JPH09115509A - Alkaline storage battery and its manufacture - Google Patents

Alkaline storage battery and its manufacture

Info

Publication number
JPH09115509A
JPH09115509A JP7268220A JP26822095A JPH09115509A JP H09115509 A JPH09115509 A JP H09115509A JP 7268220 A JP7268220 A JP 7268220A JP 26822095 A JP26822095 A JP 26822095A JP H09115509 A JPH09115509 A JP H09115509A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
alkaline
strontium
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7268220A
Other languages
Japanese (ja)
Inventor
Hiroko Sakai
宏子 坂井
Katsumi Yamashita
勝己 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7268220A priority Critical patent/JPH09115509A/en
Publication of JPH09115509A publication Critical patent/JPH09115509A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To restrain oxidation of a hydrogen storage alloy negative electrode and the degradation by componental dissolution by containing hydrogen storage alloy and a prescribed compound in the negative electrode. SOLUTION: An alkaline storage battery is composed of a postive electrode mainly composed of a metallic oxide, a negative electrode mainly composed of hydrogen storage alloy, a separator and alkaline electrolyte. Hydrogen storage alloy and a strontium compound or the hydrogen storage alloy and a nuobium compound are contained in this negative electrode. Then, oxidation of the hydrogen storage alloy negative electrode and the degradation by componental dissolution are sufficiently restrained even at high temperature time or the like more than when strontium or niobium whose dissolving quantity in alkaline electrolyte is a trace quantity is contained, and a long service life and highly reliable alkaline storage battery whose perserving characteristic is enhanced while keeping highly efficient discharge performance still high, can be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はアルカリ蓄電池とそ
の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to an alkaline storage battery and a method for manufacturing the same.

【0002】[0002]

【従来の技術】正極に水酸化ニッケル、負極に水素吸蔵
合金、電解質にアルカリ水溶液を用いたニッケル水素蓄
電池は、エネルギー密度が大きく、また鉛やカドミウム
のような重金属を含まない電池として近年注目されてい
る。この水素吸蔵合金を負極とするアルカリ蓄電池では
充放電サイクルの繰り返しにより負極を構成する水素吸
蔵合金粉末の酸化や成分金属の一部が溶解することによ
り性能が劣化していく。
2. Description of the Related Art A nickel-hydrogen storage battery using nickel hydroxide for the positive electrode, a hydrogen storage alloy for the negative electrode, and an alkaline aqueous solution for the electrolyte has recently attracted attention as a battery having a large energy density and containing no heavy metals such as lead and cadmium. ing. In the alkaline storage battery having the hydrogen storage alloy as the negative electrode, the performance deteriorates due to the oxidation of the hydrogen storage alloy powder forming the negative electrode and the dissolution of a part of the component metals by repeating the charge / discharge cycle.

【0003】そのための対策として、例えば特開平3ー
280362号公報には、アルカリ電解液中にストロン
チウムやバリウムのようなアルカリ土類金属イオンを添
加することにより、アルカリ土類金属イオンが水分子を
水和水として強力に補足するため、添加量が微量であっ
ても、高率放電特性が高いままに保存特性を向上させる
ことが開示されている。
As a countermeasure therefor, for example, in Japanese Unexamined Patent Publication (Kokai) No. 3-280362, alkaline earth metal ions such as strontium and barium are added to an alkaline electrolyte so that the alkaline earth metal ions form water molecules. It is disclosed that even if the addition amount is very small, the high-rate discharge characteristic is kept high and the storage characteristic is improved in order to strongly supplement it as hydration water.

【0004】また、特開平1ー265453号公報に
は、その組成としてアルカリ土類金属を含有する水素吸
蔵合金を負極として用いることにより、この合金粒子間
の固結化を抑制し、サイクル特性や高率放電特性を向上
させること方法が開示されている。
Further, in JP-A-1-265453, by using a hydrogen storage alloy containing an alkaline earth metal as its composition as a negative electrode, it is possible to suppress the solidification between the alloy particles and to improve the cycle characteristics and A method of improving high rate discharge characteristics is disclosed.

【0005】また特公昭58−36661号公報には、
Ti−Fe系水素吸蔵合金のFeと置換する成分金属の
一つとしてニオブを用いることができ、その置換量を最
適範囲とすれば、水素の貯蔵・放出特性が改善されるこ
とが開示されている。
Further, Japanese Patent Publication No. 58-36661 discloses that
It has been disclosed that niobium can be used as one of the component metals substituting for Fe in the Ti-Fe-based hydrogen storage alloy, and if the amount of substitution is within the optimum range, hydrogen storage / release characteristics are improved. There is.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上記従来
の、アルカリ電解液にストロンチウムやバリウムなどの
アルカリ土類金属イオンを添加する方法では、特にスト
ロンチウムではアルカリ電解液中での溶解量が微量であ
るため、水素吸蔵合金の成分元素が激しく酸化、溶出さ
れる場合にその抑制効果が小さく、特に高温における充
放電サイクルの寿命低下が著しい場合に、それを抑制す
る効果が不十分であるという問題点があった。
However, in the above-mentioned conventional method of adding alkaline earth metal ions such as strontium and barium to the alkaline electrolyte, the amount of strontium dissolved in the alkaline electrolyte is very small. However, when the constituent elements of the hydrogen storage alloy are violently oxidized and eluted, the suppressing effect is small, and especially when the life shortening of the charge / discharge cycle at a high temperature is remarkable, there is a problem that the suppressing effect is insufficient. there were.

【0007】また上記従来の水素吸蔵合金の組成中にス
トロンチウムやニオブを含有させる方法においても、高
温における激しい合金の酸化、溶解に対する抑制効果は
不十分であった。
Further, even in the conventional method of incorporating strontium or niobium into the composition of the hydrogen storage alloy, the effect of suppressing the severe oxidation and dissolution of the alloy at high temperature is insufficient.

【0008】本発明は、上記問題点を解決し、水素吸蔵
合金負極の酸化、および成分溶解による劣化を抑制して
長寿命で信頼性の高いアルカリ蓄電池を供給することを
目的とするものである。
An object of the present invention is to solve the above problems and to provide a highly reliable alkaline storage battery having a long life by suppressing the oxidation of the hydrogen storage alloy negative electrode and the deterioration due to the dissolution of the components. .

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明のアルカリ蓄電池は、金属酸化物を主体とし
た正極と、水素吸蔵合金を主体とした負極と、セパレー
タと、アルカリ電解液とからなり、前記負極は水素吸蔵
合金とストロンチウム化合物またはニオブ化合物から選
ばれた少なくとも一つとを含有する構成である。
In order to achieve the above object, the alkaline storage battery of the present invention comprises a positive electrode mainly composed of a metal oxide, a negative electrode mainly composed of a hydrogen storage alloy, a separator, and an alkaline electrolyte. The negative electrode comprises a hydrogen storage alloy and at least one selected from a strontium compound and a niobium compound.

【0010】また、水素吸蔵合金の粉末からなるペース
トを導電基体に塗布または充填し、水酸化ストロンチウ
ムまたはストロンチウム塩またはニオブ酸塩を含む溶液
に浸漬した後、ストロンチウム塩またはニオブ酸塩を含
む溶液に浸漬したものはアルカリ浸漬し、水洗し、その
後乾燥する構成である。
Further, a paste made of a powder of a hydrogen storage alloy is applied to or filled in a conductive substrate, immersed in a solution containing strontium hydroxide or a strontium salt or niobate, and then a solution containing strontium salt or niobate. The soaked product is soaked in an alkali, washed with water, and then dried.

【0011】[0011]

【発明の実施の形態】ストロンチウムは、比重1.30
の水酸化カリウム水溶液中に、極微量(10 -2mol/
l程度)溶解する。そのため上記の構成によって、水素
吸蔵合金粉末と混合したストロンチウム化合物は電解液
中で極微量溶解し、水素吸蔵合金粉末の表面には水酸化
ストロンチウムが再析出し、被膜が形成される。アルカ
リ電解液中での水酸化ストロンチウムの被膜が、水素吸
蔵合金の酸化、溶解を抑制するため、合金の劣化が抑制
され、高温寿命サイクルが向上する。
DETAILED DESCRIPTION OF THE INVENTION Strontium has a specific gravity of 1.30.
Trace amount (10 -2mol /
Dissolve (about l). Therefore, with the above configuration, hydrogen
Strontium compound mixed with occlusion alloy powder is electrolyte
It dissolves in a very small amount in the
Strontium is redeposited and a film is formed. Arca
The film of strontium hydroxide in the electrolyte solution absorbs hydrogen.
Suppresses the deterioration and deterioration of the alloy by suppressing the oxidation and melting of the alloy
Therefore, the high temperature life cycle is improved.

【0012】なお合金組成中のストロンチウムでは、ア
ルカリ電解液中への前記のような溶解析出はできず、ま
た電解液中にストロンチウムを添加する方法では含有さ
せるストロンチウム量はわずかであるため上記した効果
が発揮できない。
It should be noted that strontium in the alloy composition cannot be dissolved and precipitated in an alkaline electrolyte as described above, and the amount of strontium contained in the method of adding strontium to the electrolyte is very small. Cannot be demonstrated.

【0013】また、ニオブ化合物においても同じく、水
素吸蔵合金粉末に混入したニオブ化合物は、アルカリ電
解液中にニオブ酸イオンとなって合金表面に錯化合物を
生成し、合金の酸化、溶解を抑制する。しかし、合金組
成中のニオブにおいては、金属ニオブがすべてのpH領
域において不働態であるため、前記のような効果を奏す
ことはできない。
Also in the niobium compound, the niobium compound mixed in the hydrogen-absorbing alloy powder becomes niobate ions in the alkaline electrolyte to form a complex compound on the surface of the alloy, which suppresses oxidation and dissolution of the alloy. . However, in niobium in the alloy composition, since the metal niobium is in a passive state in all pH regions, the above effect cannot be obtained.

【0014】また、ストロンチウム化合物およびニオブ
化合物が負極全体に高分散に分布し、かつ負極内の隙間
部分に入り込むため、合金間の抵抗を下げることなく、
水酸化ストロンチウムの被膜およびニオブの錯化合物形
成が負極合金表面全体に均一に行われる。そのため水素
吸蔵合金の酸化、溶解抑制効果は負極合金全体に作用
し、一層高温寿命サイクル特性劣化の抑制効果が高ま
る。
Further, since the strontium compound and the niobium compound are distributed in a high dispersion throughout the negative electrode and enter the gap portion in the negative electrode, the resistance between the alloys is not lowered.
The strontium hydroxide film and the niobium complex compound are formed uniformly on the entire surface of the negative electrode alloy. Therefore, the effect of suppressing the oxidation and dissolution of the hydrogen storage alloy acts on the entire negative electrode alloy, and the effect of suppressing the deterioration of the high temperature life cycle characteristics is further enhanced.

【0015】[0015]

【実施例】【Example】

(実施例1)市販のMm(ミッシュメタル Misch
metal:希土類元素の混合物からなり、ここでの
Mmの組成は重量%でLa 31,Ce 48,Nd
15,Pr 5,その他 1である。)、Ni、Co、
Al、Mnから構成される試料を、一定の組成比に秤
量、混合し、アーク溶解により加熱溶解させ、CaCu
5型の結晶構成を有し、組成がMmNi3.5Co0.75Al
0.3Mn0.4の負極用の水素吸蔵合金とした。この合金を
ボールミルにより粉砕し、平均粒径20μm程度とし
た。この合金粉末に水酸化ストロンチウムを水素吸蔵合
金量に対して1重量%の割合で添加した。さらにカルボ
キシメチルセルロースの1重量%水溶液を加えてペース
ト状とし、これを多孔度95%の発泡ニッケル多孔体か
らなる導電基体内に充填し、これを乾燥後所定の厚みに
プレスして、水素吸蔵合金電極を作成した。この電極を
負極とし、公知の発泡メタル式ニッケル正極と、ポリプ
ロピレン不織布をスルホン化したセパレータで渦巻き状
電極群を構成して、これを金属ケースに挿入して、水酸
化カリウム水溶液(比重1.30)を電解液として注液
した後、封口を行った。このようにして密閉型アルカリ
蓄電池を作製し、本発明の実施例である電池Aとした。
 (Example 1) Commercially available Mm (Misch Metal Misch
 metal: consists of a mixture of rare earth elements,
The composition of Mm is La 31, Ce 48, Nd in% by weight.
15, Pr 5, and others 1. ), Ni, Co,
Weigh a sample composed of Al and Mn to a certain composition ratio
Amount, mix, heat melt by arc melting, CaCu
FiveType crystal structure and composition is MmNi3.5Co0.75Al
0.3Mn0.4Was used as a hydrogen storage alloy for the negative electrode. This alloy
Grind with a ball mill to an average particle size of about 20 μm
Was. Hydrogen absorption of strontium hydroxide in this alloy powder
It was added at a ratio of 1% by weight with respect to the amount of gold. Further carbo
Pace by adding 1% by weight aqueous solution of xymethylcellulose
To form a foamed nickel porous body with a porosity of 95%
It is filled in a conductive substrate consisting of
By pressing, a hydrogen storage alloy electrode was prepared. This electrode
As the negative electrode, a well-known metal foam nickel type positive electrode
Swirl-shaped separator made of sulfonated ropylene non-woven fabric
Configure an electrode group, insert it into a metal case, and
Injection using aqueous potassium chloride solution (specific gravity 1.30) as electrolyte
After that, it was sealed. In this way the sealed alkali
A storage battery was produced and designated as battery A, which is an example of the present invention.

【0016】次に第一の従来例として、水素吸蔵合金に
水酸化ストロンチウムを添加せずに前記実施例と同様に
構成した電池を従来例による電池Bとした。
Next, as a first conventional example, a battery constructed in the same manner as the above example without adding strontium hydroxide to a hydrogen storage alloy was designated as a conventional battery B.

【0017】次に前記の従来例において、水酸化カリウ
ム水溶液(比重1.30)中に水酸化ストロンチウムを
飽和量まで溶解させた溶液を電解液として用いる電池を
第2の従来例による電池Cとした。
Next, in the above-mentioned conventional example, a battery using a solution prepared by dissolving strontium hydroxide to a saturated amount in an aqueous solution of potassium hydroxide (specific gravity 1.30) as an electrolytic solution is referred to as a battery C according to a second conventional example. did.

【0018】次に第3の従来例として、水素吸蔵合金の
組成にストロンチウムを添加し、合金組成をMmNi
3.5Co0.75Al0.3Mn0.4Sr0.05とした水素吸蔵合
金を得、これを負極に用いて、前記第2の従来例と同様
に構成した電池を従来例による電池Dとした。
Next, as a third conventional example, strontium was added to the composition of the hydrogen storage alloy, and the alloy composition was changed to MmNi.
A hydrogen storage alloy with 3.5 Co 0.75 Al 0.3 Mn 0.4 Sr 0.05 was obtained, and this was used as a negative electrode, and a battery configured in the same manner as the second conventional example was used as a conventional battery D.

【0019】前記の各種電池について、高温における充
放電サイクル試験を行った。サイクル特性は65℃にお
いて1/3CmA相当の電流で、4.5時間充電した
後、1CmA相当の電流で完全放電を行うサイクルを繰
り返し、サイクルによる容量変化を評価した。
A charge / discharge cycle test at a high temperature was performed on each of the above-mentioned various batteries. Regarding the cycle characteristics, a cycle of charging at a current equivalent to ⅓ CmA at 65 ° C. for 4.5 hours and then performing a complete discharge at a current equivalent to 1 CmA was repeated to evaluate the capacity change due to the cycle.

【0020】図1は、1サイクル目の容量を100とし
た場合の容量維持率と充放電サイクル数との関係を表す
図である。図中Aは本発明電池、B,C,Dは従来例電
池をそれぞれ示す。この図から明らかなように本発明の
水素吸蔵合金粉末に、水酸化ストロンチウムを添加した
負極を用いた電池では、従来例である水素吸蔵合金に水
酸化ストロンチウムを添加しない電池Bや、電解液にの
みストロンチウムを添加する電池Cや、水素吸蔵合金組
成内にストロンチウムを添加する電池Dに比べ、大幅に
高温時の充放電サイクル特性が向上している。また水酸
化ストロンチウムの効果は、酸化ストロンチウムを添加
した場合についても同様であった。
FIG. 1 is a diagram showing the relationship between the capacity retention rate and the number of charge / discharge cycles when the capacity of the first cycle is 100. In the figure, A indicates the battery of the present invention, and B, C, and D indicate conventional batteries. As is clear from this figure, in the battery using the negative electrode in which strontium hydroxide was added to the hydrogen storage alloy powder of the present invention, in the battery B in which strontium hydroxide was not added to the hydrogen storage alloy which is the conventional example, and in the electrolytic solution, The charge-discharge cycle characteristics at high temperature are significantly improved as compared with the battery C in which only strontium is added and the battery D in which strontium is added in the hydrogen storage alloy composition. The effect of strontium hydroxide was the same when strontium oxide was added.

【0021】(実施例2)実施例1で作製した水素吸蔵
合金に添加する水酸化ストロンチウムの量を種々に変化
させて電池のサイクル寿命を調べた。
(Example 2) The cycle life of the battery was examined by changing the amount of strontium hydroxide added to the hydrogen storage alloy produced in Example 1 in various ways.

【0022】水酸化ストロンチウムの添加量は、水素吸
蔵合金に対して、ストロンチウム換算で0.01〜2.
5重量%の間で変化させた。その他は実施例1と同様に
して密閉型アルカリ蓄電池を作製し、充放電サイクル試
験を行った。図2は、水酸化ストロンチウムの添加量に
よる、1サイクル目の容量を100とした場合の500
サイクル目の容量維持率の関係を表す図である。この図
から明らかなように、水酸化ストロンチウムの添加量が
0.05〜2.0重量%において充放電サイクル特性の
向上がみられた。この範囲外では、添加量が極端に多く
なると合金粒子間の抵抗が上がり放電が十分できなくな
り、また添加量が極端に少ないと合金表面への水酸化ス
トロンチウムの被膜の形成が十分されないため、サイク
ル寿命低下を抑制する効果が小さくなると推測される。
The amount of strontium hydroxide added is 0.01 to 2.
Vary between 5% by weight. Otherwise, a sealed alkaline storage battery was prepared in the same manner as in Example 1, and a charge / discharge cycle test was conducted. FIG. 2 shows 500 when the capacity in the first cycle is 100, depending on the amount of strontium hydroxide added.
It is a figure showing the relationship of the capacity maintenance rate of the cycle. As is clear from this figure, when the amount of strontium hydroxide added was 0.05 to 2.0% by weight, the charge-discharge cycle characteristics were improved. If the amount added is outside this range, the resistance between alloy particles will increase and discharge will not be sufficient, and if the amount added is too small, the formation of a strontium hydroxide film on the alloy surface will not be sufficient, so the cycle It is presumed that the effect of suppressing the shortening of the life is reduced.

【0023】(実施例3)実施例1で作製した水素吸蔵
合金粉末に、カルボキシルメチルセルロースの1重量%
水溶液を加えてペースト状にし、これを多孔度約95%
の発泡状ニッケル多孔体内に充填した。これを乾燥後所
定の厚みにフ゜レスして、水素吸蔵電極とした。この水素吸
蔵合金電極を濃度1mol/lの水酸化ストロンチウム
の90℃の熱水溶液中に約1分間浸漬した後、100℃
で30分乾燥した。この浸漬により、水酸化ストロンチ
ウムは負極板中全体の合金の隙間部分に分散される。こ
れを負極として用い、その他は実施例1と同様にして密
閉型アルカリ蓄電池を作成した。これを本発明の実施例
による電池Eとし、充放電サイクル試験を行った。図3
は、本実施例の製法で作製した電池Eと、実施例1の製
法で作製した電池Aについて、1サイクル目の容量を1
00とした場合の容量維持率と充放電サイクル数との関
係を表す図である。この結果より本発明の製造方法を用
い、ストロンチウム化合物を負極全体に高分散に分布さ
せることにより、水酸化ストロンチウムの被膜形成が負
極合金表面全体に行われ、その結果高温における充放電
サイクル寿命の低下を抑制する効果がさらに向上する。
なお水酸化ストロンチウムの効果は酢酸ストロンチウム
のようなストロンチウム塩を添加した場合についても同
様であったが、その場合はアルカリ浸漬、水洗、乾燥の
工程により陰イオンを除去する必要がある。
(Example 3) 1% by weight of carboxymethyl cellulose was added to the hydrogen storage alloy powder prepared in Example 1.
Add an aqueous solution to make a paste, which has a porosity of about 95%.
Was filled in the foamed nickel porous body. This was dried and pressed into a predetermined thickness to obtain a hydrogen storage electrode. This hydrogen storage alloy electrode was immersed in a hot aqueous solution of strontium hydroxide having a concentration of 1 mol / l at 90 ° C. for about 1 minute, and then at 100 ° C.
For 30 minutes. By this immersion, the strontium hydroxide is dispersed in the gaps of the entire alloy in the negative electrode plate. A sealed alkaline storage battery was prepared in the same manner as in Example 1 except that this was used as a negative electrode. This was designated as Battery E according to an example of the present invention, and a charge / discharge cycle test was conducted. FIG.
Is a battery E manufactured by the manufacturing method of this example and a battery A manufactured by the manufacturing method of Example 1 with a capacity of 1 cycle.
It is a figure showing the relationship between a capacity maintenance rate and the number of charge / discharge cycles when it is set to 00. From this result, by using the production method of the present invention, by distributing the strontium compound in a high dispersion throughout the negative electrode, the film formation of strontium hydroxide is performed on the entire negative electrode alloy surface, resulting in a decrease in charge-discharge cycle life at high temperature. The effect of suppressing is further improved.
The effect of strontium hydroxide was the same as in the case of adding a strontium salt such as strontium acetate, but in that case, it is necessary to remove anions by the steps of alkali immersion, washing with water and drying.

【0024】(実施例4)実施例1で作製した水素吸蔵
合金粉末に、水酸化ストロンチウムに代えて酸化ニオブ
を水素吸蔵合金量に対し、2重量%の割合で添加した。
さらにカルボキシメチルセルロースの1重量%水溶液を
加えてペースト状とし、これを多孔度95%の発泡ニッ
ケル多孔体からなる導電基体内に充填し、これを乾燥後
所定の厚みにプレスして、水素吸蔵合金電極を作製し
た。この電極を負極とし、公知の発泡メタル式ニッケル
正極と、ポリプロピレン不織布をスルホン化したセパレ
ータで渦巻き状電極群を構成して、これを金属ケースに
挿入して、水酸化カリウム水溶液(比重1.30)を電
解液として注液した後、封口を行った。このようにして
AAサイズの密閉型アルカリ蓄電池を得、本発明の実施
例である電池Fを得た。
Example 4 Niobium oxide was added to the hydrogen storage alloy powder prepared in Example 1 in place of strontium hydroxide at a ratio of 2% by weight based on the amount of hydrogen storage alloy.
Further, a 1 wt% aqueous solution of carboxymethyl cellulose was added to form a paste, which was filled into a conductive substrate made of a foamed nickel porous body having a porosity of 95%, which was dried and then pressed to a predetermined thickness to obtain a hydrogen storage alloy. An electrode was prepared. This electrode is used as a negative electrode, and a known foamed metal nickel positive electrode and a separator made of sulfonated polypropylene non-woven fabric constitute a spiral electrode group, which is inserted into a metal case to form an aqueous potassium hydroxide solution (specific gravity 1.30). ) Was injected as an electrolytic solution, and then a sealing was performed. In this way, an AA size sealed alkaline storage battery was obtained, and a battery F that was an example of the present invention was obtained.

【0025】次に第1の従来例として、水素吸蔵合金に
酸化ニオブを添加せずに前記実施例と同様に構成した電
池を従来例による電池Gとする。
Next, as a first conventional example, a battery constructed in the same manner as the above example without adding niobium oxide to the hydrogen storage alloy is referred to as a conventional battery G.

【0026】次に第2の従来例として、水素吸蔵合金の
組成にニオブを添加した合金を作製しMmNi3.5Co
0.75Al0.3Mn0.4Nb0.05なる水素吸蔵合金を得、こ
れを負極とし、前記実施例と同様に構成した電池を従来
例による電池Hとする。
Next, as a second conventional example, an alloy in which niobium was added to the composition of a hydrogen storage alloy was prepared to prepare MmNi 3.5 Co.
A hydrogen storage alloy of 0.75 Al 0.3 Mn 0.4 Nb 0.05 was obtained, and this was used as a negative electrode, and a battery configured in the same manner as in the above-described embodiment was used as a conventional battery H.

【0027】前記の各種電池について、高温における充
放電サイクル試験を行った。サイクル特性は65℃にお
いて1/3CmA相当の電流で、4.5時間充電した
後、1CmA相当の電流で完全放電を行うサイクルを繰
り返し、サイクルによる容量変化を評価した。
A charge / discharge cycle test at a high temperature was conducted on each of the above-mentioned various batteries. Regarding the cycle characteristics, a cycle of charging at a current equivalent to ⅓ CmA at 65 ° C. for 4.5 hours and then performing a complete discharge at a current equivalent to 1 CmA was repeated to evaluate the capacity change due to the cycle.

【0028】図4は、1サイクル目の容量を100とし
た場合の容量維持率と充放電サイクル数との関係を表す
図である。図中Fは本発明電池G,Hは従来例電池をそ
れぞれ示す。この図から明らかなように本発明の水素吸
蔵合金粉末に酸化ニオブを添加した負極を用いた電池で
は、従来例である水素吸蔵合金組成内にニオブを添加す
る電池に比べ、大幅に高温時の充放電サイクル特性が向
上していることがわかる。
FIG. 4 is a diagram showing the relationship between the capacity retention rate and the number of charge / discharge cycles when the capacity of the first cycle is 100. In the figure, F shows the batteries G and H of the present invention, and conventional batteries. As is clear from this figure, in the battery using the negative electrode in which niobium oxide was added to the hydrogen storage alloy powder of the present invention, compared with the battery in which niobium was added in the hydrogen storage alloy composition of the conventional example, the temperature was significantly higher. It can be seen that the charge / discharge cycle characteristics are improved.

【0029】(実施例5)実施例4で作製した水素吸蔵
合金に添加する酸化ニオブの量を種々に変化させて電池
のサイクル寿命を調べた。
(Embodiment 5) The cycle life of the battery was examined by changing the amount of niobium oxide added to the hydrogen storage alloy produced in Embodiment 4 in various ways.

【0030】酸化ニオブの添加量は、水素吸蔵合金に対
して、ニオブ換算で0.1〜4.0重量%の間で変化さ
せた。その他は実施例4と同様にして密閉型アルカリ蓄
電池を作製し、充放電サイクル試験を行った。図4は、
酸化ニオブの添加量による、1サイクル目の容量を10
0とした場合の500サイクル目の容量維持率の関係を
表す図である。この図から明らかなように、酸化ニオブ
の添加量が0.5〜3.0重量%において充放電サイク
ル特性の向上がみられた。
The amount of niobium oxide added was varied between 0.1 and 4.0% by weight in terms of niobium with respect to the hydrogen storage alloy. Otherwise, a sealed alkaline storage battery was produced in the same manner as in Example 4, and a charge / discharge cycle test was performed. Figure 4
Depending on the amount of niobium oxide added, the capacity of the first cycle should be 10
It is a figure showing the relationship of the capacity maintenance rate of the 500th cycle when it is set to 0. As is clear from this figure, the charge / discharge cycle characteristics were improved when the amount of niobium oxide added was 0.5 to 3.0% by weight.

【0031】(実施例6)実施例4で作製した水素吸蔵
合金粉末に、カルボキシルメチルセルロースの1重量%
水溶液を加えてペースト状にし、これを多孔度約95%
の発泡状ニッケル多孔体内に充填した。これを乾燥後所
定の厚みにプレスして、水素吸蔵電極とした。この水素
吸蔵合金電極を濃度1mol/lのニオブ酸ナトリウム
水溶液中に約1分間浸漬した後、100℃で30分乾燥
した。この浸漬により、ニオブ酸は負極板中全体の合金
の隙間部分に分散される。これを負極として用い、その
他は実施例1と同様にして密閉型アルカリ蓄電池を作製
した。これを電池Iとし、充放電サイクル試験を行っ
た。図6は、本実施例の製法で作製した電池Iと、実施
例4の製法で作製した電池Fについて、1サイクル目の
容量を100とした場合の容量維持率と充放電サイクル
数との関係を表す図である。この結果より本発明の製造
方法を用い、ニオブ酸塩を負極全体に高分散に分布させ
ることにより、高温における充放電サイクル寿命の低下
抑制効果が向上する。
(Example 6) 1 wt% of carboxymethyl cellulose was added to the hydrogen storage alloy powder prepared in Example 4.
Add an aqueous solution to make a paste, which has a porosity of about 95%.
Was filled in the foamed nickel porous body. This was dried and then pressed to a predetermined thickness to form a hydrogen storage electrode. This hydrogen storage alloy electrode was immersed in an aqueous sodium niobate solution having a concentration of 1 mol / l for about 1 minute, and then dried at 100 ° C. for 30 minutes. By this immersion, niobic acid is dispersed in the gaps of the entire alloy in the negative electrode plate. A sealed alkaline storage battery was produced in the same manner as in Example 1 except that this was used as a negative electrode. This was designated as Battery I and subjected to a charge / discharge cycle test. FIG. 6 shows the relationship between the capacity retention rate and the number of charge / discharge cycles in the case where the battery I manufactured by the manufacturing method of this example and the battery F manufactured by the manufacturing method of Example 4 have a capacity of 100 in the first cycle. It is a figure showing. From this result, by using the production method of the present invention and distributing the niobate in a high dispersion throughout the negative electrode, the effect of suppressing the reduction of the charge / discharge cycle life at high temperature is improved.

【0032】[0032]

【発明の効果】以上のように、本発明のアルカリ蓄電池
によれば、水素吸蔵合金粉末にストロンチウム化合物ま
たはニオブ化合物から選ばれた少なくとも一つを添加す
ることにより、合金の劣化が抑制され、高温寿命サイク
ルが向上する。
As described above, according to the alkaline storage battery of the present invention, by adding at least one selected from the strontium compound and the niobium compound to the hydrogen storage alloy powder, the deterioration of the alloy is suppressed and the high temperature Life cycle is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1のアルカリ蓄電池と従来例電
池の充放電サイクル特性を表す図
FIG. 1 is a diagram showing charge / discharge cycle characteristics of an alkaline storage battery of Example 1 of the present invention and a conventional example battery.

【図2】本発明の実施例2のアルカリ蓄電池における水
酸化ストロンチウムの添加量と充放電サイクル特性を表
す図
FIG. 2 is a diagram showing the amount of strontium hydroxide added and the charge / discharge cycle characteristics in the alkaline storage battery of Example 2 of the present invention.

【図3】本発明の実施例3のアルカリ蓄電池と従来例電
池の充放電サイクル特性を表す図
FIG. 3 is a diagram showing charge / discharge cycle characteristics of an alkaline storage battery of Example 3 of the present invention and a conventional example battery.

【図4】本発明の実施例3のアルカリ蓄電池と従来例電
池の充放電サイクル特性を表す図
FIG. 4 is a diagram showing charge / discharge cycle characteristics of an alkaline storage battery of Example 3 of the present invention and a conventional example battery.

【図5】本発明の実施例3のアルカリ蓄電池における酸
化ニオブの添加量と充放電サイクル特性を表す図
FIG. 5 is a diagram showing the amount of niobium oxide added and the charge / discharge cycle characteristics in the alkaline storage battery of Example 3 of the present invention.

【図6】本発明の実施例3のアルカリ蓄電池と従来例電
池の充放電サイクル特性を表す図
FIG. 6 is a diagram showing charge / discharge cycle characteristics of an alkaline storage battery of Example 3 of the present invention and a conventional example battery.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】金属酸化物を主体とした正極と、水素吸蔵
合金を主体とした負極と、セパレータと、アルカリ電解
液からなるアルカリ蓄電池であって、前記負極は水素吸
蔵合金とストロンチウム化合物またはニオブ化合物から
選ばれた少なくとも一つとを含有することを特徴とする
アルカリ蓄電池。
1. An alkaline storage battery comprising a positive electrode mainly composed of a metal oxide, a negative electrode mainly composed of a hydrogen storage alloy, a separator and an alkaline electrolyte, wherein the negative electrode is a hydrogen storage alloy and a strontium compound or niobium. An alkaline storage battery containing at least one selected from compounds.
【請求項2】ストロンチウム化合物が、酸化ストロンチ
ウム、水酸化ストロンチウム、ストロンチウム塩から選
ばれた少なくとも一つであることを特徴とする請求項1
記載のアルカリ蓄電池。
2. The strontium compound is at least one selected from strontium oxide, strontium hydroxide and strontium salt.
The alkaline storage battery according to the above.
【請求項3】ストロンチウム化合物を、水素吸蔵合金量
に対して、ストロンチウム換算で0.05〜2.0重量
%添加することを特徴とする請求項1記載のアルカリ蓄
電池。
3. The alkaline storage battery according to claim 1, wherein the strontium compound is added in an amount of 0.05 to 2.0% by weight in terms of strontium with respect to the amount of hydrogen storage alloy.
【請求項4】ニオブ化合物が、酸化ニオブ、ニオブ酸塩
から選ばれた少なくとも一つであることを特徴とする請
求項1記載のアルカリ蓄電池。
4. The alkaline storage battery according to claim 1, wherein the niobium compound is at least one selected from niobium oxide and niobate.
【請求項5】ニオブ化合物を、水素吸蔵合金に対して、
ニオブ換算で0.5〜3.0重量%添加することを特徴
とする請求項1記載のアルカリ蓄電池。
5. A hydrogen storage alloy containing a niobium compound,
The alkaline storage battery according to claim 1, wherein 0.5 to 3.0% by weight in terms of niobium is added.
【請求項6】金属酸化物を主体とした正極と、水素吸蔵
合金を主体とした負極と、セパレータと、アルカリ電解
液からなるアルカリ蓄電池の製造方法であって、前記水
素吸蔵合金の粉末からなるペーストを導電基体に塗布、
または充填し、水酸化ストロンチウムを含む溶液に浸漬
した後、乾燥をすることを特徴とするアルカリ蓄電池の
製造方法。
6. A method of manufacturing an alkaline storage battery comprising a positive electrode mainly composed of a metal oxide, a negative electrode mainly composed of a hydrogen storage alloy, a separator, and an alkaline electrolyte, which comprises a powder of the hydrogen storage alloy. Apply the paste to the conductive substrate,
Alternatively, a method for manufacturing an alkaline storage battery is characterized in that it is filled, immersed in a solution containing strontium hydroxide, and then dried.
【請求項7】金属酸化物を主体とした正極と、水素吸蔵
合金を主体とした負極と、セパレータと、アルカリ電解
液からなるアルカリ蓄電池の製造方法であって、前記水
素吸蔵合金の粉末からなるペーストを導電基体に塗布、
または充填し、ストロンチウム塩を含む溶液に浸漬した
後、アルカリ浸漬し、水洗、乾燥することを特徴とする
アルカリ蓄電池の製造方法。
7. A method of manufacturing an alkaline storage battery comprising a positive electrode mainly composed of a metal oxide, a negative electrode mainly composed of a hydrogen storage alloy, a separator, and an alkaline electrolyte, which comprises a powder of the hydrogen storage alloy. Apply the paste to the conductive substrate,
Alternatively, a method for manufacturing an alkaline storage battery is characterized in that it is filled, immersed in a solution containing a strontium salt, then immersed in an alkali, washed with water, and dried.
【請求項8】金属酸化物を主体とした正極と、水素吸蔵
合金を主体とした負極と、セパレータと、アルカリ電解
液からなるアルカリ蓄電池であって、前記水素吸蔵合金
の粉末のペーストを導電基体に塗布、または充填した極
板を、ニオブ酸のアルカリ金属塩を含む溶液に浸漬した
後、乾燥を行うことを特徴とするアルカリ蓄電池の製造
方法。
8. An alkaline storage battery comprising a positive electrode mainly composed of a metal oxide, a negative electrode mainly composed of a hydrogen storage alloy, a separator and an alkaline electrolyte, wherein a paste of the powder of the hydrogen storage alloy is a conductive substrate. A method for manufacturing an alkaline storage battery, comprising: immersing the electrode plate coated or filled with the above in a solution containing an alkali metal salt of niobate, and then drying.
JP7268220A 1995-10-17 1995-10-17 Alkaline storage battery and its manufacture Pending JPH09115509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7268220A JPH09115509A (en) 1995-10-17 1995-10-17 Alkaline storage battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7268220A JPH09115509A (en) 1995-10-17 1995-10-17 Alkaline storage battery and its manufacture

Publications (1)

Publication Number Publication Date
JPH09115509A true JPH09115509A (en) 1997-05-02

Family

ID=17455588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7268220A Pending JPH09115509A (en) 1995-10-17 1995-10-17 Alkaline storage battery and its manufacture

Country Status (1)

Country Link
JP (1) JPH09115509A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021049198A1 (en) * 2019-09-09 2021-03-18 パナソニック株式会社 Non-aqueous electrolyte secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021049198A1 (en) * 2019-09-09 2021-03-18 パナソニック株式会社 Non-aqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
US5674643A (en) Non-sintered nickel electrode for alkaline storage cell
JPH07326353A (en) Manufacture of hydrogen storage alloy electrode
JPH07122271A (en) Manufacture of nickel hydroxide for nickel pole, manufacture of nickel pole using the nickel hydroxide and alkaline secondary battery incorporating the nickel pole
JPH06215765A (en) Alkaline storage battery and manufacture thereof
JP2889669B2 (en) Non-sintered nickel positive electrode plate for alkaline storage batteries
JPH09115509A (en) Alkaline storage battery and its manufacture
JP3433008B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP3253476B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3788485B2 (en) Alkaline storage battery
JP3183073B2 (en) Active material for nickel electrode and method for producing the same
JP3490866B2 (en) Hydrogen storage alloy electrode for alkaline storage battery and alkaline storage battery using the same
JP4404447B2 (en) Method for producing alkaline storage battery
JPS6188453A (en) Nickel positive electrode for alkaline storage battery
JP2733231B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JP3516312B2 (en) Method for producing hydrogen storage alloy electrode
JP3462682B2 (en) Method for producing hydrogen storage alloy powder
JPH10149824A (en) Manufacture of hydrogen storage alloy electrode
JPS59872A (en) Manufacture of enclosed nickel-cadmium storage battery
JPH0756802B2 (en) Manufacturing method of hydrogen storage electrode
JP3316946B2 (en) Sintered cadmium cathode plate for alkaline storage battery and method of manufacturing the same
JPH11204104A (en) Nickel-hydrogen secondary battery and manufacture of hydrogen storage alloy thereof
JPH1021904A (en) Alkaline storage battery
JP2638055B2 (en) Manufacturing method of paste-type cadmium negative electrode for alkaline storage battery
JP2589750B2 (en) Nickel cadmium storage battery