JPH09111335A - 2相ステンレス鋼の熱処理法 - Google Patents

2相ステンレス鋼の熱処理法

Info

Publication number
JPH09111335A
JPH09111335A JP7266541A JP26654195A JPH09111335A JP H09111335 A JPH09111335 A JP H09111335A JP 7266541 A JP7266541 A JP 7266541A JP 26654195 A JP26654195 A JP 26654195A JP H09111335 A JPH09111335 A JP H09111335A
Authority
JP
Japan
Prior art keywords
stainless steel
duplex stainless
phase
solid solution
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7266541A
Other languages
English (en)
Inventor
Noriyuki Nakashiro
憲行 中城
Motoji Tsubota
基司 坪田
Yoshinori Katayama
義紀 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7266541A priority Critical patent/JPH09111335A/ja
Publication of JPH09111335A publication Critical patent/JPH09111335A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

(57)【要約】 【課題】 高温に長時間加熱されて靭性の低下した2相
ステンレス鋼に対し、フェライト相に析出したσ相を消
失させることにより靭性を回復させることにある。 【解決手段】 高温に晒されることにより靭性の低下し
た2相ステンレス鋼を 900℃以上1040℃以下に保持して
固溶化する固溶化工程と、この固溶化した後に急冷する
急冷工程とから構成される。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、例えば原子力発電
プラント等における配管、ポンプケーシング、バルブケ
ーシング等に用いられている2相ステンレス鋼の熱処理
法に関する。
【0002】
【従来の技術】従来の軽水型原子力発電所において、配
管、ポンプケーシング、バルブケーシング等には耐食
性、強度、溶接性、製造性の観点から2相ステンレス鋼
が使用されていた。この2相ステンレス鋼は、フェライ
ト相およびオーステナイト相からなっている。このた
め、2相ステンレス鋼は、物理的性質、機械的性質など
のうえで、フェライト系、オーステナイト系の中間的な
性格を一般的にもっている。また、この2相ステンレス
鋼は、オーステナイト相に、フェライト相を5〜25%程
度含むものが一般に使用されている。
【0003】
【発明が解決しようとする課題】2相ステンレス鋼に含
まれているフェライト相は、 290〜 500℃の高温に長時
間加熱されると硬化および靭性の低下を生じることが知
られている。これは、フェライト相が長時間加熱される
事によりFe原子とCr原子が周期的に分離する相分
離、つまりFeリッチ相とCrリッチ相に分離する現
象、あるいはフェライト相にσ相が生成するために生じ
るものである。
【0004】また、2相ステンレス鋼の溶接部は、条件
によっては溶接熱影響部での粒界炭化物の形成とそれに
伴なう粒界近傍に於けるCr欠乏層の形成が生じるとと
もに、溶接残留応力が生じる。この様な状態で高温水に
接すると応力腐食割れを生じる場合がある。
【0005】本発明は上記の点を考慮してなされたもの
で、高温に長時間加熱されて靭性の低下した2相ステン
レス鋼に対し、フェライト相に析出したσ相を消失させ
ることにより靭性を回復させる2相ステンレス鋼の熱処
理法を得ることにある。
【0006】
【課題を解決するための手段】上記目的を達成するため
に、請求項1に対応する発明においては、高温に晒され
ることにより靭性の低下した2相ステンレス鋼を 900℃
以上1040℃以下に保持して固溶化する固溶化工程と、こ
の固溶化した後に急冷する急冷工程とを含むことを特徴
とする2相ステンレス鋼の熱処理法を提供する。
【0007】このような工程から成る熱処理法において
は、靭性の低下した2相ステンレス鋼を固溶化し、急冷
することにより、フェライト相に析出したσ相を消失さ
せることができる。
【0008】また、請求項2に対応する発明において
は、前記固溶化工程において、前記2相ステンレス鋼を
1インチ以下の板厚で15分以上、さらに1インチ増加す
る毎に5分保持した後、前記急冷工程において水冷また
は強制空冷することを特徴とする請求項1記載の2相ス
テンレス鋼の熱処理方法を提供する。
【0009】このような工程から成る熱処理法において
は、靭性の低下した2相ステンレス鋼を固溶化し、急冷
することにより、フェライト相に析出したσ相を消失さ
せることができる。
【0010】また、請求項3に対応する発明において
は、前記2相ステンレス鋼の溶接部を900℃以上1040℃
以下に保持して固溶化する固溶化工程と、この固溶化し
た後に急冷する急冷工程とを含むことを特徴とする請求
項1記載の2相ステンレス鋼の熱処理方法を提供する。
【0011】このような工程から成る熱処理法において
は、靭性の低下した2相ステンレス鋼の溶接部のCr欠
乏層を消失させ、初期状態にもどすことができる。ま
た、請求項4に対応する発明においては、前記固溶化工
程において、前記2相ステンレス鋼の溶接部を1インチ
以下の板厚で15分以上、さらに1インチ増加する毎に5
分保持した後、前記急冷工程において水冷または強制空
冷することを特徴とする請求項3記載の2相ステンレス
鋼の熱処理方法を提供する。
【0012】このような工程から成る熱処理法において
は、靭性の低下した2相ステンレス鋼の溶接部のCr欠
乏層を消失させ、初期状態にもどすことができる。ま
た、請求項5に対応する発明においては、前記固溶化工
程において、2相ステンレス鋼を誘導加熱により固熔化
することを特徴とする請求項1乃至4記載の2相ステン
レス鋼の熱処理方法を提供する。
【0013】このような工程から成る熱処理法において
は、靭性の低下した2相ステンレス鋼を誘導加熱により
固溶化することにより、フェライト相に析出したσ相を
消失させることができる。
【0014】
【発明の実施の形態】以下、本発明に係る2相ステンレ
ス鋼の熱処理法の第1実施形態を図1乃至図5を参照し
て説明する。すなわち、長時間加熱により靭性の低下し
た2相ステンレス鋼について、本発明に係る熱処理法に
より回復させる実施形態を以下に説明する。
【0015】まず、図1に、フェライト量19%を含む2
相ステンレス鋼(JIS SCS14A鋼)の化学成分を
示す。本材料は受け入れ時にJIS規格に従って1100℃
に保持後、水冷するという固溶化熱処理を受けた厚さ1
インチの2相ステンレス鋼板(SCS14A鋼)である。
【0016】軽水型原子力発電所の運転温度による加熱
を加速模擬するために、電気炉に於いて大気中 350℃で
20,000時間の加熱を加えた。この様にして製作した熱脆
化材料の靭性,硬さの変化を調べるために、熱脆化前後
でのシャルピー衝撃試験とフェライト相の硬さ測定を行
った。
【0017】次に、この熱脆化した材料の靭性を回復さ
せるための本発明に係る2相ステンレス鋼の熱処理とし
て、電気炉中で 900℃で5分間保持した後、水中で急冷
した。この熱処理後の材料についてもシャルピー衝撃試
験とフェライト相の硬さ測定を行った。
【0018】図2と図3に、受け入れ材・熱脆化材・本
発明の熱処理を施した材料のそれぞれのシャルピー衝撃
試験結果とフェライト相の硬さ測定結果を示す。図2よ
り、熱脆化させた材料の衝撃値は0〜 100℃において受
け入れ材より大きく低下したが、本発明の熱処理を施こ
すと受け入れた状態とほぼ同様な衝撃値まで回復できる
ことが分かる。
【0019】図3に、フェライト相の硬さ測定結果を示
す。受け入れ材に比べ、熱脆化材ではフェライト相の相
分離或いはσ相の析出によるものと考えられる硬度の上
昇が認められた。本発明の熱処理を施こすと受け入れ状
態に近い硬さに回復している。
【0020】2相ステンレス鋼の固溶化工程における温
度について検討する。図5は、約1100℃以下におけるF
e−Cr系状態図である。この図5から分るように、 8
30℃以下の温度において、フェライト相(σ相)の中
で、σ相が固溶している。脆化の原因は、σ相中のσ相
であるから、σ相が消滅する温度 830℃で熱処理を行え
ば良いことが分かる。従って、実用上、σ相が消滅する
時間は 900℃〜1040℃となる。この温度が高過ぎると、
結晶粒度が大きくなり、2相ステンレス鋼の品質に悪影
響を与えるので、実用上1040℃とした。
【0021】図6は、脆化の原因となるフェライト相中
からσ相が消失する特性図である。この図より、固溶化
熱処理温度を 900℃以上1040℃以下とすると、σ相が消
失することが分かる。
【0022】なお、固溶化工程において、誘導加熱によ
り固溶化する場合もある。この誘導加熱とは、脆化した
2相ステンレス鋼を高周波の磁場にかけて、材料内部の
電子を移動させて材料自身を加熱する方法である。
【0023】このように第1実施形態によれば、本発明
に係る2相ステンレス鋼の熱処理法では、熱脆化し靭性
の低下した材料が、フェライト相に析出したσ相を消失
させることにより靭性を回復させあるいは加熱される前
の初期の状態にもどすことができ、2相ステンレス鋼の
健全性を維持することができる。
【0024】次に、第2実施形態である2相ステンレス
鋼溶接熱影響部の耐食性の回復例を以下に示す。受け入
れ材の溶接継手と本発明による熱処理( 900℃×5分
間,水冷)を施した溶接継手についての耐応力腐食割れ
を調べるために次の条件で試験を行った。すなわち、試
料を研磨および脱脂した後に図6で示す治具に固定して
1%の歪を与え、温度 290℃、70気圧、溶存酸素量20pp
m という沸騰水型原子炉(BWR)模擬環境中に 500時
間浸漬した後に取出して、試料の表面に耐応力腐食割れ
があるかどうかを調べた。なお、図6で示す治具は円弧
面をなすホルダ1、2間にグラファイト3およびスペー
サ4とともに試料5を挟んで固定するものである。
【0025】本試験の結果、受け入れ材の溶接継手から
採取した試験片10枚の内、4枚に溶接熱影響で板厚方向
2000μmに対し、約 500〜1000μmの割れが発生した。
一方、本発明による熱処理を施した溶接材料から採取し
た試験片では全く割れは生じていなかった。
【0026】このように本実施形態によれば、本発明に
係る2相ステンレス鋼の熱処理法では、熱脆化し、耐食
性が劣化した溶接部が、靭性を回復させ、加熱前の初期
の状態まで耐食性を回復させ、2相ステンレス鋼の溶接
部の健全性を維持することができる。
【0027】
【発明の効果】請求項1の発明によれば、靭性の低下し
た2相ステンレス鋼を固溶化し、急冷することにより、
フェライト相に析出したσ相を消失させることができる
ので、靭性の低下した2相ステンレス鋼の靭性を回復さ
せ、健全性を維持することができる。
【0028】請求項2の発明によれば、靭性の低下した
2相ステンレス鋼を固溶化し、急冷することにより、フ
ェライト相に析出したσ相を消失させることができるの
で、靭性の低下した2相ステンレス鋼の靭性を回復さ
せ、健全性を維持することができる。
【0029】請求項3の発明によれば、靭性の低下した
2相ステンレス鋼の溶接部のCr欠乏層を消失させ、2
相ステンレス鋼溶接部の健全性を維持することができ
る。請求項4の発明によれば、靭性の低下した2相ステ
ンレス鋼の溶接部のCr欠乏層を消失させ、2相ステン
レス鋼溶接部の健全性を維持することができる。
【0030】請求項5の発明によれば、靭性の低下した
2相ステンレス鋼を誘導加熱により固溶化することによ
り、フェライト相に析出したσ相を消失させることがで
きるので、靭性の低下した2相ステンレス鋼の靭性を回
復させ、健全性を維持することができる。
【図面の簡単な説明】
【図1】本発明に係る2相ステンレス鋼(JIS SC
S14A鋼)の化学成分を示す特性表。
【図2】第1実施形態の2相ステンレス鋼のシャルピー
衝撃試験結果を示す特性図。
【図3】第1実施形態の2相ステンレス鋼のフェライト
相の硬さ測定結果を示す特性図。
【図4】第1実施形態の2相ステンレス鋼のFe−Cr
系状態図。
【図5】第1実施形態の2相ステンレス鋼のフェライト
相中からσ相が消滅する特性図。
【図6】第2実施形態の2相ステンレス鋼溶接熱影響部
に係る耐応力腐食割れ試験装置を示す断面図。
【符号の説明】
1…ホルダ 2…ホルダ 3…グラファイト 4…スペーサ 5…試験片

Claims (5)

    【特許請求の範囲】
  1. 【請求項1】 高温に晒されることにより靭性の低下し
    た2相ステンレス鋼を900℃以上1040℃以下に保持して
    固溶化する固溶化工程と、この固溶化した後に急冷する
    急冷工程とを含むことを特徴とする2相ステンレス鋼の
    熱処理法。
  2. 【請求項2】 前記固溶化工程において、前記2相ステ
    ンレス鋼を1インチ以下の板厚で15分以上、さらに1イ
    ンチ増加する毎に5分保持した後、前記急冷工程におい
    て水冷または強制空冷することを特徴とする請求項1記
    載の2相ステンレス鋼の熱処理方法。
  3. 【請求項3】 前記2相ステンレス鋼の溶接部を 900℃
    以上1040℃以下に保持して固溶化する固溶化工程と、こ
    の固溶化した後に急冷する急冷工程とを含むことを特徴
    とする請求項1記載の2相ステンレス鋼の熱処理方法。
  4. 【請求項4】 前記固溶化工程において、前記2相ステ
    ンレス鋼の溶接部を1インチ以下の板厚で15分以上、さ
    らに1インチ増加する毎に5分保持した後、前記急冷工
    程において水冷または強制空冷することを特徴とする請
    求項3記載の2相ステンレス鋼の熱処理方法。
  5. 【請求項5】 前記固溶化工程において、2相ステンレ
    ス鋼を誘導加熱により固溶化することを特徴とする請求
    項1乃至4記載の2相ステンレス鋼の熱処理方法。
JP7266541A 1995-10-16 1995-10-16 2相ステンレス鋼の熱処理法 Pending JPH09111335A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7266541A JPH09111335A (ja) 1995-10-16 1995-10-16 2相ステンレス鋼の熱処理法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7266541A JPH09111335A (ja) 1995-10-16 1995-10-16 2相ステンレス鋼の熱処理法

Publications (1)

Publication Number Publication Date
JPH09111335A true JPH09111335A (ja) 1997-04-28

Family

ID=17432299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7266541A Pending JPH09111335A (ja) 1995-10-16 1995-10-16 2相ステンレス鋼の熱処理法

Country Status (1)

Country Link
JP (1) JPH09111335A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317289A (ja) * 2005-05-12 2006-11-24 Toshiba Corp 制御棒駆動機構
JP2014148705A (ja) * 2013-01-31 2014-08-21 Mitsubishi Heavy Ind Ltd 二相系ステンレス鋼製構造物製造方法および熱処理装置
JP2015052137A (ja) * 2013-09-06 2015-03-19 株式会社日立製作所 構造体およびその製造方法
SE1950909A1 (en) * 2019-07-31 2021-02-01 Ferritico Ab Duplex steel with improved embrittlement properties and method of producing such

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317289A (ja) * 2005-05-12 2006-11-24 Toshiba Corp 制御棒駆動機構
JP2014148705A (ja) * 2013-01-31 2014-08-21 Mitsubishi Heavy Ind Ltd 二相系ステンレス鋼製構造物製造方法および熱処理装置
JP2015052137A (ja) * 2013-09-06 2015-03-19 株式会社日立製作所 構造体およびその製造方法
SE1950909A1 (en) * 2019-07-31 2021-02-01 Ferritico Ab Duplex steel with improved embrittlement properties and method of producing such

Similar Documents

Publication Publication Date Title
Garcı́a et al. Effects of prior cold work and sensitization heat treatment on chloride stress corrosion cracking in type 304 stainless steels
Kim et al. Creep behaviour and long-term creep life extrapolation of alloy 617 for a very high temperature gas-cooled reactor
JPH09111335A (ja) 2相ステンレス鋼の熱処理法
Chowdhury et al. Failure analysis of a weld repaired steam turbine casing
Natesan et al. Preliminary materials selection issues for the next generation nuclear plant reactor pressure vessel.
White et al. Influence of surface treatment on the metal dusting behavior of alloy 699 XA
JPH09327721A (ja) 溶接性に優れたマルテンサイト系ステンレス溶接鋼管の製造方法
Bandyopadhyay et al. The Effect of phosphorus on intergranular caustic cracking of NiCr steel
Poulson The sensitization of ferritic steels containing less than 12% Cr
JP5070831B2 (ja) オーステナイト系ステンレス鋼
Zheng et al. Effects of cold work on stress corrosion cracking of type 316L stainless steel in hot lithium hydroxide solution
Chitwood et al. A case-history analysis of using plain carbon and alloy steel for completion equipment in CO {sub 2} service
Nanstad et al. and Susan R. Ortner¹ Investigation of Temper Embrittlement in Reactor Pressure Vessel Steels Following Thermal Aging, Irradiation, and Thermal Annealing
Wang et al. Effects of multiple post weld heat treatments on microstructure and precipitate of fine grained heat affected zone of P91 weld
JP2002012916A (ja) 高硬度鋼の応力腐食割れ防止法
Niu et al. Stress corrosion cracking behavior of hardening-treated 13Cr stainless steel
JPS5983717A (ja) 肉盛溶接部の熱処理方法
JP2580407B2 (ja) 耐食性に優れたマルテンサイト系ステンレス鋼継目無鋼管の製造法
Jun et al. Effect of Dissolved Oxygen Level on Stress Corrosion Cracking Susceptibility of Structural Steels
Natesh et al. Effect of Austenitic Filler Wires on Duplex Stainless Steel 2205 Weldment Made by Gas Tungsten Arc Welding
Chopra et al. Embrittlement of cast stainless steels in LWR systems
Peng et al. Grain boundary engineering for enhancing intergranular damage resistance of ferritic/martensitic steel P92
JPS5817823B2 (ja) Crを含有するNi基合金の熱処理方法
Etoh et al. Evaluation of environmental compatibility of EHP (extra high purity) using austenitic stainless steel cladding material
JPH0649915B2 (ja) 原子炉炉心機器用ステンレス鋼とその製造方法