JPH108178A - Aluminum torque rod and method of manufacturing the same - Google Patents

Aluminum torque rod and method of manufacturing the same

Info

Publication number
JPH108178A
JPH108178A JP17711296A JP17711296A JPH108178A JP H108178 A JPH108178 A JP H108178A JP 17711296 A JP17711296 A JP 17711296A JP 17711296 A JP17711296 A JP 17711296A JP H108178 A JPH108178 A JP H108178A
Authority
JP
Japan
Prior art keywords
weight
extruded
aluminum
torque rod
connecting rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17711296A
Other languages
Japanese (ja)
Inventor
Masayuki Kobayashi
正幸 小林
Hajime Kamio
一 神尾
Tatsu Yamada
達 山田
Kenji Tsuchiya
健二 土屋
Harumichi Hino
治道 樋野
Motoji Hotta
元司 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP17711296A priority Critical patent/JPH108178A/en
Publication of JPH108178A publication Critical patent/JPH108178A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/40Auxiliary suspension parts; Adjustment of suspensions
    • B60G2204/41Elastic mounts, e.g. bushings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/40Auxiliary suspension parts; Adjustment of suspensions
    • B60G2204/422Links for mounting suspension elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/10Constructional features of arms
    • B60G2206/11Constructional features of arms the arm being a radius or track or torque or steering rod or stabiliser end link
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/70Materials used in suspensions
    • B60G2206/71Light weight materials
    • B60G2206/7102Aluminium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/80Manufacturing procedures
    • B60G2206/82Joining
    • B60G2206/8201Joining by welding

Landscapes

  • Vehicle Body Suspensions (AREA)
  • Extrusion Of Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a torque rod made of aluminum, used, e.g. as a torque rod to be fitted to a suspension of a truck and having annular end members at both ends. SOLUTION: In this torque rod, a connecting rod 3 made of aluminum extruded pipe is welded or welded with pressure to ends 1, 2 prepared by cutting an aluminum extruded shape, having a cross-section where a connecting part 5 is integrated with an annular part 4, in round slices. At this time, the aluminum extruded shape and the aluminum extruded pipe are composed of an aluminum alloy having a composition containing, by weight, 4.0-6.5% Zn, 0.5-2.0% Mg, 0.01-0.2% Cu, 0.2-0.7% Mn, 0.05-0.3% Cr, 0.05-0.25% Zr, and 0.01-0.4% Fe. Further, after extrusion, heating is performed up to 430-480 deg.C, followed by air cooling or furnace cooling.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、トラックのサスペンシ
ョンに装備されるトルクロッド等として使用され、両端
にリング状のエンド部材が設けられたアルミ製トルクロ
ッド及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum torque rod used as a torque rod or the like mounted on a truck suspension and provided with ring-shaped end members at both ends, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】トラック等の後部サスペンションの構成
部品の一つであるトルクロッドは、棒状又はパイプ状の
両端部にリング状のエンドが設けられた構造を持ってい
る。トルクロッドとしては、鍛造によって一体に作られ
た鉄系材料が従来から使用されてきた。しかし、近年の
過積載規制の問題からトラック及びトラック部品の軽量
化が求められており、トルクロッドもその例外ではな
い。そこで、図1及び図2に示すように、トルクロッド
を二つのエンド1,2及び連結棒3に三分割した軽量化
構造が検討されている。この構造では、軽量化を図るた
めに連結棒3を鉄製の薄肉パイプで作製し、この連結棒
3に鉄鍛造製エンド1,2を溶接又は圧接している。
2. Description of the Related Art A torque rod, which is one of the components of a rear suspension such as a truck, has a structure in which rod-shaped or pipe-shaped ends are provided with ring-shaped ends. As the torque rod, an iron-based material integrally formed by forging has been conventionally used. However, due to the recent problem of overloading regulations, it is required to reduce the weight of trucks and truck parts, and torque rods are no exception. Therefore, as shown in FIGS. 1 and 2, a light weight structure in which the torque rod is divided into two ends 1 and 2 and a connecting rod 3 has been studied. In this structure, in order to reduce the weight, the connecting rod 3 is made of an iron thin pipe, and the forged irons 1 and 2 are welded or pressed to the connecting rod 3.

【0003】[0003]

【発明が解決しようとする課題】図1,2に示したトル
クロッドは、連結棒3に薄肉の鉄製パイプを使用してい
るので、従来の鋳鍛造でできた中実のトルクロッドに比
較すると軽くなっている。しかし、素材として鉄を使用
していることから、軽量化には限界がある。更なる軽量
化を図るためには、鉄に匹敵する強度をもち、しかも鉄
よりも軽い素材を使用する必要がある。また、サスペン
ションは車体に対して車軸を保持する機能を受け持つ部
品であることから、その構成部品の一つであるトルクロ
ッドとしても、ただ単に軽い材料だけでは要求特性が満
足されない。すなわち、所定の寸法及び形状をもつ製品
として、強度,伸び,耐応力腐食割れ性等の要求特性を
満足する必要がある。具体的には、現在使用されている
鉄製トルクロッドとしては、エンド1,2の中心間距離
が522mmのもので、32,000kgf以上の引張
り強さ及び圧縮強度、±6,000kgfの繰返し負荷
に2×106 回以上耐える引張り・圧縮疲労強度及び1
0%以上の伸びをもつことが要求される。本発明は、こ
のような要求特性を満足するAl材料を使用してトルク
ロッドを作製することにより、トルクロッドを軽量化す
ることを目的とする。
The torque rod shown in FIGS. 1 and 2 uses a thin-walled iron pipe for the connecting rod 3, so that it can be compared with a conventional solid torque rod made by casting and forging. It is getting lighter. However, since iron is used as a material, there is a limit to weight reduction. In order to achieve further weight reduction, it is necessary to use a material having strength comparable to iron and lighter than iron. In addition, since the suspension is a part having a function of holding the axle with respect to the vehicle body, the required characteristics of the torque rod, which is one of the components thereof, cannot be satisfied only with a light material. That is, it is necessary for a product having a predetermined size and shape to satisfy required characteristics such as strength, elongation, and stress corrosion cracking resistance. Specifically, the iron torque rod currently used has a center-to-center distance between the ends 1 and 2 of 522 mm, and has a tensile strength and a compressive strength of 32,000 kgf or more, and a repetitive load of ± 6,000 kgf. Tensile and compressive fatigue strength to withstand 2 × 10 6 times or more and 1
It is required to have an elongation of 0% or more. An object of the present invention is to reduce the weight of a torque rod by producing a torque rod using an Al material satisfying such required characteristics.

【0004】[0004]

【課題を解決するための手段】本発明のトルクロッド
は、その目的を達成するため、環状部に連結部が一体化
された断面をもつアルミ押出し形材の輪切りにより作製
されてエンドを、アルミ合金の押出しパイプから作製さ
れた連結棒の両端部に溶接又は圧接している。アルミ押
出し形材及びアルミ押出しパイプとしては、Zn:4.
0〜6.5重量%,Mg:0.5〜2.0重量%,C
u:0.01〜0.2重量%,Mn:0.2〜0.7重
量%,Cr:0.05〜0.3重量%,Zr:0.05
〜0.25重量%,Fe:0.01〜0.4重量%を含
む組成をもつアルミ合金で、押出し後、430〜480
℃に加熱し、空冷又は炉冷したものが使用される。或い
は、アルミ合金を430〜480℃で押し出した後、空
冷又は炉冷したものを使用することもできる。合金組成
には、更にTi:0.005〜0.2重量%,B:0.
0001〜0.05重量%及びV:0.01〜0.1重
量%の1種又は2種以上を含ませることができる。空冷
又は炉冷後に、110〜130℃に23〜25時間保持
する時効処理、又は115〜125℃に3〜6時間保持
した後で170〜180℃に6〜8時間保持する時効処
理を施すことが好ましい。アルミ押出し形材の輪切り
は、熱処理前,熱処理中又は熱処理後の何れの段階で行
っても良い。
In order to achieve the object, the torque rod of the present invention is manufactured by extruding an aluminum extruded member having a cross section in which a connecting portion is integrated with an annular portion, and the end is made of aluminum. It is welded or pressed against both ends of a connecting rod made from an extruded alloy pipe. As the aluminum extruded shape and the aluminum extruded pipe, Zn: 4.
0 to 6.5% by weight, Mg: 0.5 to 2.0% by weight, C
u: 0.01 to 0.2% by weight, Mn: 0.2 to 0.7% by weight, Cr: 0.05 to 0.3% by weight, Zr: 0.05
-0.25% by weight and Fe: 0.01-0.4% by weight.
What was heated to ° C and air-cooled or furnace-cooled is used. Alternatively, an aluminum alloy extruded at 430 to 480 ° C. and then air-cooled or furnace-cooled can be used. In the alloy composition, Ti: 0.005 to 0.2% by weight, B: 0.
One or more of 0001 to 0.05% by weight and V: 0.01 to 0.1% by weight can be contained. After air or furnace cooling, an aging treatment of keeping at 110 to 130 ° C for 23 to 25 hours, or an aging treatment of keeping at 115 to 125 ° C for 3 to 6 hours and then keeping at 170 to 180 ° C for 6 to 8 hours Is preferred. The round cutting of the extruded aluminum material may be performed at any stage before, during or after the heat treatment.

【0005】[0005]

【作用】本発明では、Al−Mg−Si系のアルミ合金
押出し形材をエンドに、Al−Mg−Si系のアルミ合
金押出しパイプ材を及び連結棒の材料として使用する。
エンドは、図3に示すように、連結部5が環状部4に一
体化された断面形状をもつアルミ押出し形材の輪切りに
より作製される。このエンド1,2を図4に示すように
連結棒3に接続すると、押出し形材の押出し方向は、ト
ルクロッドのエンド部に加わる引張り力・圧縮力に方向
に対して直角に交差する方向になる。そのため、環状部
4に連結部5が一体化された断面をもつ押出し形材の機
械的性質は、押出し方向に直交する方向に関する機械的
性質が重要になる。この点、環状部4に連結部5が一体
化された断面をもつ押出し形材を間接押出しで作ること
が好ましい。間接押出しされた押出し形材は、押出し方
向に走る均質な繊維組織のみでできている。押出し方向
に直交する方向の機械的性質は、押出し方向に機械的性
質に比較して、伸びが若干劣るだけで、その他の性質は
ほぼ同じである。他方、直接押出しで作られた図3のよ
うなホロー材は、融着組織のため、押出し方向に直交す
る方向の機械的性質が押出し方向の機械的性質に比較し
て劣っている。しかし、直接押出し材であっても、設計
値を満足する場合にはエンド材として使用可能である。
In the present invention, an Al-Mg-Si-based aluminum alloy extruded profile is used as an end, and an Al-Mg-Si-based aluminum alloy extruded pipe is used as a material for a connecting rod.
As shown in FIG. 3, the end is formed by cutting an extruded aluminum section having a cross-sectional shape in which the connecting portion 5 is integrated with the annular portion 4. When these ends 1 and 2 are connected to the connecting rod 3 as shown in FIG. 4, the direction of extrusion of the extruded profile is in a direction perpendicular to the direction of the tensile force / compression force applied to the end portion of the torque rod. Become. Therefore, as for the mechanical properties of the extruded profile having a cross section in which the connecting portion 5 is integrated with the annular portion 4, the mechanical properties in the direction perpendicular to the extrusion direction are important. In this regard, it is preferable that an extruded profile having a cross section in which the connecting portion 5 is integrated with the annular portion 4 be produced by indirect extrusion. The indirectly extruded extruded profile consists only of a homogeneous fiber structure running in the direction of extrusion. The mechanical properties in the direction perpendicular to the extrusion direction are slightly inferior to the mechanical properties in the extrusion direction, and the other properties are almost the same. On the other hand, the hollow material as shown in FIG. 3 made by direct extrusion has inferior mechanical properties in the direction perpendicular to the extrusion direction as compared with the mechanical properties in the extrusion direction due to the fusion structure. However, even if it is a directly extruded material, it can be used as an end material if the design value is satisfied.

【0006】本発明で使用されるアルミ合金は、微細な
Mg2 Siの析出によって必要な強度が確保される。ま
た、溶接又は圧接したとき熱影響部が自然時効によって
母材に近い強度に回復するため、優れた継手強度が得ら
れる。このようなAl−Zn−Mg系の特徴を活用し、
この系統の合金でよりトルクロッドに適したアルミ合
金、換言すればより高い強度をもつアルミ合金を得るた
めには、ZnやMgを増量し、Zn−Mg系析出物を増
量させることが考えられる。しかし、それに伴って耐応
力腐食割れ性や溶接性が劣化する。本発明者等は、Zn
−Mg系析出物の強度向上に与える影響と優れた溶接性
及び耐応力腐食割れ性を両立させるためには、合金成
分,その含有量及び熱処理条件等を相互の関連を考慮し
ながら定める必要があるとの結論に至った。以下、本発
明で使用されるアルミ押出し形材,アルミ押出しパイプ
材(以下、アルミ押出し材で総称する)の合金成分,含
有量等について説明する。
The required strength of the aluminum alloy used in the present invention is ensured by the precipitation of fine Mg 2 Si. Further, when welded or pressed, the heat-affected zone recovers to a strength close to that of the base material due to natural aging, so that excellent joint strength can be obtained. Utilizing such Al-Zn-Mg-based features,
In order to obtain an aluminum alloy that is more suitable for a torque rod in this type of alloy, in other words, an aluminum alloy having higher strength, it is conceivable to increase the amount of Zn or Mg and increase the amount of Zn-Mg based precipitate. . However, the stress corrosion cracking resistance and weldability are degraded accordingly. The present inventors have found that Zn
-In order to achieve both the effect on the strength improvement of Mg-based precipitates and excellent weldability and stress corrosion cracking resistance, it is necessary to determine alloy components, their contents, heat treatment conditions, etc. in consideration of their mutual relations. I came to the conclusion. Hereinafter, the alloy components, contents, and the like of the extruded aluminum material and the extruded aluminum pipe material (hereinafter, collectively referred to as aluminum extruded materials) used in the present invention will be described.

【0007】Zn:4.0〜6.5重量% Mgと共にZn−Mg系の微細な析出物を形成し、アル
ミ合金の強度を向上させる合金元素である。このような
強度向上の効果は、Zn含有量4.0重量%以上で顕著
になる。しかし、6.5重量%を超える多量のZnが含
まれると、耐応力腐食割れ性や加工性が劣化する。 Mg:0.5〜2.0重量% Znと同様に強度向上に不可欠の合金元素であり、0.
5重量%以上の含有量で十分な強度が得られる。しか
し、2.0重量%を超える多量のMgが含まれると、耐
応力腐食割れ性や加工性が劣化する。 Cu:0.01〜0.2重量% 耐応力腐食割れ性を改善する合金元素であり、0.01
重量%以上でCuの添加効果が顕著になる。しかし、C
u含有量が0.2重量%を超えると、却って耐応力腐食
割れ性が劣化し、また溶接性も劣化する。
Zn: 4.0-6.5% by weight Zn is an alloy element that forms a fine precipitate of Zn—Mg with Mg and improves the strength of the aluminum alloy. Such an effect of improving the strength becomes remarkable when the Zn content is 4.0% by weight or more. However, when a large amount of Zn exceeding 6.5% by weight is contained, the stress corrosion cracking resistance and the workability deteriorate. Mg: 0.5 to 2.0% by weight Like Zn, it is an alloy element indispensable for improving the strength.
Sufficient strength can be obtained with a content of 5% by weight or more. However, when a large amount of Mg exceeding 2.0% by weight is contained, stress corrosion cracking resistance and workability deteriorate. Cu: 0.01 to 0.2% by weight An alloying element for improving the stress corrosion cracking resistance.
The effect of adding Cu becomes remarkable when the content is not less than% by weight. But C
If the u content exceeds 0.2% by weight, the stress corrosion cracking resistance deteriorates and the weldability also deteriorates.

【0008】Mn:0.2〜0.7重量% 組織の安定化を図り、強度を向上させる作用を呈する。
Mnの添加効果は、0.2重量%以上の含有量で顕著に
なる。しかし、0.7重量%を超える多量のMnが含ま
れると、巨大化合物が生成し、靭性や加工性を劣化させ
る虞れがある。 Cr:0.05〜0.3重量% Mnと同様に組織安定化のために有効な合金元素であ
り、0.05重量%以上の含有量でCuの添加効果が顕
著になる。しかし、0.3重量%を超える多量のCr含
有は、組織安定化効果が飽和するばかりでなく、靭性や
加工性に有害な巨大化合物を生成させる原因となる。 Zr:0.05〜0.25重量% Mnと同様に組織の安定化に有効な合金元素であり、
0.05重量%以上の含有量でZrの添加効果が顕著に
なる。しかし、0.25重量%をこえる多量のZrを含
有させると、組織安定化効果が飽和するばかりでなく、
靭性や加工性に有害な巨大化合物を生成させる原因とな
る。
Mn: 0.2-0.7% by weight The effect of stabilizing the structure and improving the strength is exhibited.
The effect of adding Mn becomes remarkable at a content of 0.2% by weight or more. However, when a large amount of Mn exceeding 0.7% by weight is contained, a giant compound may be generated, and toughness and workability may be deteriorated. Cr: 0.05 to 0.3% by weight Similar to Mn, Cr is an effective alloying element for stabilizing the structure. At a content of 0.05% by weight or more, the effect of adding Cu becomes remarkable. However, the presence of a large amount of Cr exceeding 0.3% by weight not only saturates the structure stabilizing effect but also causes the formation of a giant compound harmful to toughness and workability. Zr: 0.05-0.25% by weight Like Mn, it is an alloy element effective for stabilizing the structure.
When the content is 0.05% by weight or more, the effect of adding Zr becomes remarkable. However, when a large amount of Zr exceeds 0.25% by weight, not only the tissue stabilizing effect is saturated, but also
It can cause the formation of giant compounds harmful to toughness and workability.

【0009】Fe:0.01〜0.4重量% 組織を安定化させ、耐応力腐食割れ性を改善する合金元
素である。このような効果は、0.01重量%以上の含
有量で顕著になる。しかし、0.4重量%を超える多量
のFe含有量は、却って靭性や加工性を劣化させる。 Ti:0.005〜0.2重量% 必要に応じて添加される合金元素であり、組織の安定化
を図り、溶接部又は圧接部の機械的性質を向上させる作
用を呈する。このような効果は、0.005重量%以上
の含有量で顕著になる。しかし、0.2重量%を超える
多量のTi含有量は、靭性や加工性に有害な巨大化合物
を生成させる原因となる。 B:0.0001〜0.05重量% 必要に応じて添加される合金元素であり、0.0001
重量%以上のB添加で組織安定化の効果が顕著になる。
しかし、0.05重量%を超えて過剰に添加しても、B
の添加効果が飽和するばかりでなく、靭性や加工性に有
害な巨大化合物を生成させる原因となる。 V:0.01〜0.1重量% 必要に応じて添加される合金元素であり、耐応力腐食割
れ性を改善する作用を呈する。このような添加効果は、
0.01重量%以上で顕著になる。しかし、0.1重量
%を超える過剰添加は、却って加工性及び靭性を劣化さ
せる。
Fe: 0.01 to 0.4% by weight An alloy element that stabilizes the structure and improves stress corrosion cracking resistance. Such effects become remarkable at a content of 0.01% by weight or more. However, a large content of Fe exceeding 0.4% by weight deteriorates toughness and workability. Ti: 0.005 to 0.2% by weight An alloy element added as necessary, and has a function of stabilizing the structure and improving the mechanical properties of the welded portion or the press-welded portion. Such effects become remarkable at a content of 0.005% by weight or more. However, a large Ti content exceeding 0.2% by weight causes formation of a giant compound harmful to toughness and workability. B: 0.0001 to 0.05% by weight An alloy element added as necessary,
The effect of stabilizing the structure becomes remarkable when B is added in an amount of not less than% by weight.
However, even if it is added in excess of 0.05% by weight, B
Not only saturates the effect of addition, but also causes the formation of giant compounds harmful to toughness and workability. V: 0.01 to 0.1% by weight An alloy element added as needed, and has an effect of improving stress corrosion cracking resistance. Such an addition effect
It becomes remarkable at 0.01% by weight or more. However, excessive addition exceeding 0.1% by weight rather deteriorates workability and toughness.

【0010】本発明で使用するアルミ合金押出し材は、
以上の合金元素の他に、不純物として0.3重量%未満
のSi、単独で0.05重量%未満の他の元素を含むこ
とが許容される。これら不純物元素を許容範囲に規制し
ておくとき、トルクロッドとしての要求特性が満足され
る。 熱処理及び押出しの条件:前述した組成をもつアルミ合
金押出し材の強度を向上させるためには、先ず強度改善
元素を完全に固溶させる必要がある。そのためには、押
出し後に少なくとも430℃以上の温度にアルミ合金押
出し材を加熱することが必要となる。しかし、480℃
を超える温度では、部分的な溶融が生じ、欠陥が発生す
る。或いは、430℃以上の温度で押し出すことが必要
になる。しかし、480℃を超える押出し温度では、部
分的な溶融が生じ、欠陥が発生する。溶体化処理後又は
高温押出し後のアルミ合金押出し材は、水冷のような急
冷を施すと、内部歪みが大きくなりすぎて応力腐食割れ
の原因となることから、空冷又は炉冷により冷却され
る。
The extruded aluminum alloy used in the present invention is:
In addition to the above alloying elements, it is permissible to contain less than 0.3% by weight of Si as an impurity and other elements of less than 0.05% by weight alone. When these impurity elements are restricted to an allowable range, required characteristics as a torque rod are satisfied. Conditions for heat treatment and extrusion: In order to improve the strength of the extruded aluminum alloy having the above-described composition, it is necessary to completely dissolve the strength improving element first. For this purpose, it is necessary to heat the extruded aluminum alloy to a temperature of at least 430 ° C. after extrusion. However, 480 ° C
At temperatures above, partial melting occurs and defects occur. Alternatively, it is necessary to extrude at a temperature of 430 ° C. or higher. However, at extrusion temperatures above 480 ° C., partial melting occurs and defects occur. The aluminum alloy extruded material after the solution treatment or the high-temperature extrusion is cooled by air cooling or furnace cooling since rapid cooling such as water cooling causes excessive internal strain and causes stress corrosion cracking.

【0011】冷却されたアルミ合金押出し材は、合金元
素が過飽和で固溶した状態にある。このアルミ合金は、
室温に保持しておくとZn−Mg系の微細な析出物が形
成され、品質が安定して目標とする強度が得られる。し
かし、このような自然時効は1か月以上の長期間が必要
とされる。そこで、Zn−Mg系微細析出物の生成を促
進させるため、110〜130℃に23〜25時間保持
する人工時効、又は115〜125℃に3〜6時間保持
した後で170〜180℃に6〜8時間保持する人工時
効によって、早期に品質を安定化させることが好まし
い。また、高温押出しし、溶体化処理を省略した押出し
材では、Zn−Mg系の微細化合物を均一に析出させる
と共に、応力腐食割れの原因になることもある押出し加
工時の内部歪みを除去する上でも時効処理が有効であ
る。時効温度及び保持時間が前述した範囲を外れると、
時効効果が十分でなく、或いは過時効による問題が発生
する。このようにして成分・組成が調整され、押出し後
に熱処理されたアルミ合金押出し材は、32kgf/m
2 以上の引張り強さ及び11%以上の伸びを示し、ト
ルクロッドのエンドや連結棒としての要求特性を十分に
満足する。エンドの製法としては、押出し材を鍛造する
ことも可能であるが、本発明に従った押出し法のみでも
十分に設計条件を満足するため、鍛造品に比較して安価
なトルクロッドが得られる。
[0011] The cooled aluminum alloy extruded material is in a state where the alloying elements are supersaturated and solid solution. This aluminum alloy
When kept at room temperature, Zn-Mg based fine precipitates are formed, and the quality is stabilized and the target strength is obtained. However, such natural aging requires a long period of one month or more. Therefore, in order to promote the generation of Zn-Mg based fine precipitates, artificial aging is performed at 110 to 130 ° C for 23 to 25 hours, or 170 to 180 ° C after maintaining at 115 to 125 ° C for 3 to 6 hours. It is preferred to stabilize the quality early by artificial aging for up to 8 hours. In addition, in the extruded material extruded at a high temperature and the solution treatment is omitted, the Zn-Mg based fine compound is uniformly precipitated, and the internal strain at the time of the extrusion process that may cause stress corrosion cracking is removed. But aging is effective. When the aging temperature and the holding time are out of the range described above,
The aging effect is not sufficient, or a problem due to overaging occurs. The aluminum alloy extruded material whose components and composition were adjusted in this way and heat-treated after extrusion was 32 kgf / m2.
It exhibits a tensile strength of not less than m 2 and an elongation of not less than 11%, and sufficiently satisfies the required characteristics as an end of a torque rod and a connecting rod. As an end manufacturing method, an extruded material can be forged. However, the extruding method according to the present invention alone sufficiently satisfies the design conditions, so that a torque rod that is less expensive than a forged product can be obtained.

【0012】[0012]

【実施例】表1に示した組成をもつ各種アルミ合金を押
出しし、環状部に連結部を一体化した断面をもつ押出し
形材(図3)を作製した後、熱処理を施し、図4の
(a)及び(b)に示すように外径φ1 =130mm,
内径φ2 =105mm及び幅W=51mmのエンド1,
2を作製した。エンド1,2の環状部4の一側に、曲率
半径50mmで立ち上がった先端径60mmの連結部5
を形成した。他方、連結棒3としては、熱処理した同様
なアルミ合金押出し材から作製された外径60mm,内
径40mmのパイプを使用した。連結部5の端面に連結
棒3を押し当て、MIG溶接又は摩擦圧接によって接合
部6を形成し、エンド1,2を連結棒3に一体化した。
MIG溶接条件は、溶接棒A5356を使用し、電圧2
8V,電流280A,溶接速度1m/分に設定した。摩
擦圧接には、加熱圧力550kgf/cm2 ,加熱時間
6秒,アプセット圧力1000kgf/cm2 及びアプ
セット量10mmを採用した。
EXAMPLE An aluminum alloy having the composition shown in Table 1 was extruded to produce an extruded profile (FIG. 3) having a cross section in which a connecting portion was integrated with an annular portion, and then heat-treated. As shown in (a) and (b), outer diameter φ 1 = 130 mm,
End 1 with inner diameter φ 2 = 105 mm and width W = 51 mm
2 was produced. A connecting portion 5 having a tip diameter of 60 mm and a rising radius of 50 mm on one side of the annular portion 4 of the ends 1 and 2.
Was formed. On the other hand, as the connecting rod 3, a pipe having an outer diameter of 60 mm and an inner diameter of 40 mm produced from a similar heat-treated extruded aluminum alloy was used. The connecting rod 3 was pressed against the end face of the connecting part 5 to form a joint 6 by MIG welding or friction welding, and the ends 1 and 2 were integrated with the connecting rod 3.
The MIG welding conditions were as follows.
8 V, current 280 A, welding speed 1 m / min. For the friction welding, a heating pressure of 550 kgf / cm 2 , a heating time of 6 seconds, an upset pressure of 1000 kgf / cm 2 and an upset amount of 10 mm were employed.

【0013】 [0013]

【0014】実施例1:合金番号1のアルミ合金を間接
押出しし、450℃に加熱し、空冷し、次いで120℃
に24時間保持した材料でエンドを作製した。連結棒
は、合金番号1のアルミ合金を所定寸法に押し出し、エ
ンドと同じ熱処理を施すことにより作製した。これらエ
ンド及び連結棒をMIG溶接して得られたトルクロッド
は、引張り強さ38,000kgf,圧縮強度37,0
00kgf,エンド部の伸び11.0%,連結棒部の伸
び14.1%,接合部の伸び13.0%で、±6,00
0kgfの繰返し負荷を2×06 回与えた後でも疲労に
より破損することがなかった。また、接合されたトルク
ロッドから試験片を切り出し、JIS H8711に準
拠した応力腐食割れ試験に供した。すなわち、耐力の7
5%を加えた状態で3.5%NaCl溶液に浸漬し、1
0分浸漬→50分乾燥の繰返しを30日間継続させた。
そして、試験後のトルクロッドを観察したところ、エン
ド部,連結棒部,接合部共に応力腐食割れが検出されな
かった。他方、摩擦圧接によって連結棒にエンドを接合
したトルクロッドは、引張り強さ38,500kgf,
圧縮強度37,000kgf,エンド部の伸び10.8
%,連結棒部の伸び14.0%,接合部の伸び12.5
%で、±6,000kgfの繰返し負荷を2×06 回与
えた後でも疲労により破損することがなかった。また、
同様な応力腐食割れ試験の結果では、エンド部,連結棒
部,接合部共に応力腐食割れが検出されなかった。
Example 1 An aluminum alloy of alloy number 1 is indirectly extruded, heated to 450 ° C., air-cooled, and then cooled to 120 ° C.
An end was made of the material held for 24 hours. The connecting rod was manufactured by extruding an aluminum alloy of alloy number 1 to a predetermined size and performing the same heat treatment as the end. The torque rod obtained by MIG welding the end and the connecting rod has a tensile strength of 38,000 kgf and a compressive strength of 37.0 kg.
00 kgf, elongation at the end 11.0%, elongation at the connecting rod 14.1%, elongation at the joint 13.0%, ± 6,00
The repeated load of 0kgf even after giving 2 × 0 6 times had never damaged by fatigue. Further, a test piece was cut out from the joined torque rod and subjected to a stress corrosion cracking test in accordance with JIS H8711. That is, 7
Dipping in 3.5% NaCl solution with 5% added, 1
Repeated immersion for 0 minutes → drying for 50 minutes was continued for 30 days.
When the torque rod after the test was observed, no stress corrosion cracking was detected in any of the end, the connecting rod, and the joint. On the other hand, the torque rod whose end is joined to the connecting rod by friction welding has a tensile strength of 38,500 kgf,
Compressive strength 37,000kgf, end extension 10.8
%, Elongation of connecting rod 14.0%, elongation of joint 12.5
Percent, had never damaged by fatigue even after giving 2 × 0 6 times the repeated load of ± 6,000kgf. Also,
In the results of the similar stress corrosion cracking test, no stress corrosion cracking was detected in any of the end, the connecting rod, and the joint.

【0015】実施例2:合金番号1のアルミ合金を45
0℃で熱間押出しし、空冷し、120℃に4時間保持し
た後、次いで175℃に7時間保持した材料でエンドを
作製した。連結棒も、合金番号1のアルミ合金から同様
な工程によって製造した。これらエンド及び連結棒をM
IG溶接して得られたトルクロッドは、引張り強さ3
7,000kgf,圧縮強度37,000kgf,エン
ド部の伸び11.0%,連結棒部の伸び14.5%,接
合部の伸び13.0%で、±6,000kgfの繰返し
負荷を2×06 回与えた後でも疲労により破損すること
がなかった。また、実施例1と同じ応力腐食割れ試験に
供したところ、エンド部,連結棒部,接合部共に応力腐
食割れが検出されなかった。他方、摩擦圧接によって連
結棒にエンドを接合したトルクロッドは、引張り強さ3
7,500kgf,圧縮強度37,000kgf,エン
ド部の伸び10.7%,連結棒部の伸び14.5%,接
合部の伸び12.5%で、±6,000kgfの繰返し
負荷を2×06 回与えた後でも疲労により破損すること
がなかった。また、同様な応力腐食割れ試験の結果で
は、エンド部,連結棒部,接合部共に応力腐食割れが検
出されなかった。
Example 2: An aluminum alloy having an alloy number 1 was replaced with 45
After extruding hot at 0 ° C., air-cooled, and kept at 120 ° C. for 4 hours, then an end was made of a material kept at 175 ° C. for 7 hours. The connecting rod was also manufactured from the aluminum alloy of alloy number 1 by a similar process. These ends and connecting rods are
The torque rod obtained by IG welding has a tensile strength of 3
7,000 kgf, compressive strength 37,000 kgf, end portion elongation 11.0%, connecting rod portion elongation 14.5%, joint portion elongation 13.0%, 2 × 0 cyclic load of ± 6,000 kgf. Even after being given six times, it did not break due to fatigue. When subjected to the same stress corrosion cracking test as in Example 1, no stress corrosion cracking was detected in any of the end portion, the connecting rod portion, and the joint portion. On the other hand, the torque rod whose end is joined to the connecting rod by friction welding has a tensile strength of 3
With 7,500 kgf, compressive strength of 37,000 kgf, elongation at the end part 10.7%, elongation at the connecting rod part 14.5%, and elongation at the joint part 12.5%, the repetitive load of ± 6,000 kgf is 2 × 0. Even after being given six times, it did not break due to fatigue. Further, in the results of the similar stress corrosion cracking test, no stress corrosion cracking was detected in any of the end portion, the connecting rod portion, and the joint portion.

【0016】実施例3:合金番号2のアルミ合金を間接
押出しし、450℃に加熱し、炉冷した材料でエンドを
作製した。連結棒も、合金番号2のアルミ合金から同様
な工程によって製造した。これらエンド及び連結棒をM
IG溶接して得られたトルクロッドは、引張り強さ3
8,000kgf,圧縮強度36,000kgf,エン
ド部の伸び11.1%,連結棒部の伸び13.5%,接
合部の伸び12.5%で、±6,000kgfの繰返し
負荷を2×06 回与えた後でも疲労により破損すること
がなかった。また、実施例1と同じ応力腐食割れ試験に
供したところ、エンド部,連結棒部,接合部共に応力腐
食割れが検出されなかった。他方、摩擦圧接によって連
結棒にエンドを接合したトルクロッドは、引張り強さ3
8,000kgf,圧縮強度36,000kgf,エン
ド部の伸び11.0%,連結棒部の伸び13.5%,接
合部の伸び12.0%で、±6,000kgfの繰返し
負荷を2×06 回与えた後でも疲労により破損すること
がなかった。また、同様な応力腐食割れ試験の結果で
は、エンド部,連結棒部,接合部共に応力腐食割れが検
出されなかった。
Example 3 An aluminum alloy of alloy number 2 was extruded indirectly, heated to 450 ° C., and furnace-cooled to produce an end. The connecting rod was also manufactured from the aluminum alloy of alloy number 2 by the same process. These ends and connecting rods are
The torque rod obtained by IG welding has a tensile strength of 3
8,000 kgf, compressive strength 36,000 kgf, end portion elongation 11.1%, connecting rod portion elongation 13.5%, joint portion elongation 12.5%, and a repetitive load of ± 6,000 kgf of 2 × 0. Even after being given six times, it did not break due to fatigue. When subjected to the same stress corrosion cracking test as in Example 1, no stress corrosion cracking was detected in any of the end portion, the connecting rod portion, and the joint portion. On the other hand, the torque rod whose end is joined to the connecting rod by friction welding has a tensile strength of 3
8,000 kgf, compressive strength 36,000 kgf, end portion elongation 11.0%, connecting rod portion elongation 13.5%, joint portion elongation 12.0%, and a repetitive load of ± 6,000 kgf of 2 × 0. Even after being given six times, it did not break due to fatigue. Further, in the results of the similar stress corrosion cracking test, no stress corrosion cracking was detected in any of the end portion, the connecting rod portion, and the joint portion.

【0017】実施例4:合金番号1のアルミ合金を熱間
押出しし、460℃に加熱,空冷,次いで120℃に2
4時間保持した材料でエンドを作製した。連結棒は、合
金番号2のアルミ合金から同様な工程によって製造し
た。これらエンド及び連結棒をMIG溶接して得られた
トルクロッドは、引張り強さ38,000kgf,圧縮
強度36,500kgf,エンド部の伸び11.1%,
連結棒部の伸び14.2%,接合部の伸び13.0%
で、±6,000kgfの繰返し負荷を2×06 回与え
た後でも疲労により破損することがなかった。また、実
施例1と同じ応力腐食割れ試験に供したところ、エンド
部,連結棒部,接合部共に応力腐食割れが検出されなか
った。他方、摩擦圧接によって連結棒にエンドを接合し
たトルクロッドは、引張り強さ38,000kgf,圧
縮強度36,500kgf,エンド部の伸び11.0
%,連結棒部の伸び14.0%,接合部の伸び12.5
%で、±6,000kgfの繰返し負荷を2×06 回与
えた後でも疲労により破損することがなかった。また、
同様な応力腐食割れ試験の結果では、エンド部,連結棒
部,接合部共に応力腐食割れが検出されなかった。
Example 4: An aluminum alloy of alloy No. 1 is hot-extruded, heated to 460 ° C., air-cooled, and then cooled to 120 ° C.
Ends were made of the material held for 4 hours. The connecting rod was manufactured from an aluminum alloy of alloy number 2 by a similar process. The torque rod obtained by MIG welding the end and the connecting rod has a tensile strength of 38,000 kgf, a compressive strength of 36,500 kgf, an elongation of the end portion of 11.1%,
Elongation of connecting rod 14.2%, elongation of joint 13.0%
In, it had never damaged by fatigue even after giving 2 × 0 6 times the repeated load of ± 6,000kgf. When subjected to the same stress corrosion cracking test as in Example 1, no stress corrosion cracking was detected in any of the end portion, the connecting rod portion, and the joint portion. On the other hand, the torque rod whose end is joined to the connecting rod by friction welding has a tensile strength of 38,000 kgf, a compressive strength of 36,500 kgf, and an elongation of the end portion of 11.0 kgf.
%, Elongation of connecting rod 14.0%, elongation of joint 12.5
Percent, had never damaged by fatigue even after giving 2 × 0 6 times the repeated load of ± 6,000kgf. Also,
In the results of the similar stress corrosion cracking test, no stress corrosion cracking was detected in any of the end, the connecting rod, and the joint.

【0018】比較例1:合金番号3のアルミ合金を直接
押出しし、450℃に加熱し、空冷し、次いで120℃
に24時間保持した材料でエンドを作製した。連結棒
も、合金番号3から同様な工程により製造した。これら
エンド及び連結棒をMIG溶接して得られたトルクロッ
ドは、引張り強さ39,000kgf,圧縮強度35,
000kgfの値を示したものの、エンド部の伸びが
5.0%と不足していた。また、±6,000kgfの
繰返し負荷を2×06 回与えたところ、疲労により破損
した。そのため、トルクロッドとして不適当であった。
Comparative Example 1: An aluminum alloy of alloy No. 3 was directly extruded, heated to 450 ° C., air-cooled, and then heated to 120 ° C.
An end was made of the material held for 24 hours. The connecting rod was manufactured from Alloy No. 3 by the same process. The torque rod obtained by MIG welding the end and the connecting rod has a tensile strength of 39,000 kgf, a compressive strength of 35,
Although it showed a value of 000 kgf, the elongation at the end portion was insufficient at 5.0%. In addition, it was given 2 × 0 6 times the repeated load of ± 6,000kgf, was damaged by fatigue. Therefore, it was unsuitable as a torque rod.

【0019】比較例2:合金番号4のアルミ合金を間接
押出しし、450℃に加熱し、炉冷した材料でエンドを
作製した。連結棒も、合金番号4から同様な工程により
製造した。これらエンド及び連結棒をMIG溶接して得
られたトルクロッドは、伸びがエンド部で13.5%,
連結棒部で16.0%,接合部で14.0%の値を示し
たものの、引張り強さが29,000kgf,圧縮強度
が28,000kgfと不足していた。また、±6,0
00kgfの繰返し負荷を2×06 回与えた後では、疲
労により破損が発生した。そのため、トルクロッドとし
て不適当であった。他方、摩擦圧接によって連結棒にエ
ンドを接合したトルクロッドは、伸びがエンド部で1
3.5%,連結棒部で16.1%,接合部で13.0%
の値を示したものの、引張り強さが29,000kg
f,圧縮強度が28,000kgfと不足していた。ま
た、±6,000kgfの繰返し負荷を2×06 回与え
た後では、疲労により破損が発生した。そのため、トル
クロッドとして不適当であった。
Comparative Example 2: An aluminum alloy of alloy number 4 was extruded indirectly, heated to 450 ° C., and furnace-cooled to produce an end. The connecting rod was manufactured from Alloy No. 4 by the same process. The torque rod obtained by MIG welding the end and the connecting rod has an elongation of 13.5% at the end,
Although the connecting rod showed a value of 16.0% and the joint showed a value of 14.0%, the tensile strength was insufficient at 29,000 kgf and the compressive strength was at 28,000 kgf. Also, ± 6,0
In after giving repeated load of 00kgf 2 × 0 6 times, damage due to fatigue occurs. Therefore, it was unsuitable as a torque rod. On the other hand, the torque rod whose end is joined to the connecting rod by friction welding has an extension of 1 at the end.
3.5%, 16.1% at connecting rod, 13.0% at joint
, But the tensile strength is 29,000kg
f, the compressive strength was 28,000 kgf, which was insufficient. Further, after giving 2 × 0 6 times repeated load of ± 6,000Kgf it is damaged by fatigue occurs. Therefore, it was unsuitable as a torque rod.

【0020】比較例3:合金番号5のアルミ合金を45
0℃で熱間押出しし、冷却し、120℃に4時間保持し
た後、次いで170℃に7時間保持した材料でエンドを
作製した。連結棒も、合金番号5のアルミ合金から同様
な工程により製造した。これらエンド及び連結棒をMI
G溶接して得られたトルクロッドは、引張り強さが4
0,000kgf,圧縮加重36,000kgfで、±
6,000kgfの繰返し負荷を2×06 回与えた後で
も疲労による破損が生じなかった。しかし、伸びがエン
ド部で10.1%,連結棒部で11.2%,接合部で1
3.0%と低い値を示し、応力腐食割れ試験の結果では
エンド部,連結棒部及び接合部の何れにも応力腐食割れ
が検出された。そのため、トルクロッドとして不適当で
あった。摩擦圧接によって連結棒にエンドを接合したト
ルクロッドも、引張り強さが41,000kgf,圧縮
強度37,000kgfで、±6,000kgfの繰返
し負荷を2×06 回与えた後でも疲労による破損が生じ
なかった。しかし、伸びがエンド部で10.2%,連結
棒部で11.2%,接合部で12.5%と低い値を示
し、応力腐食割れ試験の結果ではエンド部,連結棒部及
び接合部の何れにも応力腐食割れが検出された。そのた
め、トルクロッドとして不適当であった。
Comparative Example 3: An aluminum alloy of alloy number 5 was replaced with 45
Ends were made of material extruded hot at 0 ° C., cooled, held at 120 ° C. for 4 hours, and then held at 170 ° C. for 7 hours. The connecting rod was also manufactured from the aluminum alloy of alloy number 5 by the same process. Connect these ends and connecting rods to MI
The torque rod obtained by G welding has a tensile strength of 4
At 000 kgf, compression load of 36,000 kgf, ±
Damage due to fatigue the repeated load of 6,000kgf even after giving 2 × 0 6 times did not occur. However, the elongation was 10.1% at the end, 11.2% at the connecting rod, and 1% at the joint.
The value was as low as 3.0%, and the stress corrosion cracking test showed that the stress corrosion cracking was detected in any of the end portion, the connecting rod portion, and the joint portion. Therefore, it was unsuitable as a torque rod. The torque rod joined end to the connecting rod by friction welding, tensile strength 41,000Kgf, with compressive strength 37,000Kgf, damage due to fatigue even after giving 2 × 0 6 times repeated load ± 6,000Kgf Did not occur. However, the elongation showed a low value of 10.2% at the end portion, 11.2% at the connecting rod portion, and 12.5% at the joint portion. According to the results of the stress corrosion cracking test, the end portion, the connecting rod portion and the joint portion showed low values. In any of the samples, stress corrosion cracking was detected. Therefore, it was unsuitable as a torque rod.

【0021】[0021]

【発明の効果】以上に説明したように、本発明において
は、成分が規制され、特定条件下で熱処理が施されたア
ルミ合金押出し材でエンド部材及び連結棒部材を作製
し、これらエンド部材及び連結棒部材を溶接又は圧接す
ることにより、従来から使用されている鉄製のトルクロ
ッドとほぼ同じ寸法・形状で鉄製に匹敵する特性をもつ
アルミ合金押出し材製のトルクロッドを得ている。特に
間接押出しによって製造されたアルミ合金押出し形材か
ら得られたエンドは、優れた性質を呈する。このアルミ
合金押出し材製トルクロッドは、鉄製に比較して55〜
60%程度に軽量化されており、しかもエンド部に圧入
するブッシュやトルクロッドを固定する部品に対する設
計変更の必要性がなく、従来の鉄製トルクロッドと同様
に使用され、トラックの軽量化に寄与する。
As described above, in the present invention, an end member and a connecting rod member are manufactured from an extruded aluminum alloy material whose components are regulated and subjected to heat treatment under specific conditions. By welding or pressing the connecting rod members, a torque rod made of an extruded aluminum alloy material having substantially the same size and shape as a conventionally used iron torque rod and having properties comparable to iron is obtained. In particular, ends obtained from extruded aluminum alloy sections produced by indirect extrusion exhibit excellent properties. This extruded aluminum alloy torque rod is 55 to 55 mm
The weight is reduced by about 60%, and there is no need to change the design of the bush and the parts that fix the torque rod into the end part. It is used like a conventional iron torque rod and contributes to the weight reduction of the truck. I do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 エンド及び連結棒に三分割した従来の鉄製ト
ルクロッドの側面図
FIG. 1 is a side view of a conventional iron torque rod divided into three parts, an end and a connecting rod.

【図2】 同鉄製トルクロッドの平面図FIG. 2 is a plan view of the iron torque rod.

【図3】 アルミ合金押出し形材の輪切りにより作製さ
れるエンド
Fig. 3 Ends made by cutting aluminum alloy extrusions

【図4】 本発明実施例でアルミ合金押出し形材製エン
ド(a)をアルミ合金押出しパイプ製連結棒に溶接又は
圧接したトルクロッドの一部(b)
FIG. 4 shows a part (b) of a torque rod obtained by welding or pressing an end (a) made of an extruded aluminum alloy into a connecting rod made of an extruded aluminum alloy pipe in an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,2:エンド 3:連結棒 4:環状部
5:連結部 6:MIG溶接又は摩擦圧接した接合部
1,2: end 3: connecting rod 4: annular part
5: Connection part 6: MIG welded or friction-welded joint

フロントページの続き (72)発明者 山田 達 静岡県庵原郡蒲原町蒲原1丁目34番1号 日本軽金属株式会社グループ技術センター 内 (72)発明者 土屋 健二 静岡県庵原郡蒲原町蒲原1丁目34番1号 日本軽金属株式会社グループ技術センター 内 (72)発明者 樋野 治道 静岡県庵原郡蒲原町蒲原1丁目34番1号 日本軽金属株式会社グループ技術センター 内 (72)発明者 堀田 元司 静岡県庵原郡蒲原町蒲原1丁目34番1号 日本軽金属株式会社グループ技術センター 内Continued on the front page (72) Inventor Tatsu Yamada 1-34-1 Kambara, Kambara-cho, Abara-gun, Shizuoka Prefecture Inside the Nippon Light Metal Co., Ltd. Group Technology Center (72) Inventor Kenji Tsuchiya 1-34, Kambara-cho, Kambara-cho, Abara-gun, Shizuoka No. 1 Nippon Light Metal Co., Ltd. Group Technology Center (72) Inventor Harumichi Hino 1-34-1 Kambara-cho, Kambara-cho, Abara-gun, Shizuoka Prefecture Nippon Light Metal Co., Ltd. Group Technology Center (72) Inventor Genji Hotta, Kambara, Ahara-gun, Shizuoka Prefecture 1-334-1, Machibara, Nippon Light Metal Co., Ltd. Group Technology Center

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 環状部に連結部が一体化された断面をも
つアルミ押出し形材を輪切りにして作製したエンドにア
ルミ押出しパイプ製の連結棒を溶接又は圧接したトルク
ロッドにおいて、アルミ押出し形材及びアルミ押出しパ
イプがZn:4.0〜6.5重量%,Mg:0.5〜
2.0重量%,Cu:0.01〜0.2重量%,Mn:
0.2〜0.7重量%,Cr:0.05〜0.3重量
%,Zr:0.05〜0.25重量%,Fe:0.01
〜0.4重量%を含む組成をもつアルミ合金で、押出し
後、430〜480℃に加熱し、空冷又は炉冷したもの
であるトルクロッド。
1. A torque rod in which a connecting rod made of an aluminum extruded pipe is welded or pressed against an end formed by cutting an aluminum extruded shape having a cross section in which a connecting portion is integrated with an annular portion, and the aluminum extruded shape is used. And aluminum extruded pipes have Zn: 4.0-6.5% by weight, Mg: 0.5-
2.0% by weight, Cu: 0.01 to 0.2% by weight, Mn:
0.2 to 0.7% by weight, Cr: 0.05 to 0.3% by weight, Zr: 0.05 to 0.25% by weight, Fe: 0.01
A torque rod made of an aluminum alloy having a composition containing about 0.4% by weight, extruded, heated to 430 to 480 ° C., and air-cooled or furnace-cooled.
【請求項2】 環状部に連結部が一体化された断面をも
つアルミ押出し形材を輪切りにして作製したエンドにア
ルミ押出しパイプ製の連結棒を溶接又は圧接したトルク
ロッドにおいて、アルミ押出し形材及びアルミ押出しパ
イプがZn:4.0〜6.5重量%,Mg:0.5〜
2.0重量%,Cu:0.01〜0.2重量%,Mn:
0.2〜0.7重量%,Cr:0.05〜0.3重量
%,Zr:0.05〜0.25重量%,Fe:0.01
〜0.4重量%を含む組成をもつアルミ合金を430〜
480℃で押し出した後、空冷又は炉冷したものである
トルクロッド。
2. A torque rod in which a connecting rod made of an aluminum extruded pipe is welded or pressed against an end formed by cutting an aluminum extruded shape having a cross section in which a connecting portion is integrated with an annular portion, and the aluminum extruded shape is used. And aluminum extruded pipes have Zn: 4.0-6.5% by weight, Mg: 0.5-
2.0% by weight, Cu: 0.01 to 0.2% by weight, Mn:
0.2 to 0.7% by weight, Cr: 0.05 to 0.3% by weight, Zr: 0.05 to 0.25% by weight, Fe: 0.01
430-0.4% by weight of aluminum alloy
A torque rod extruded at 480 ° C. and then air-cooled or furnace-cooled.
【請求項3】 請求項1又は2記載の合金組成におい
て、更にTi:0.005〜0.2重量%,B:0.0
001〜0.05重量%及びV:0.01〜0.1重量
%の1種又は2種以上を含むトルクロッド。
3. The alloy composition according to claim 1, further comprising: 0.005 to 0.2% by weight of Ti;
A torque rod containing one or more of 001 to 0.05% by weight and V: 0.01 to 0.1% by weight.
【請求項4】 空冷又は炉冷後に、110〜130℃に
23〜25時間保持する時効処理、又は115〜125
℃に3〜6時間保持した後で170〜180℃に6〜8
時間保持する時効処理を施したアルミ押出し形材製のエ
ンドをアルミ押出しパイプ製の連結棒に溶接又は圧接し
た請求項1〜3の何れかに記載のトルクロッド。
4. An aging treatment in which air or furnace cooling is maintained at 110 to 130 ° C. for 23 to 25 hours, or 115 to 125.
6 to 8 hours after holding at 3 to 6 hours at 170 to 180 ° C.
The torque rod according to any one of claims 1 to 3, wherein an end made of an extruded aluminum member subjected to an aging treatment for holding for a time is welded or pressed to a connecting rod made of an extruded aluminum pipe.
【請求項5】 熱処理前,熱処理中又は熱処理後のアル
ミ押出し形材を輪切りしてエンドを作製し、該エンドを
アルミ押出しパイプ製の連結棒に溶接又は圧接すること
を特徴とする請求項1〜4の何れかに記載のトルクロッ
ドの製造方法。
5. An end is produced by cutting the extruded aluminum material before, during or after the heat treatment to produce an end, and the end is welded or pressed to a connecting rod made of an extruded aluminum pipe. 5. The method for manufacturing a torque rod according to any one of claims 1 to 4.
JP17711296A 1996-06-17 1996-06-17 Aluminum torque rod and method of manufacturing the same Pending JPH108178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17711296A JPH108178A (en) 1996-06-17 1996-06-17 Aluminum torque rod and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17711296A JPH108178A (en) 1996-06-17 1996-06-17 Aluminum torque rod and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JPH108178A true JPH108178A (en) 1998-01-13

Family

ID=16025376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17711296A Pending JPH108178A (en) 1996-06-17 1996-06-17 Aluminum torque rod and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JPH108178A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044642A1 (en) * 2006-10-05 2008-04-17 Showa Denko K.K. Aluminum alloy forged product and method of producing the same
CN112338458A (en) * 2020-04-20 2021-02-09 陕西德仕汽车部件(集团)有限责任公司 Manufacturing process of V-shaped thrust rod

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044642A1 (en) * 2006-10-05 2008-04-17 Showa Denko K.K. Aluminum alloy forged product and method of producing the same
CN112338458A (en) * 2020-04-20 2021-02-09 陕西德仕汽车部件(集团)有限责任公司 Manufacturing process of V-shaped thrust rod

Similar Documents

Publication Publication Date Title
JP3398085B2 (en) Aluminum alloy materials for welded structures and their welded joints
EP0804626B1 (en) WELDED CONSTRUCTION OF AlMgMn ALLOY WITH IMPROVED MECHANICAL RESISTANCE
US6531091B2 (en) Muffler made of a titanium alloy
JP5431796B2 (en) Al alloy filler metal
US20170136584A1 (en) Aluminum Welding Filler Metal
JP3114576B2 (en) Torque rod and method of manufacturing the same
JPH108178A (en) Aluminum torque rod and method of manufacturing the same
JPS61104043A (en) Heat resistant and high-strength aluminum alloy
JPH108174A (en) Aluminum torque rod and method of manufacturing the same
JPH0913139A (en) Torque rod and manufacturing method thereof
JP2843326B2 (en) Al alloy for connector
JPH0413830A (en) High strength aluminum alloy for welding excellent in stress corrosion cracking resistance
JPH0913137A (en) Torque rod and manufacturing method thereof
JPH108173A (en) Aluminum torque rod and method of manufacturing the same
JPH03122247A (en) High strength aluminum alloy for welding excellent in stress corrosion cracking resistance
JP2007169699A (en) High strength, high toughness aluminum alloy forging material with excellent corrosion resistance, its manufacturing method, and suspension parts
JPH05105981A (en) Aluminum alloy tube material excellent in heating softening resistance
JPH03122246A (en) High strength aluminum alloy for welding excellent in stress corrosion cracking resistance
JPH06346177A (en) Aluminum alloy for weld structure excellent in stress corrosion cracking resistance and proof stress value after welding
JPH11199994A (en) Zinc phosphate treating method for aluminum alloy welded member and aluminum alloy welding member
JPH0413831A (en) High strength aluminum alloy for welding excellent in stress corrosion cracking resistance
JPH0413836A (en) High strength aluminum alloy for welding excellent in stress corrosion-cracking resistance
JPH06184689A (en) High strength aluminum alloy material for welding
JPH0413829A (en) High strength aluminum alloy for welding excellent in stress corrosion cracking resistance
JPH0413832A (en) High strength aluminum alloy for welding excellent in stress corrosion cracking resistance