking test as in Example 1 was performed, the end portion, the connecting rod portion,
No stress corrosion cracking was detected at the joints. On the other hand, the torque rod whose end is joined to the connecting rod by friction welding has a tensile strength of 38,000 kgf and a compressive strength of 34.0.
00 kgf, end part elongation 18.0%, connecting rod part elongation 15.5%, joint part elongation 11.0%, ± 6.00
The repeated load of 0kgf even after giving 2 × 0 6 times had never damaged by fatigue. Further, in the results of the similar stress corrosion cracking test, no stress corrosion cracking was detected in any of the end portion, the connecting rod portion, and the joint portion.

【0016】実施例3:合金番号2の押出し棒を熱間鍛
造してエンドを作製した後、530℃に加熱し、水冷
し、175℃に8時間保持する熱処理を施した。連結棒
も、同様な工程によって製造した。これらエンド及び連
結棒をMIG溶接して得られたトルクロッドは、引張り
強さ41,000kgf,圧縮強度35,000kg
f,エンド部の伸び16.3%,連結棒部の伸び17.
2%,接合部の伸び13.0%で、±6,000kgf
の繰返し負荷を2×06 回与えた後でも疲労により破損
することがなかった。また、実施例1と同じ応力腐食割
れ試験に供したところ、エンド部,連結棒部,接合部共
に応力腐食割れが検出されなかった。他方、摩擦圧接に
よって連結棒にエンドを接合したトルクロッドは、引張
り強さ40,000kgf,圧縮強度34,000kg
f,エンド部の伸び16.2%,連結棒部の伸び17.
3%,接合部の伸び11.1%で、±6,000kgf
の繰返し負荷を2×06 回与えた後でも疲労により破損
することがなかった。また、同様な応力腐食割れ試験の
結果では、エンド部,連結棒部,接合部共に応力腐食割
れが検出されなかった。
Example 3 An extruded rod of Alloy No. 2 was hot forged to form an end, which was then heated to 530 ° C., water cooled, and then heat-treated at 175 ° C. for 8 hours. The connecting rod was also manufactured by the same process. The torque rod obtained by MIG welding these ends and connecting rods has a tensile strength of 41,000 kgf and a compressive strength of 35,000 kg.
f, end portion elongation 16.3%, connecting rod portion elongation 17.
± 6,000 kgf at 2% and joint elongation of 13.0%
It had never be damaged by the fatigue of repeated load, even after giving 2 × 0 6 times. When subjected to the same stress corrosion cracking test as in Example 1, no stress corrosion cracking was detected in any of the end portion, the connecting rod portion, and the joint portion. On the other hand, the torque rod whose end is joined to the connecting rod by friction welding has a tensile strength of 40,000 kgf and a compressive strength of 34,000 kg.
f, end portion elongation 16.2%, connecting rod portion elongation 17.
± 6,000 kgf at 3% and 11.1% elongation of the joint
It had never be damaged by the fatigue of repeated load, even after giving 2 × 0 6 times. Further, in the results of the similar stress corrosion cracking test, no stress corrosion cracking was detected in any of the end portion, the connecting rod portion, and the joint portion.

【0017】実施例4:合金番号1の押出し棒を熱間鍛
造してエンドを作製した後、530℃に加熱し、水冷
し、180℃に8時間保持する熱処理を施した。連結棒
は、合金番号2の合金の押出しパイプに同様な熱処理を
施して製造した。これらエンド及び連結棒をMIG溶接
して得られたトルクロッドは、引張り強さ41,500
kgf,圧縮強度35,000kgf,エンド部の伸び
15.0%,連結棒部の伸び17.1%,接合部の伸び
13.0%で、±6,000kgfの繰返し負荷を2×
6 回与えた後でも疲労により破損することがなかっ
た。また、実施例1と同じ応力腐食割れ試験に供したと
ころ、エンド部,連結棒部,接合部共に応力腐食割れが
検出されなかった。他方、摩擦圧接によって連結棒にエ
ンドを接合したトルクロッドは、引張り強さ40,50
0kgf,圧縮強度34,000kgf,エンド部の伸
び14.9%,連結棒部の伸び17.0%,接合部の伸
び10.9%で、±6,000kgfの繰返し負荷を2
×06 回与えた後でも疲労により破損することがなかっ
た。また、同様な応力腐食割れ試験の結果では、エンド
部,連結棒部,接合部共に応力腐食割れが検出されなか
った。
Example 4 An extruded rod of Alloy No. 1 was hot forged to prepare an end, which was then heated to 530 ° C., cooled with water, and heat-treated at 180 ° C. for 8 hours. The connecting rod was manufactured by subjecting an extruded pipe of alloy No. 2 to the same heat treatment. The torque rod obtained by MIG welding these ends and connecting rods has a tensile strength of 41,500.
kgf, compressive strength 35,000 kgf, end portion elongation 15.0%, connecting rod portion elongation 17.1%, joint portion elongation 13.0%, and repeated load of ± 6,000 kgf 2 ×.
Even after giving 0 6 times had never damaged by fatigue. When subjected to the same stress corrosion cracking test as in Example 1, no stress corrosion cracking was detected in any of the end portion, the connecting rod portion, and the joint portion. On the other hand, the torque rod whose end is joined to the connecting rod by friction welding has a tensile strength of 40,50.
0kgf, compressive strength 34,000kgf, end part elongation 14.9%, connecting rod part elongation 17.0%, joint part elongation 10.9%, with a repeated load of ± 6,000kgf 2
× 06 Even after being given six times, there was no breakage due to fatigue. Further, in the results of the similar stress corrosion cracking test, no stress corrosion cracking was detected in any of the end portion, the connecting rod portion, and the joint portion.

【0018】比較例1:合金番号3の押出し棒を熱間鍛
造してエンドを作製した後、530℃に加熱し、水冷
し、180℃に8時間保持する熱処理を施した。連結棒
も、同じ材質及び同じ熱処理で製造した。これらエンド
及び連結棒をMIG溶接して得られたトルクロッドは、
引張り強さ38,500kgf,圧縮強度34,000
kgfで、±6,000kgfの繰返し負荷を2×06
回与えた後でも疲労により破損することがなかった。し
かし、伸びがエンド部で6.0%,連結棒部で6.0
%,接合部で10.0%と低い値を示し、トルクロッド
として不適当であった。他方、摩擦圧接によって連結棒
にエンドを接合したトルクロッドは、引張り強さ37,
500kgf,圧縮強度33,500kgfで、±6,
000kgfの繰返し負荷を2×06 回与えた後でも疲
労により破損することがなかった。しかし、この場合も
伸びがエンド部で5.9%,連結棒部で6.1%,接合
部で9.5%と低い値を示し、トルクロッドとして不適
当であった。
Comparative Example 1: An extruded rod of Alloy No. 3 was hot forged to prepare an end, which was then heated to 530 ° C., cooled with water, and heat-treated at 180 ° C. for 8 hours. The connecting rod was also manufactured using the same material and the same heat treatment. The torque rod obtained by MIG welding these end and connecting rod is
Tensile strength 38,500kgf, Compressive strength 34,000
Repeated load of ± 6,000 kgf at 2 x 0 6 in kgf
It was not damaged due to fatigue even after repeated application. However, the elongation was 6.0% at the end and 6.0 at the connecting rod.
%, A low value of 10.0% at the joint portion, which was unsuitable as a torque rod. On the other hand, the torque rod whose end is joined to the connecting rod by friction welding has a tensile strength of 37,
± 6 at 500 kgf, compressive strength 33,500 kgf
Even after a repeated load of 000 kgf was applied 2 × 0 6 times, it did not break due to fatigue. However, also in this case, the elongation was low at 5.9% at the end portion, 6.1% at the connecting rod portion, and 9.5% at the joint portion, which was unsuitable as a torque rod.

【0019】比較例2:合金番号4の押出し棒を熱間鍛
造してエンドを作製した後、530℃に加熱し、水冷
し、180℃に8時間保持する熱処理を施した。連結棒
も、同じ材質及び同じ熱処理で製造した。これらエンド
及び連結棒をMIG溶接して得られたトルクロッドは、
伸びがエンド部で19.8%,連結棒部で20.9%,
接合部で11.5%の値を示したものの、引張り強さが
31,000kgf,圧縮強度が27,000kgfと
不足していた。また、±6,000kgfの繰返し負荷
を2×06 回与えた後では、疲労により破損が発生し
た。そのため、トルクロッドとして不適当であった。他
方、摩擦圧接によって連結棒にエンドを接合したトルク
ロッドは、伸びがエンド部で19.9%,連結棒部で2
0.6%,接合部で11.0%の値を示したものの、引
張り強さが31,000kgf,圧縮強度が27,00
0kgfと不足していた。また、±6,000kgfの
繰返し負荷を2×06 回与えた後では、疲労により破損
が発生した。そのため、トルクロッドとして不適当であ
った。
Comparative Example 2: An extruded rod of Alloy No. 4 was hot forged to form an end, which was then heated to 530 ° C., water cooled, and heat treated at 180 ° C. for 8 hours. The connecting rod was also manufactured using the same material and the same heat treatment. The torque rod obtained by MIG welding these end and connecting rod is
The elongation is 19.8% at the end and 20.9% at the connecting rod.
Although the bonding portion showed a value of 11.5%, the tensile strength was 31,000 kgf and the compressive strength was 27,000 kgf, which were insufficient. Further, after giving 2 × 0 6 times repeated load of ± 6,000Kgf it is damaged by fatigue occurs. Therefore, it was unsuitable as a torque rod. On the other hand, the torque rod in which the end is joined to the connecting rod by friction welding has an elongation of 19.9% at the end and 2 at the connecting rod.
0.6% and 11.0% at the joint, but the tensile strength was 31,000 kgf and the compressive strength was 27,000.
There was a shortage of 0 kgf. Further, after giving 2 × 0 6 times repeated load of ± 6,000Kgf it is damaged by fatigue occurs. Therefore, it was unsuitable as a torque rod.

【0020】比較例3:合金番号5の押出し棒を熱間鍛
造してエンドを作製した後、530℃に加熱し、水冷
し、180℃に8時間保持する熱処理を施した。連結棒
も、同じ材質及び同じ熱処理で製造した。これらエンド
及び連結棒をMIG溶接して得られたトルクロッドは、
引張り強さが34,000kgfで、±6,000kg
fの繰返し負荷を2×06 回与えた後でも疲労による破
損が生じなかった。しかし、伸びがエンド部で10.2
%,連結棒部で11.8%,接合部で10.2%と低い
値を示し、圧縮強度も29,500kgfと不足してい
た。そのため、トルクロッドとして不適当であった。摩
擦圧接によって連結棒にエンドを接合したトルクロッド
も、引張り強さが34,000kgfで、±6,000
kgfの繰返し負荷を2×06 回与えた後でも疲労によ
る破損が生じなかった。しかし、伸びがエンド部で1
0.0%,連結棒部で11.9%,接合部で10.0%
と低い値を示し、圧縮強度も29,000kgfと不足
していた。そのため、トルクロッドとして不適当であっ
た。
Comparative Example 3: An extruded rod of Alloy No. 5 was hot forged to form an end, which was then heated to 530 ° C., cooled with water, and heat-treated at 180 ° C. for 8 hours. The connecting rod was also manufactured using the same material and the same heat treatment. The torque rod obtained by MIG welding these end and connecting rod is
Tensile strength of 34,000 kgf, ± 6,000 kg
No damage due to fatigue occurred even after the repeated load of f was applied 2 × 0 6 times. However, the elongation is 10.2 at the end.
%, 11.8% at the connecting rod portion and 10.2% at the joint portion, and the compressive strength was insufficient at 29,500 kgf. Therefore, it was unsuitable as a torque rod. The torque rod with the end joined to the connecting rod by friction welding also has a tensile strength of 34,000 kgf, ± 6,000.
damage due to fatigue the kgf repeated load of even after giving 2 × 0 6 times did not occur. However, the growth is 1 at the end
0.0%, 11.9% at the connecting rod, 10.0% at the joint
And the compressive strength was insufficient at 29,000 kgf. Therefore, it was unsuitable as a torque rod.

【0021】[0021]

【発明の効果】以上に説明したように、本発明において
は、成分が規制され、特定条件下で熱処理が施されたA
l合金でエンド部材及び連結棒部材を作製し、これらエ
ンド部材及び連結棒部材を溶接又は圧接することによ
り、従来から使用されている鉄製のトルクロッドとほぼ
同じ寸法・形状で鉄製に匹敵する特性をもつアルミ合金
製のトルクロッドを得ている。このアルミ合金製トルク
ロッドは、鉄製に比較して55〜60%程度に軽量化さ
れており、しかもエンド部に圧入するブッシュやトルク
ロッドを固定する部品に対する設計変更の必要性がな
く、従来の鉄製トルクロッドと同様に使用され、トラッ
クの軽量化に寄与する。
INDUSTRIAL APPLICABILITY As described above, in the present invention, the components are regulated and the heat treatment is performed under a specific condition A.
By making an end member and a connecting rod member from an alloy and welding or pressure welding the end member and the connecting rod member, the torque rod made of iron, which has been conventionally used, has substantially the same size and shape, and has characteristics comparable to those of iron. We have obtained a torque rod made of aluminum alloy with. This aluminum alloy torque rod is 55 to 60% lighter than that made of iron, and there is no need to change the design of the bushing that is press-fitted into the end portion or the parts that fix the torque rod. Used in the same way as an iron torque rod, it contributes to weight reduction of trucks.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 エンド及び連結棒に三分割した従来の鉄製ト
ルクロッドの側面図
FIG. 1 is a side view of a conventional iron torque rod divided into three parts, an end and a connecting rod.

【図2】 同鉄製トルクロッドの平面図FIG. 2 is a plan view of the iron torque rod.

【図3】 本発明実施例でアルミ製エンド(a)をアル
ミ製連結棒に溶接又は圧接したトルクロッドの一部
(b)
FIG. 3 is a part (b) of a torque rod in which an aluminum end (a) is welded or pressure welded to an aluminum connecting rod in the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,2:エンド 3:連結棒 4:環状部
5:接続用突出部 6:MIG溶接又は摩擦圧接した接合部
1,2: end 3: connecting rod 4: annular part
5: Connecting protrusion 6: MIG welded or friction welded joint

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 達 静岡県庵原郡蒲原町蒲原1丁目34番1号 日本軽金属株式会社グループ技術センター 内 (72)発明者 土屋 健二 静岡県庵原郡蒲原町蒲原1丁目34番1号 日本軽金属株式会社グループ技術センター 内 (72)発明者 樋野 治道 静岡県庵原郡蒲原町蒲原1丁目34番1号 日本軽金属株式会社グループ技術センター 内 (72)発明者 堀田 元司 静岡県庵原郡蒲原町蒲原1丁目34番1号 日本軽金属株式会社グループ技術センター 内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tatsu Yamada 1-34-1 Kambara, Kambara-cho, Anbara-gun, Shizuoka Prefecture Inside the Nippon Light Metal Co., Ltd. Group Technology Center (72) Inventor Kenji Tsuchiya 1 Kambara-cho, Kambara-cho, Abara-gun, Shizuoka Chome 34-1, Nippon Light Metal Co., Ltd. Group Technology Center (72) Inventor Jindo Hino 1-34-1, Kambara-cho, Kambara-cho, Anbara-gun, Shizuoka Prefecture Nippon Light Metal Co., Ltd. Group Technology Center (72) Inventor Motoji Hotta Shizuoka 1-34-1 Kambara, Kambara-cho, Abara-gun Nippon Light Metal Co., Ltd. Group Technology Center

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Al合金の押出しパイプから作製された
連結棒の両端部にAl合金製のエンドが溶接又は圧接さ
れたトルクロッドであり、前記Al合金がSi:1.0
〜1.5重量%,Cu:0.4〜0.9重量%,Mn:
0.2〜0.6重量%,Mg:0.8〜1.5重量%,
Cr:0.3〜0.9重量%を含み、Fe含有量を0.
25重量%以下に規制すると共に、Mn+Crの合計含
有量が1.2重量%以下に規制された組成をもつトルク
ロッド。
1. A torque rod in which ends of an Al alloy are welded or pressure welded to both ends of a connecting rod made of an extruded pipe of the Al alloy, and the Al alloy is Si: 1.0.
~ 1.5 wt%, Cu: 0.4-0.9 wt%, Mn:
0.2-0.6% by weight, Mg: 0.8-1.5% by weight,
Cr: 0.3-0.9 wt% and Fe content of 0.
A torque rod having a composition in which the total content of Mn + Cr is regulated to 1.2 wt% or less while being regulated to 25 wt% or less.
【請求項2】 請求項1記載のAl合金が更にTi:
0.005〜0.05重量%,B:0.0001〜0.
01重量%及びZr:0.1〜0.2重量%の1種又は
2種以上を含むトルクロッド。
2. The Al alloy according to claim 1 further comprises Ti:
0.005 to 0.05% by weight, B: 0.0001 to 0.
A torque rod containing one or more of 01 wt% and Zr: 0.1 to 0.2 wt%.
【請求項3】 請求項1又は2記載の組成をもつAl合
金の鋳造材又は押出し材を鍛造し、次いで510〜55
5℃に加熱後、水冷して155〜190℃に5〜20時
間保持する熱処理を施し、該熱処理後のAl合金から作
製したエンドに、同じ組成をもち同じ熱処理が施された
押出しパイプ製の連結棒を溶接又は圧接することを特徴
とするトルクロッドの製造方法。
3. A cast or extruded material of an Al alloy having the composition according to claim 1 or 2 is forged, and then 510 to 55.
After being heated to 5 ° C., water-cooled and subjected to a heat treatment of holding at 155 to 190 ° C. for 5 to 20 hours, and an end made from the Al alloy after the heat treatment is made of an extruded pipe having the same composition and the same heat treatment. A method for manufacturing a torque rod, which comprises welding or pressure-welding a connecting rod.
JP18478295A 1995-06-28 1995-06-28 Torque rod and its production Pending JPH0913137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18478295A JPH0913137A (en) 1995-06-28 1995-06-28 Torque rod and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18478295A JPH0913137A (en) 1995-06-28 1995-06-28 Torque rod and its production

Publications (1)

Publication Number Publication Date
JPH0913137A true JPH0913137A (en) 1997-01-14

Family

ID=16159205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18478295A Pending JPH0913137A (en) 1995-06-28 1995-06-28 Torque rod and its production

Country Status (1)

Country Link
JP (1) JPH0913137A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060108179A (en) * 2005-04-12 2006-10-17 현대자동차주식회사 Radius rod structure
CN109112443A (en) * 2018-08-30 2019-01-01 宁波华源精特金属制品有限公司 A kind of connecting rod
US10646914B2 (en) 2018-01-12 2020-05-12 Accuride Corporation Aluminum alloys for applications such as wheels and methods of manufacture

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060108179A (en) * 2005-04-12 2006-10-17 현대자동차주식회사 Radius rod structure
US10646914B2 (en) 2018-01-12 2020-05-12 Accuride Corporation Aluminum alloys for applications such as wheels and methods of manufacture
US11420249B2 (en) 2018-01-12 2022-08-23 Accuride Corporation Aluminum wheels and methods of manufacture
CN109112443A (en) * 2018-08-30 2019-01-01 宁波华源精特金属制品有限公司 A kind of connecting rod

Similar Documents

Publication Publication Date Title
JP2697400B2 (en) Aluminum alloy for forging
JP2002543289A (en) Peel-resistant aluminum-magnesium alloy
US20020197506A1 (en) Aluminum alloy for a welded construction and welded joint using the same
JP3107517B2 (en) High corrosion resistant aluminum alloy extruded material with excellent machinability
JP3982849B2 (en) Aluminum alloy for forging
JP3114576B2 (en) Torque rod and method of manufacturing the same
JP4676906B2 (en) Heat-resistant aluminum alloy for drawing
JP2007169699A (en) High strength and high toughness aluminum alloy forging material having excellent corrosion resistance, its production method and suspension component
JPH07145440A (en) Aluminum alloy forging stock
JP3235442B2 (en) High strength, low ductility non-heat treated steel
JPH0913137A (en) Torque rod and its production
JPS61104043A (en) Heat resistant and high-strength aluminum alloy
KR20060135990A (en) Non heat treatable high ductility aluminum cast alloys and manufacturing method thereof
KR20070000020A (en) Non heat treatable high ductility aluminum cast alloys and manufacturing method thereof
JPH108174A (en) Torque rod made of aluminum and its production
JPH07150312A (en) Manufacture of aluminum alloy forged base stock
JPH06330264A (en) Production of aluminum alloy forged material excellent in strength and toughness
JPH0860313A (en) Production of aluminum alloy tube excellent in strength and form rollability
JPH0913139A (en) Torque rod and its production
JP2843326B2 (en) Al alloy for connector
JPH108173A (en) Torque rod made of aluminum and its production
JPH09279319A (en) Production of aluminum alloy for compressor parts, excellent in machinability, wear resistance and toughness
JPH09202933A (en) High strength aluminum alloy excellent in hardenability
JP3684245B2 (en) Aluminum alloy for cold forging
JP3520633B2 (en) Maraging steel for hot tools with excellent toughness and high temperature strength