JPH0897271A - Autofocus method - Google Patents

Autofocus method

Info

Publication number
JPH0897271A
JPH0897271A JP25944694A JP25944694A JPH0897271A JP H0897271 A JPH0897271 A JP H0897271A JP 25944694 A JP25944694 A JP 25944694A JP 25944694 A JP25944694 A JP 25944694A JP H0897271 A JPH0897271 A JP H0897271A
Authority
JP
Japan
Prior art keywords
wafer
thickness
autofocus
dicer
microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25944694A
Other languages
Japanese (ja)
Inventor
Kazuma Sekiya
一馬 関家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Abrasive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Abrasive Systems Ltd filed Critical Disco Abrasive Systems Ltd
Priority to JP25944694A priority Critical patent/JPH0897271A/en
Publication of JPH0897271A publication Critical patent/JPH0897271A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To make it possible to shorten remarkedly the working time to take for an autofocus of a dicer by a method wherein information on the thickness of a wafer is previously registered in a CPU, the focal point of a microscope is moved at a stretch from its initial position to a position to reach the error range of an irregularity in thickness and after that, the autofocus is accurately performed. CONSTITUTION: Previously registered information on the thickness (t1 ) of a wafer (In the case where the wafer is adhered on an adhesive tape, the thickness (t1 ) includes the thickness of the tape.) is outputted from a CPU to an alignment means 7, the focal point P of a microscope 7a is moved at a stretch from its initial position to the vicinity of the surface of the wafer W and after that, is step-fed at a resolution of about 2μm, for example, and each time the focal point is step-fed, a differential processing for finding the maximum value of the contrast of an image and the like are conducted on the basis of an image imaged by a CCD camera, whereby the time to take for an autofocus of a dicer is remarkedly shortened and the improvement of the productivity of the dicer can be contrived.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ダイサー等で遂行され
るオートフォーカス方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an autofocus method performed by a dicer or the like.

【0002】[0002]

【従来の技術】図3に示すようにIC等の回路が複数形
成された半導体ウェーハWは、ダイサーによって個々の
回路R(ICチップ)に分割される。この分割に先立
ち、ウェーハの切断ラインS(ストリート)が光学手段
によって検出され、カッティングブレードとの精密アラ
イメントが遂行される。光学手段によるアライメント
は、光学手段を構成するCCDカメラによってウェーハ
上の回路を撮像し、画像処理をすることで遂行される
が、アライメントの精度を高めるために光学手段を構成
する顕微鏡のウェーハに対するオートフォーカスは不可
欠である。オートフォーカスは顕微鏡の焦点を例えば2
μmの分解能でステップ送りし、その都度CCDカメラ
によって撮像した画像(画素濃度情報)によりコントラ
ストの最大値を求めるべく微分処理等の画像処理をして
なされる(特開昭61−198204号公報)。
2. Description of the Related Art A semiconductor wafer W on which a plurality of circuits such as ICs are formed as shown in FIG. 3 is divided into individual circuits R (IC chips) by a dicer. Prior to this division, the cutting line S (street) of the wafer is detected by the optical means, and precise alignment with the cutting blade is performed. The alignment by the optical means is performed by imaging a circuit on the wafer by a CCD camera forming the optical means and performing image processing. However, in order to improve the alignment accuracy, the alignment of the wafer of the microscope of the optical means is performed automatically. Focus is essential. For example, the auto focus is the focus of the microscope 2
The image is subjected to stepwise feeding with a resolution of .mu.m, and image processing such as differential processing is performed to obtain the maximum value of the contrast from the image (pixel density information) taken by the CCD camera each time (Japanese Patent Laid-Open No. 61-198204). .

【0003】[0003]

【発明が解決しようとする課題】上記のような従来のオ
ートフォーカス方法によると、オートフォーカスをすべ
き距離が長いと撮像及び画像処理の回数が増えて長時間
(十数秒)を費やし、生産性の低下を招くという問題点
がある。本発明は、このような従来の問題点を解消する
ためになされ、半導体ウェーハの種類によってウェーハ
の形状、厚さ、ストリート間隔等がユーザー毎に規格化
されていることに着目し、ウェーハの厚さ情報をCPU
に予め登録しておけば、厚さバラツキの誤差範囲に達す
る位置まで顕微鏡の焦点を一気に移動し、その後精密に
オートフォーカスを遂行することにより作業時間を著し
く短縮出来るようにした、オートフォーカス方法を提供
することを課題とする。
According to the conventional autofocus method as described above, if the distance to be autofocused is long, the number of times of imaging and image processing increases and a long time (tens of seconds) is spent, resulting in productivity. However, there is a problem in that The present invention was made in order to solve such conventional problems, focusing on the fact that the wafer shape, thickness, street spacing, etc. are standardized for each user depending on the type of semiconductor wafer, Information to the CPU
If you register it in advance in, the focus of the microscope is moved all the way to the position where the error range of the thickness variation is reached, and then the autofocus is performed precisely, so that the working time can be significantly shortened. The challenge is to provide.

【0004】[0004]

【課題を解決するための手段】前記課題を技術的に解決
するための手段として、本発明は、規格化された半導体
ウェーハの厚さ情報をCPUに登録する工程と、ダイサ
ー等の保持手段に保持されたウェーハを光学手段の直下
に位置付けする工程と、前記ウェーハの厚さ情報に基づ
いて厚さバラツキの誤差範囲に達する位置まで光学手段
の焦点を一気に移動する工程と、この誤差範囲内で精密
にオートフォーカスを遂行する工程と、から構成される
オートフォーカス方法を要旨とする。
As a means for technically solving the above problems, the present invention provides a step of registering standardized semiconductor wafer thickness information in a CPU and a holding means such as a dicer. Positioning the held wafer directly below the optical means, moving the focus of the optical means to a position that reaches an error range of thickness variation based on the thickness information of the wafer, and within this error range The gist of the present invention is an autofocus method including a step of precisely performing autofocus.

【0005】[0005]

【作 用】ウェーハの厚さバラツキの誤差範囲は通常5
0μm以下であり、最大50μmとしても例えば2μm
の分解能でのオートフォーカスに伴う画像処理回数は2
5回程度であり、従来のものに比して著しく少なくな
る。従来は2〜3mm程の距離をオートフォーカスして
いるので、2μmの分解能の場合1000回〜1500
回の画像処理が必要となり、少なくとも20秒程度の時
間を費やしていたが、本発明の場合はオートフォーカス
に費やす時間は1〜2秒程度で済み、生産性の向上を図
ることが出来る。
[Operation] The error range of wafer thickness variation is usually 5
0 μm or less, and even if the maximum is 50 μm, for example, 2 μm
The number of image processings with autofocus at resolution of 2 is 2
It is about 5 times, which is significantly less than the conventional one. Conventionally, a distance of about 2 to 3 mm is auto-focused, so in the case of a resolution of 2 μm, 1000 times to 1500 times.
The image processing has to be performed once, and at least about 20 seconds have been spent, but in the case of the present invention, the time spent for autofocus is only about 1 to 2 seconds, and the productivity can be improved.

【0006】[0006]

【実施例】以下、本発明の実施例について添付図面によ
り詳説する。図1は半導体ウェーハ等を精密研削するダ
イサーの一例を示すもので、上下方向に移動するカセッ
ト載置領域1にカセット2が載置され、このカセット2
内からウェーハW(粘着テープNを介してフレームFに
貼着されている)が搬出入手段3により待機領域4に搬
出されると共に、旋回アームを有する搬送手段5により
チャックテーブル6上に搬送され、このチャックテーブ
ル6にウェーハWを吸引保持した後チャックテーブル6
を動かしてアライメント手段7に位置付けし、アライメ
ントした後に回転ブレード8aを備えた切削手段8でダ
イシングするようになっている。
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. FIG. 1 shows an example of a dicer for precisely grinding a semiconductor wafer or the like. A cassette 2 is placed in a cassette placing area 1 which moves in the vertical direction.
The wafer W (attached to the frame F via the adhesive tape N) is carried out from the inside to the standby area 4 by the carrying-in / carrying-out means 3 and is carried onto the chuck table 6 by the carrying means 5 having a swing arm. , After chucking the wafer W on the chuck table 6, the chuck table 6
Is moved to position on the alignment means 7, and after alignment, dicing is performed by the cutting means 8 provided with the rotary blade 8a.

【0007】前記アライメント手段7はオートフォーカ
ス機能を備えており、前記ウェーハWの切断ラインSを
切削手段8のブレード8aに合わせるアライメントがな
されるが、そのアライメントに先立ってオートフォーカ
スが遂行される。
The alignment means 7 has an autofocus function, and alignment is performed to align the cutting line S of the wafer W with the blade 8a of the cutting means 8. The autofocus is performed prior to the alignment.

【0008】このオートフォーカスは、図2に示すよう
にチャックテーブル6上に吸引保持されたフレームF付
きウェーハWに対して、光学手段であるアライメント手
段7の顕微鏡7aの焦点Pを前記のように例えば2μm
の分解能で下方にステップ送りし、その都度CCDカメ
ラ(図略)によって回路R等を撮像した画像によりデジ
タル変換された画素濃度情報に基づいてコントラストの
最大値を求めるべく微分処理等の画像処理をしてなされ
る。
In this auto focus, as shown in FIG. 2, the focus P of the microscope 7a of the alignment means 7, which is an optical means, is adjusted with respect to the wafer W with the frame F sucked and held on the chuck table 6 as described above. For example, 2 μm
The image is subjected to image processing such as differential processing in order to obtain the maximum value of the contrast based on the pixel density information digitally converted from the image obtained by imaging the circuit R etc. by the CCD camera (not shown) each time. Done.

【0009】前記顕微鏡7aの焦点Pの初期の位置から
ウェーハWの表面迄の距離Lが長いと、前記のように画
像処理の回数が増えて長時間を要することになるが、本
発明ではウェーハWの厚さtをCPUに予め登録してお
き、この厚さ情報に基づいて画像処理の回数を減少さ
せ、処理時間を短縮させるものである。
If the distance L from the initial position of the focal point P of the microscope 7a to the surface of the wafer W is long, the number of image processings increases as described above, and it takes a long time. The thickness t of W is registered in the CPU in advance, and the number of times of image processing is reduced based on this thickness information to shorten the processing time.

【0010】即ち、予め登録されたウェーハWの厚さt
(粘着テープNに貼られている場合はそのテープNの厚
さも含む)情報をCPUからアライメント手段7に出力
し、顕微鏡7aの焦点Pを前記初期の位置からウェーハ
Wの表面近傍まで一気に移動させ、その後前記のような
ステップ送りによる撮像を行えばオートフォーカスに費
やす時間を著しく短縮することが出来る。つまり、前記
距離L間の無駄な画像処理を省くことが出来る。
That is, the thickness t of the wafer W registered in advance is
The CPU outputs information (including the thickness of the tape N when it is attached to the adhesive tape N) from the CPU to the alignment means 7, and moves the focus P of the microscope 7a from the initial position to the vicinity of the surface of the wafer W at once. After that, if the imaging is performed by the step feed as described above, the time spent for autofocus can be significantly shortened. That is, useless image processing for the distance L can be omitted.

【0011】但し、規格化されたウェーハWとは言え多
少の厚さ誤差があるため、その誤差を考慮して厚さバラ
ツキの誤差範囲に達する位置まで顕微鏡7aの焦点Pを
一気に下降させ、その後に精密なオートフォーカスを遂
行するようにする。
However, even though it is a standardized wafer W, there is some thickness error. Therefore, in consideration of the error, the focus P of the microscope 7a is lowered to a position where it reaches the error range of thickness variation, and then To perform precise autofocus.

【0012】ちなみに、規格厚さt=600μm、厚さ
誤差±25μmとすれば、実際の厚さt1 は575μm
≦t1 ≦625μmの範囲内にあるから、焦点Pを前記
初期位置から625μm(チャックテーブル6の上面か
らの距離)まで一気に移動し、その後例えば2μmずつ
ステップ送りして画像処理すればよいことになる。この
結果、オートフォーカス作業は1〜2秒で済むことにな
り、従来よりも著しい時間短縮が可能となった。
Incidentally, if the standard thickness t = 600 μm and the thickness error is ± 25 μm, the actual thickness t 1 is 575 μm.
Since it is within the range of ≦ t 1 ≦ 625 μm, it is sufficient to move the focus P from the initial position to 625 μm (distance from the upper surface of the chuck table 6) at a stretch, and then step-feed by 2 μm for image processing. Become. As a result, the autofocusing work is completed in 1 to 2 seconds, and the time can be remarkably shortened as compared with the conventional case.

【0013】尚、本件出願人によって先に出願された特
許出願(特公平3−27043号公報)に開示されてい
る低倍率での画像処理と、高倍率での画像処理とによっ
て短時間にアライメントを遂行する技術を併用してこれ
に適用すると、更にアライメント時間を短縮することが
出来る。
Alignment is performed in a short time by the low-magnification image processing and the high-magnification image processing disclosed in the patent application (Japanese Patent Publication No. 3-27043) previously filed by the applicant. If the technique for performing the above is used together and applied to this, the alignment time can be further shortened.

【0014】[0014]

【発明の効果】以上説明したように、本発明によれば、
ウェーハの厚さ情報をCPUに予め登録しておき、厚さ
バラツキ誤差範囲に達する位置までアライメント手段の
顕微鏡の焦点を一気に移動し、その後オートフォーカス
を精密に遂行するようにしたので、ダイサーでのオート
フォーカスに要する時間を著しく短縮することが出来、
生産性の向上が図れる効果を奏する。
As described above, according to the present invention,
Since the wafer thickness information is registered in advance in the CPU, the focus of the microscope of the alignment means is moved all at once to a position where the thickness variation error range is reached, and then autofocus is performed precisely, so that the dicer The time required for autofocus can be significantly reduced,
This has the effect of improving productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】 ダイサーの一例を示す斜視図である。FIG. 1 is a perspective view showing an example of a dicer.

【図2】 本発明に係るアライメント方法の一例を示す
説明図である。
FIG. 2 is an explanatory diagram showing an example of an alignment method according to the present invention.

【図3】 フレーム付きウェーハを示す上面図である。FIG. 3 is a top view showing a wafer with a frame.

【符号の説明】[Explanation of symbols]

1…カセット載置領域 2…カセット 3…搬出入
手段 4…待機領域 5…搬送手段 6…チャックテーブル 7…アライ
メント手段 7a…顕微鏡 8…切削手段 8a
…ブレード
DESCRIPTION OF SYMBOLS 1 ... Cassette mounting area 2 ... Cassette 3 ... Carrying in / out means 4 ... Standby area 5 ... Conveying means 6 ... Chuck table 7 ... Alignment means 7a ... Microscope 8 ... Cutting means 8a
…blade

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/301 Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H01L 21/301

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 規格化された半導体ウェーハの厚さ情報
をCPUに登録する工程と、ダイサー等の保持手段に保
持されたウェーハを光学手段の直下に位置付けする工程
と、前記ウェーハの厚さ情報に基づいて厚さバラツキの
誤差範囲に達する位置まで光学手段の焦点を一気に移動
する工程と、この誤差範囲内で精密にオートフォーカス
を遂行する工程と、から構成されるオートフォーカス方
法。
1. A step of registering standardized semiconductor wafer thickness information in a CPU, a step of positioning a wafer held by a holding means such as a dicer directly under an optical means, and the wafer thickness information. An autofocus method comprising: a step of moving the focus of the optical means to a position that reaches an error range of the thickness variation at once, and a step of precisely performing the autofocus within the error range.
JP25944694A 1994-09-29 1994-09-29 Autofocus method Pending JPH0897271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25944694A JPH0897271A (en) 1994-09-29 1994-09-29 Autofocus method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25944694A JPH0897271A (en) 1994-09-29 1994-09-29 Autofocus method

Publications (1)

Publication Number Publication Date
JPH0897271A true JPH0897271A (en) 1996-04-12

Family

ID=17334199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25944694A Pending JPH0897271A (en) 1994-09-29 1994-09-29 Autofocus method

Country Status (1)

Country Link
JP (1) JPH0897271A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012256795A (en) * 2011-06-10 2012-12-27 Disco Abrasive Syst Ltd Processing device
JP2018117094A (en) * 2017-01-20 2018-07-26 株式会社ディスコ Processing device
JPWO2020184179A1 (en) * 2019-03-08 2021-12-23 東京エレクトロン株式会社 Board processing equipment and board processing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012256795A (en) * 2011-06-10 2012-12-27 Disco Abrasive Syst Ltd Processing device
JP2018117094A (en) * 2017-01-20 2018-07-26 株式会社ディスコ Processing device
JPWO2020184179A1 (en) * 2019-03-08 2021-12-23 東京エレクトロン株式会社 Board processing equipment and board processing method

Similar Documents

Publication Publication Date Title
US10668569B2 (en) Laser processing apparatus
US20110266266A1 (en) Laser processing machine
JP5168920B2 (en) Semiconductor device manufacturing method and marking device
JP5346759B2 (en) Substrate positioning method
JPS61174717A (en) Positioning apparatus
KR20200008872A (en) Wafer alignment apparatus, wafer alignment method, and correction method of wafer alignment apparatus
KR101812210B1 (en) Apparatus and method for calibrating a marking position
JP3173052B2 (en) Dicing method for semiconductor wafer
JPH0897271A (en) Autofocus method
JPH112510A (en) Device for detecting depth of cut groove
JP4436641B2 (en) Alignment method in cutting equipment
TWI824103B (en) Key pattern detection method and device
TW202006867A (en) Calibrated laser printing method
JP5372429B2 (en) How to divide a plate
CN110783246B (en) Alignment method
JPH02260419A (en) Irradiation with laser
JP2002141253A (en) Semiconductor device
US11031367B2 (en) Bond head assemblies including reflective optical elements, related bonding machines, and related methods
JPH1070143A (en) Method and apparatus for aligning semiconductor die
JP6037705B2 (en) Workpiece processing method
NL2027333B1 (en) Wafer machining system and wafer machining method
KR20110134597A (en) Method of identifying location of wafer and method of separating semiconductor chip using the same
JPH05152421A (en) Alignment method of semiconductor wafer
WO2023116160A1 (en) Method and system for calibrating wafer alignment
JPH06334022A (en) Semiconductor-positioning method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050301