JPH03122246A - High strength aluminum alloy for welding excellent in stress corrosion cracking resistance - Google Patents
High strength aluminum alloy for welding excellent in stress corrosion cracking resistanceInfo
- Publication number
- JPH03122246A JPH03122246A JP26185389A JP26185389A JPH03122246A JP H03122246 A JPH03122246 A JP H03122246A JP 26185389 A JP26185389 A JP 26185389A JP 26185389 A JP26185389 A JP 26185389A JP H03122246 A JPH03122246 A JP H03122246A
- Authority
- JP
- Japan
- Prior art keywords
- weight
- stress corrosion
- corrosion cracking
- cracking resistance
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005336 cracking Methods 0.000 title claims abstract description 28
- 230000007797 corrosion Effects 0.000 title claims abstract description 24
- 238000005260 corrosion Methods 0.000 title claims abstract description 24
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 20
- 238000003466 welding Methods 0.000 title claims description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 abstract description 20
- 239000000956 alloy Substances 0.000 abstract description 20
- 239000000463 material Substances 0.000 abstract description 14
- 229910052804 chromium Inorganic materials 0.000 abstract description 4
- 229910052748 manganese Inorganic materials 0.000 abstract description 4
- 229910052796 boron Inorganic materials 0.000 abstract description 3
- 229910052725 zinc Inorganic materials 0.000 abstract description 3
- 229910052726 zirconium Inorganic materials 0.000 abstract description 3
- 229910018571 Al—Zn—Mg Inorganic materials 0.000 abstract description 2
- 229910052742 iron Inorganic materials 0.000 abstract 1
- 229910052709 silver Inorganic materials 0.000 abstract 1
- 229910052720 vanadium Inorganic materials 0.000 abstract 1
- 238000001125 extrusion Methods 0.000 description 18
- 238000012360 testing method Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 7
- 238000005096 rolling process Methods 0.000 description 7
- 238000005242 forging Methods 0.000 description 6
- 238000010998 test method Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229910018569 Al—Zn—Mg—Cu Inorganic materials 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 229910009369 Zn Mg Inorganic materials 0.000 description 1
- 229910007573 Zn-Mg Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Landscapes
- Conductive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、圧延材、押出材、12造材として溶接構造材
に用いられる高力アルミニウム合金に関し。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a high-strength aluminum alloy used for welded structural materials as rolled materials, extruded materials, and 12-molded materials.
さらに詳しくは、耐応力腐食割れ性に優れる溶接用Al
−Zn−Mg系高力アルミニウム合金に関する。For more details, see Aluminum for welding with excellent stress corrosion cracking resistance.
-Relating to a Zn-Mg-based high-strength aluminum alloy.
(従来の技術とその課題) 近年、建築、車両、船舶、航空機等においては。(Conventional technology and its issues) In recent years, in architecture, vehicles, ships, aircraft, etc.
益々薄肉軽量化が進み、溶接可能な高力アルミニウム合
金の要求が高まって来ている。従来、これらの用途に対
するアルミニウム合金としては、Al−Zn−Mg系合
金やA l−Zn−Mg−Cu合金が考えられてきた。As aluminum alloys become thinner and lighter, the demand for weldable high-strength aluminum alloys is increasing. Conventionally, Al-Zn-Mg alloys and Al-Zn-Mg-Cu alloys have been considered as aluminum alloys for these uses.
この種の高力アルミニウム合金は、Zn、Mg量を増加
するに従って高強度になるが、それに伴って応力腐食れ
感受性や溶接割れ感受性が高くなる傾向があり、又、圧
延。This type of high-strength aluminum alloy becomes stronger as the Zn and Mg contents increase, but there is a tendency for stress corrosion susceptibility and weld cracking susceptibility to increase accordingly, and also for rolling.
押出11造等の熱間加工性も劣化してくる。Hot workability, such as extrusion, also deteriorates.
圧延、押出、鍛造等の成形が可能で、構造材に用いられ
る高力アルミニウム合金として代表的なものにA707
5合金がある。該合金の強度はアルミニウム合金の中で
も最高に属するが、Cuを含むため溶接性が著しく劣り
、接合はボルト締め。A707 is a typical high-strength aluminum alloy used for structural materials, and can be formed by rolling, extrusion, forging, etc.
There are 5 alloys. The strength of this alloy is among the highest among aluminum alloys, but because it contains Cu, weldability is extremely poor, and joints are bolted.
リベット等の機械的接合によらなければならない。Must be mechanically joined by rivets, etc.
また、該合金は応力腐食割れ感受性が高いため。Additionally, the alloy is highly susceptible to stress corrosion cracking.
従来は本来最高強度が得られる熱処理であるT6処理で
は、応力腐食割れが起こる危険があるためそれよりさら
に高い温度又は長い時間の焼き戻しを行い組織を安定化
させたT7処理で使用することが多い。Conventionally, the T6 treatment, which is the heat treatment that originally provides the highest strength, has the risk of stress corrosion cracking, so it cannot be used with the T7 treatment, which stabilizes the structure by tempering at a higher temperature or for a longer time. many.
7000系アルミニウム合金の中で、圧延、押出、鍛造
等の成形が可能で、しかも溶接性、耐応力腐食割れ性に
優れたアルミニウム合金としてはA7NOlが良く知ら
れている。また、押出性の良好なA7003も溶接性、
耐応力腐食割れ性に優れたアルミニウム合金である。し
かしながらこれらの合金では強度が比較的低いため、更
に強度を要する用途には適さなかった。上記のごと〈従
来の技術では強度、耐応力腐食割れ性、溶接性の全ての
面で満足が得られ、しかも押出、圧延、鍛造等の成形性
にも優れたアルミニウム合金を得ることは甚だ困難であ
った。Among the 7000 series aluminum alloys, A7NOl is well known as an aluminum alloy that can be formed by rolling, extrusion, forging, etc., and has excellent weldability and stress corrosion cracking resistance. In addition, A7003 with good extrudability also has good weldability.
An aluminum alloy with excellent stress corrosion cracking resistance. However, these alloys have relatively low strength and are therefore unsuitable for applications requiring higher strength. As mentioned above, it is extremely difficult to obtain an aluminum alloy that satisfies all aspects of strength, stress corrosion cracking resistance, and weldability using conventional techniques, and also has excellent formability through extrusion, rolling, forging, etc. Met.
(発明が解決しようとする課題) 本発明は、従来の技術では解決できなかった。(Problem to be solved by the invention) The present invention cannot be solved using conventional techniques.
強度、耐応力腐食割れ性、溶接性の全ての面で満足が得
られ、しかも、押出、圧延、鍛造等の成形性にも優れた
材料を提供することを目的とするものである。The purpose is to provide a material that is satisfactory in all aspects of strength, stress corrosion cracking resistance, and weldability, and that is also excellent in formability by extrusion, rolling, forging, etc.
(課題を解決するための手段)
本発明者らは、前述の様な事情に着目し、上記したごと
き2強度、耐応力腐食割れ性、溶接性の全ての面で満足
が得られ、しかも、押出、圧延。(Means for Solving the Problems) The present inventors focused on the above-mentioned circumstances, and found that satisfaction was obtained in all aspects of the above-mentioned two strengths, stress corrosion cracking resistance, and weldability, and moreover, Extrusion, rolling.
鍛造等の成形性にも優れたアルミニウム合金の開発を期
して1合金成分の種類、含有率を変えて種々検討した。With the aim of developing an aluminum alloy with excellent formability in forging and other processes, various studies were conducted by changing the type and content of one alloy component.
その結果、下記のごとく合金成分の種類、含有率を特定
してやれば上記の目的を達成できることを見出し1本発
明の完成をみた。As a result, it was discovered that the above object could be achieved by specifying the types and content of alloy components as described below, and the present invention was completed.
即ち1本発明に係る耐応力腐食割れに優れる溶接用高力
アルミニウム合金の構成とは、Zn4〜7重量%、Mg
0.3〜3.0重量%、Ag0.03〜1.0重量%、
F e0.01〜1重量%重量T i 0.005
〜0.2重量%、 V0.01〜0.2重量%を含有し
、かつ。That is, 1. The composition of the high-strength aluminum alloy for welding having excellent stress corrosion cracking resistance according to the present invention is as follows: 4 to 7% by weight of Zn, Mg
0.3-3.0% by weight, Ag0.03-1.0% by weight,
F e0.01-1wt% Weight T i 0.005
~0.2% by weight, V0.01~0.2% by weight, and.
M n 0.01〜1.5重量%、 Cr 0.01
〜0.6重量%。Mn 0.01-1.5% by weight, Cr 0.01
~0.6% by weight.
Z r 0.01〜0.25重重量、 B0.0O
O1〜0.08重置火のうちの少なくとも1種または2
種以上を含み残りアルミニウム及び不可避不純物からな
るところが要旨である。Z r 0.01-0.25 weight, B0.0O
At least one or two of O1 to 0.08 double fire
The gist is that it contains more than 100% of aluminum and the remaining aluminum and unavoidable impurities.
(作用)
本発明に係る上記アルミニウム合金の成分の種類と含有
率の限定理由について説明すると次のとおりである。(Function) The reasons for limiting the types and contents of the components of the aluminum alloy according to the present invention are as follows.
Znは、硬化要素として合金の強度の増大のために不可
欠の元素であり、含有量が4重量%未満ではその効果が
少なく57重量%を越えると耐応力腐食割れ性、溶接性
、加工性が劣化する。Znの最も好ましい含有量は4〜
7重量%である。Zn is an essential element for increasing the strength of alloys as a hardening element, and if the content is less than 4% by weight, its effect will be small, and if it exceeds 57% by weight, stress corrosion cracking resistance, weldability, and workability will deteriorate. to degrade. The most preferable content of Zn is 4~
It is 7% by weight.
Mgは、これもZnと同様に強度向上に不可欠な元素で
あり、含有量が0.3重量%未満では充分な強度が得ら
れず、3.0重量%を越えて含有されると耐応力腐食割
れ性、溶接性、加工性が劣化する。よって、Mgの最も
好ましい含有量は0.3〜3.0重量%である。Mg, like Zn, is an element essential for improving strength; if the content is less than 0.3% by weight, sufficient strength cannot be obtained, and if the content exceeds 3.0% by weight, the stress resistance will decrease. Corrosion cracking, weldability, and workability deteriorate. Therefore, the most preferable Mg content is 0.3 to 3.0% by weight.
Agは、耐応力腐食割れ性及び強度を向上させる元素で
あり、含有量が0.03重量%未満ではその効果が少な
く、1.0重量%を越えて含有させると溶接性が劣化す
る。よって、Agの最も好ましい含有量は0.03〜1
.0重量%である。Ag is an element that improves stress corrosion cracking resistance and strength. If the content is less than 0.03% by weight, the effect will be small, and if the content is more than 1.0% by weight, weldability will deteriorate. Therefore, the most preferable content of Ag is 0.03 to 1
.. It is 0% by weight.
Feは、溶接性を向上させる元素であり、含有量が0.
01重量%未満ではそのな効果が少なく。Fe is an element that improves weldability, and the content is 0.
If it is less than 0.01% by weight, the effect will be small.
1.0重量%を越えて含有させると靭性、加工性が劣化
する。よって、Feの最も好ましい含有量は0.01−
1.0重量%である。If the content exceeds 1.0% by weight, toughness and workability will deteriorate. Therefore, the most preferable content of Fe is 0.01-
It is 1.0% by weight.
Tiは、m織を微細化し、溶接性を向上させる元素であ
るが、含有量が0.oos重量%未満ではそのな効果が
少なく 、−0,2重量%を越えて含有させると巨大化
合物が発生し靭性、加工性が劣化する危険性がある。よ
って、Tiの最も好ましい含有量は0.oos〜0.2
重量%である。Ti is an element that refines the m weave and improves weldability, but when the content is 0. If the content is less than 0.00% by weight, the effect will be small, and if the content exceeds -0.2% by weight, there is a risk that giant compounds will be generated and the toughness and workability will deteriorate. Therefore, the most preferable Ti content is 0. oos~0.2
Weight%.
■は、耐応力腐食割れ性を向上させる元素であり、含有
量が0.01重量%未満ではその勾、効果が少なく、0
.2重量%を越えて含有させると靭性劣化させる。よっ
て、■の最も好ましい含有量は0.01〜0.2重量%
である。(2) is an element that improves stress corrosion cracking resistance, and if the content is less than 0.01% by weight, its slope and effect will be small;
.. If the content exceeds 2% by weight, the toughness will deteriorate. Therefore, the most preferable content of ■ is 0.01 to 0.2% by weight.
It is.
Mn、Cr、Zr、Bは、いずれも組織安定化のために
含有させる元素であり、1種または2種以上添加するも
のであるが、含有量がMn0.01重量%未満、Cr0
.01重量%未満、Zr0.01重量%未満、 B0.
0OO1重量%未満では結晶粒微細化の効果が少なくな
り、また、Mn3.0重量%、Cr0.6重量%、
Zr0.25m1Jt%、 B0.01l1重量%を
越えて含有されると巨大化合物が発生し、靭性、加工性
を劣化させる危険がある。Mn, Cr, Zr, and B are all elements that are added to stabilize the structure, and one or more types are added, but when the content is less than 0.01% by weight of Mn, Cr
.. 01% by weight, less than 0.01% by weight of Zr, B0.
If 0OO is less than 1% by weight, the effect of grain refinement will be reduced, and if Mn is 3.0% by weight, Cr is 0.6% by weight,
If the content exceeds 0.25 ml 1 Jt% of Zr and 0.01 ml 1 weight % of B, a giant compound will be generated and there is a risk of deteriorating toughness and workability.
尚本発明合金において、Si、Cu、Niは。In the alloy of the present invention, Si, Cu, and Ni are.
不純物として、Si0.2重量%未満、Cu0.03重
量%未満、 N i0.03重量%未満に制限すること
が必要である。それぞれ制限値を越えて含有されると溶
接性を低下させる。It is necessary to limit the impurities to less than 0.2% by weight of Si, less than 0.03% by weight of Cu, and less than 0.03% by weight of Ni. If each content exceeds the limit value, weldability will be deteriorated.
(実施例) 以下に本発明の一実施例について説明する。(Example) An embodiment of the present invention will be described below.
第1表に示す本発明合金、比較材、及び従来合金の組成
の合金を半連続水冷鋳造装置を用いて押出用鋳塊(9イ
ンチ径)に鋳造した。この9インチ径の棒状鋳塊を47
0℃で12時間均質化処理した後、430℃に加熱して
押出機によって、それぞれ厚さ5mm、幅100mmの
平角材に押出した。押出加工するに際して、前記平角材
が表面欠陥や割れ発生が無く押出し得る最高押出速度を
もって、各合金の押出性の良否を評価した。その結果を
第2表に示す、各々の材料は押出後、460′Cで1時
間の溶体化処理後焼入し、120°Cで24時間の焼戻
し処理を行った。Alloys having the compositions of the present alloy, comparative material, and conventional alloy shown in Table 1 were cast into extrusion ingots (9 inch diameter) using a semi-continuous water-cooled casting device. This 9-inch diameter rod-shaped ingot was
After homogenizing at 0°C for 12 hours, the mixture was heated to 430°C and extruded using an extruder into rectangular pieces each having a thickness of 5 mm and a width of 100 mm. During extrusion processing, the extrudability of each alloy was evaluated using the maximum extrusion speed at which the rectangular material could be extruded without surface defects or cracks. The results are shown in Table 2. After extrusion, each material was solution-treated at 460'C for 1 hour, quenched, and tempered at 120°C for 24 hours.
このようにして製造した材料について、引張試験、応力
腐食割れ試験、及び溶接割れ試験を行った結果を第2表
に併記した。なお、試験方法を下記に示す。Table 2 also shows the results of tensile tests, stress corrosion cracking tests, and weld cracking tests performed on the materials produced in this manner. The test method is shown below.
〔1)加工性(押出性)
(a)押出条件 :鋳塊サイズ−・−・−・−9インチ
径(219ms+φ)
押出温度・・−−一−−・・・・−430°C(b)押
出サイズ:5alIIlxlOOI(c)評価方法 :
押出速度がA7075と同等か否かにより判定した。[1) Workability (extrudability) (a) Extrusion conditions: Ingot size: -9 inch diameter (219ms+φ) Extrusion temperature: -430°C (b ) Extrusion size: 5alIIlxlOOI (c) Evaluation method:
Judgment was made based on whether the extrusion speed was equivalent to A7075.
O・・・・A7075の限界押出
速度以上
×・・−・A7075の限界押出
速度未満
(2)引張試験
(a)試験片 : JIS Z 2201の5号試験
片(b)試験方法 :アムスラー万能試験機。O...More than the limit extrusion speed of A7075 ×...Less than the limit extrusion speed of A7075 (2) Tensile test (a) Test piece: JIS Z 2201 No. 5 test piece (b) Test method: Amsler universal test Machine.
JIS Z 2241に基づき試験する。Test based on JIS Z 2241.
(c)ijl!I定値 :引張強さ、耐力、伸びを測
定し1次の基準で判定する。(c)ijl! I constant value: Measure tensile strength, yield strength, and elongation and judge based on primary standards.
0−一 引張強さ50 kgf/am”以上Δ・・・−
引張強さ40kgf/1Ila+”以上50kgf/l
ll11!未満
×−・・−引張強さ40 kgf/m+m”未満(3)
応力腐食割れ試験
(a)試験片 : JIS 118711の1号試験
片(b)試験方法 : 、LrS H8711に基づく
。0-1 Tensile strength 50 kgf/am" or more Δ...-
Tensile strength 40kgf/1Ila+" or more 50kgf/l
ll11! Less than x-...-Tensile strength less than 40 kgf/m+m" (3)
Stress corrosion cracking test (a) Test piece: No. 1 test piece of JIS 118711 (b) Test method: Based on LrS H8711.
応力負荷・−1号試験片用ジ グを用いて耐力の75%を負荷 試験液、浸漬・3.5xNaC1液。Stress load / No. 1 test piece load 75% of proof strength using Test solution, immersion/3.5x NaCl solution.
交互浸漬(周期10分浸漬。Alternate immersion (10 minute immersion cycle).
50分乾燥)30日間
(C)評価 :応力腐食割れ発生の有無観察×−・
−・割れ発生
○・・−・割れ発生せず
(4)溶接割れ試験
(b)溶接条件 :溶接方法−・・−T I G溶加材
−・・−一−−−−−使用せず
電極−・・・−−−−−一・・・トリウム入りタングス
テン棒、 3.2mmφ
溶接電流−・・・・・ 1BOA
アーク電圧−・−19■
溶接速度−−−30cm/win
アルゴンガス流Ji −−−1042/ll1n(c)
割れ評価 :割れ長さ測定し9次の基準で判定する。50 minutes drying) 30 days (C) Evaluation: Observation of occurrence of stress corrosion cracking ×-・
-Cracking ○...No cracking (4) Weld cracking test (b) Welding conditions: Welding method---TIG filler metal---1---Not used Electrode-------Thorium-filled tungsten rod, 3.2mmφ Welding current---1BOA Arc voltage---19■ Welding speed---30cm/win Argon gas flow Ji ---1042/ll1n(c)
Crack evaluation: Measure the crack length and judge based on the 9th standard.
0−・・割れ長さ30mm未満
Δ・−・・割れ長さ301℃1m以上50mm未満×−
・・割れ長さ50mm以上
表の結果より1本発明例によるものはいずれも。0-...Crack length less than 30mm Δ--Crack length 301℃ 1m or more and less than 50mm ×-
...Crack length: 50 mm or more According to the results in the table, none of the products according to the present invention were tested.
押出加工性0強度、耐応力腐食割れ性、溶接性の全てに
おいて優れていたのに対し、比較合金、従来合金はいず
れかの特性で劣っていた。It was excellent in all of extrusion workability, strength, stress corrosion cracking resistance, and weldability, whereas the comparative alloy and conventional alloy were inferior in any of the properties.
(発明の効果)
本発明においては、上述したところから既に理解しうる
ように、溶接構造用アルミニウム合金として5従来合金
を凌ぐ高強度を有し、かつ耐応力腐食割れ性に優れてお
り、しかも押出加工、圧延加工、鍛造加工等の熱間加工
性を保有した溶接構造用アルミニウム合金を提供しうる
ちのであり。(Effects of the Invention) As can be understood from the above, the present invention provides an aluminum alloy for welded structures that has higher strength than the conventional alloy 5, and has excellent stress corrosion cracking resistance. We provide aluminum alloys for welded structures that have hot workability such as extrusion, rolling, and forging.
従来合金による場合に比べ、更に溶接構造材としての薄
肉軽量化の要請に好適に対応しうるものである。Compared to conventional alloys, this material can better meet the demands for thinner and lighter welded structural materials.
第1図はフィッシュボーン形割れ試験片を示す平面図で
ある。
■・・・フィッシュボーン形割れ試験片、 1a・・
・溶接ビード、 1b・・・溶接割れ、 1c・・
・割れ長さ、 1d・・・溶接方向。FIG. 1 is a plan view showing a fishbone crack test piece. ■...Fishbone-shaped crack test piece, 1a...
・Weld bead, 1b...Weld crack, 1c...
・Crack length, 1d...Welding direction.
Claims (1)
0.03〜1.0重量%、Fe0.01〜1重量%、T
i0.005〜0.2重量%、V0.01〜0.2重量
%を含有し、かつ、Mn0.01〜1.5重量%、Cr
0.01〜0.6重量%、Zr0.01〜0.25重量
%、B0.0001〜0.08重量%のうちの少なくと
も1種または2種以上を含み、残りアルミニウム及び不
可避不純物からなることを特徴とする耐応力腐食割れ性
に優れた溶接用高力アルミニウム合金。Zn4-7% by weight, Mg0.3-3.0% by weight, Ag
0.03-1.0% by weight, Fe0.01-1% by weight, T
Contains i0.005-0.2% by weight, V0.01-0.2% by weight, and Mn0.01-1.5% by weight, Cr
Contains at least one or two or more of 0.01 to 0.6% by weight, 0.01 to 0.25% by weight of Zr, and 0.0001 to 0.08% by weight of B, with the remainder consisting of aluminum and inevitable impurities. A high-strength aluminum alloy for welding with excellent stress corrosion cracking resistance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26185389A JPH03122246A (en) | 1989-10-06 | 1989-10-06 | High strength aluminum alloy for welding excellent in stress corrosion cracking resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26185389A JPH03122246A (en) | 1989-10-06 | 1989-10-06 | High strength aluminum alloy for welding excellent in stress corrosion cracking resistance |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03122246A true JPH03122246A (en) | 1991-05-24 |
Family
ID=17367659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26185389A Pending JPH03122246A (en) | 1989-10-06 | 1989-10-06 | High strength aluminum alloy for welding excellent in stress corrosion cracking resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03122246A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6590777B2 (en) | 2001-03-29 | 2003-07-08 | Keihin Corporation | Control unit incorporating pressure sensor |
EP1885897A2 (en) * | 2005-05-25 | 2008-02-13 | Howmet Corporation | An al-zn-mg-ag high-strength alloy for aerospace and automotive castings |
CN107164669A (en) * | 2017-05-02 | 2017-09-15 | 江苏晶王新材料科技有限公司 | It is wrought aluminium alloy and preparation method thereof that a kind of easy processing, which reclaims 7, |
US11103919B2 (en) | 2014-04-30 | 2021-08-31 | Alcoa Usa Corp. | 7xx aluminum casting alloys, and methods for making the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59118865A (en) * | 1982-12-25 | 1984-07-09 | Kobe Steel Ltd | Production of al-zn-mg alloy having excellent weldability and resistance to stress corrosion cracking |
JPS61238937A (en) * | 1985-04-12 | 1986-10-24 | Showa Alum Corp | High-strength aluminum alloy for welding construction material excelling in extrudability and stress corrosion cracking resistance |
-
1989
- 1989-10-06 JP JP26185389A patent/JPH03122246A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59118865A (en) * | 1982-12-25 | 1984-07-09 | Kobe Steel Ltd | Production of al-zn-mg alloy having excellent weldability and resistance to stress corrosion cracking |
JPS61238937A (en) * | 1985-04-12 | 1986-10-24 | Showa Alum Corp | High-strength aluminum alloy for welding construction material excelling in extrudability and stress corrosion cracking resistance |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6590777B2 (en) | 2001-03-29 | 2003-07-08 | Keihin Corporation | Control unit incorporating pressure sensor |
EP1885897A2 (en) * | 2005-05-25 | 2008-02-13 | Howmet Corporation | An al-zn-mg-ag high-strength alloy for aerospace and automotive castings |
EP1885897A4 (en) * | 2005-05-25 | 2008-06-18 | Howmet Corp | An al-zn-mg-ag high-strength alloy for aerospace and automotive castings |
US11103919B2 (en) | 2014-04-30 | 2021-08-31 | Alcoa Usa Corp. | 7xx aluminum casting alloys, and methods for making the same |
CN107164669A (en) * | 2017-05-02 | 2017-09-15 | 江苏晶王新材料科技有限公司 | It is wrought aluminium alloy and preparation method thereof that a kind of easy processing, which reclaims 7, |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4554088B2 (en) | Peel-resistant aluminum-magnesium alloy | |
JP3594272B2 (en) | High strength aluminum alloy for welding with excellent stress corrosion cracking resistance | |
US6440583B1 (en) | Aluminum alloy for a welded construction and welded joint using the same | |
JP5431796B2 (en) | Al alloy filler metal | |
JPH09104940A (en) | High-tensile aluminum-copper base alloy excellent in weldability | |
CA3078333C (en) | Austenitic stainless steel weld metal and welded structure | |
US2985530A (en) | Metallurgy | |
JP5431795B2 (en) | Welding method of Al material | |
JPH03122248A (en) | High strength aluminum alloy for welding excellent in stress corrosion cracking resistance | |
JPH03122246A (en) | High strength aluminum alloy for welding excellent in stress corrosion cracking resistance | |
JPH06142980A (en) | Welding material for austenitic stainless steel having excellent high-temperature strength | |
JPH03122243A (en) | High strength aluminum alloy plate material for welding excellent in stress corrosion cracking resistance | |
JPH0413830A (en) | High strength aluminum alloy for welding excellent in stress corrosion cracking resistance | |
JPH03122247A (en) | High strength aluminum alloy for welding excellent in stress corrosion cracking resistance | |
JPH0413833A (en) | High strength aluminum alloy for welding excellent in stress corrosion cracking resistance | |
JPH042741A (en) | High strength aluminum alloy for welding excellent in stress corrosion cracking resistance | |
JPH0413831A (en) | High strength aluminum alloy for welding excellent in stress corrosion cracking resistance | |
JPH0413838A (en) | High strength aluminum alloy for welding excellent in stress corrosion-cracking resistance | |
JP3123682B2 (en) | High strength aluminum alloy material for welding | |
JPH03122245A (en) | High strength aluminum alloy for welding excellent in stress corrosion cracking resistance | |
JPH0413832A (en) | High strength aluminum alloy for welding excellent in stress corrosion cracking resistance | |
JPH0413839A (en) | High strength aluminum alloy for welding excellent in stress corrosion-cracking resistance | |
JPH0413829A (en) | High strength aluminum alloy for welding excellent in stress corrosion cracking resistance | |
JPH0413837A (en) | High strength aluminum alloy for welding excellent in stress corrosion-cracking resistance | |
JPH0413836A (en) | High strength aluminum alloy for welding excellent in stress corrosion-cracking resistance |