JPH02260419A - Irradiation with laser - Google Patents

Irradiation with laser

Info

Publication number
JPH02260419A
JPH02260419A JP8032089A JP8032089A JPH02260419A JP H02260419 A JPH02260419 A JP H02260419A JP 8032089 A JP8032089 A JP 8032089A JP 8032089 A JP8032089 A JP 8032089A JP H02260419 A JPH02260419 A JP H02260419A
Authority
JP
Japan
Prior art keywords
laser
laser beam
mark
position detection
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8032089A
Other languages
Japanese (ja)
Inventor
Genichi Yamazaki
山崎 弦一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8032089A priority Critical patent/JPH02260419A/en
Publication of JPH02260419A publication Critical patent/JPH02260419A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily and automatically execute an accurate alignment operation between a laser beam and a pattern by installing the pattern on a specimen which is irradiated with a laser, a mark whose center of gravity is identical to that of the pattern and which is used exclusively for position detection. CONSTITUTION:If a pattern on a specimen and a mark for position detection are shown typically, Si islands 1A surrounded by an insulator, e.g. SiO2, and marks 2A, 2B for position detection are formed on the insulator. Since the center line of rows of the Si islands 1A in an X-direction coincides with that of the marks 2A, 2B for position detection in this case, it is sufficient that the patterns are irradiated with a laser by paying attention to only the marks for position detection irrespective of shapes of the patterns on a silicon wafer 3, which is very efficient. Thereby, even when the whole surface of the specimen is irradiated with the laser, it is possible to obtain a laser irradiation method in which a laser beam, is not displaced from the patterns.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体装置特に高集積・高速の高性能な完全
絶縁分離された半導体集積回路、即ちSOIデバイス用
基体製造の為のレーザ照射方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a laser irradiation method for manufacturing substrates for semiconductor devices, particularly highly integrated, high-speed, high-performance, fully insulated semiconductor integrated circuits, that is, SOI devices. It is.

従来の技術 近年、半導体集積回路はますます高密度化、高速化され
る傾向にあり、絶縁分離の半導体集積回路に対する要望
が高まっている。従来、絶縁分離の半導体集積回路の形
成には、例えば、絶縁物基板たとえば表面に絶縁膜が形
成されたシリコンウェハ上に堆積したポリSi にレー
ザビームを照射することによりポリSiの単結晶化を行
いこのSiに回路素子を形成するという方法で行なわれ
ている。
BACKGROUND OF THE INVENTION In recent years, semiconductor integrated circuits have become increasingly denser and faster, and there has been an increasing demand for semiconductor integrated circuits with insulation isolation. Conventionally, in order to form semiconductor integrated circuits with insulation isolation, for example, poly-Si deposited on an insulating substrate, such as a silicon wafer with an insulating film formed on the surface, is irradiated with a laser beam to become a single crystal of poly-Si. The method is to form a circuit element on this Si.

以下に従来のレーザ照射方法及びレーザ照射装置につい
て第3図とともに説明する。第3図は最も一般的なレー
ザ照射装置のブロック図である。
A conventional laser irradiation method and laser irradiation device will be explained below with reference to FIG. 3. FIG. 3 is a block diagram of the most common laser irradiation device.

レーザ発振器(照射装置)4Bから出たレーザビームL
は、全反射ミラー6Bによって対物レンズ6Bに垂直に
入射するように光路変更され、対物し/ズ6Bによって
シリコンウェハ3上でのレーザビーム径を調整された後
、加熱チャンバ7B[よって適当な温度例えば400m
程度に加熱されているンリコンウェハ3に照射され、X
−Yステージ8 B f、1走査することによってシリ
コンウェハ3全面をレーザ照射していた。
Laser beam L emitted from laser oscillator (irradiation device) 4B
The optical path of the laser beam is changed by the total reflection mirror 6B so that it enters the objective lens 6B perpendicularly, and the laser beam diameter on the silicon wafer 3 is adjusted by the objective lens 6B. For example 400m
The silicon wafer 3, which has been heated to
-Y stage 8 B f, the entire surface of the silicon wafer 3 was irradiated with laser by one scan.

第4図は、レーザ照射の方法について、例えば再結晶化
すべき多結晶Si島が形成された試料(ウェハ)につい
て説明した図である。即ち、前記多結晶Si島が形成さ
れたンリコンウエハ3の全面にレーザ照射する為には、
まず最初の島について、レーザビームLと多結晶Si島
1人とを、TVモニタ12Bi用いて目視にて目合わせ
を行い、島1人と島1Bのアレーのピンチ(228m)
ずつステージ8BをY方向へ送り、その都度、ステージ
8BQX方向へ走査する動作を繰り返すことにより、各
多結晶Si島1ム〜1nのアレーにレーザビームLを照
射し、多結晶Si島1ム〜1nを溶融して単結晶化する
FIG. 4 is a diagram illustrating a method of laser irradiation, for example, for a sample (wafer) on which polycrystalline Si islands to be recrystallized are formed. That is, in order to irradiate the entire surface of the silicon wafer 3 on which the polycrystalline Si islands are formed,
First of all, for the first island, visually align the laser beam L and one polycrystalline Si island using a 12Bi TV monitor, and pinch the array of one island and island 1B (228 m).
By repeating the operation of moving the stage 8B in the Y direction and scanning the stage 8B in the X direction each time, the laser beam L is irradiated onto each array of polycrystalline Si islands 1mm to 1n. 1n is melted to form a single crystal.

第6図は、例えば再結晶化すべき多結晶S1膜が形成さ
れたシリコンウェハ3上に、更に、5i5N4ストライ
プ14(14人〜14N)を反射防止膜として形成した
場合のレーザ照射方法を説明した図である。第4図で説
明した島構造試料の場合と同様に、まず最初のストライ
プ14ムについて、TVモニタを用いて目視にてレーザ
ビームLとの目合わせを行い、最適送りピッチQ(μm
)でX−YステージiY方向へ送り、その都度、ステー
ジ8B6x方向へ走査する動作を繰り返すことにより、
レーザビームLiシリコンウェハ3の全面に照射してい
た。
FIG. 6 illustrates a laser irradiation method when, for example, 5i5N4 stripes 14 (14 to 14N) are further formed as an antireflection film on a silicon wafer 3 on which a polycrystalline S1 film to be recrystallized is formed. It is a diagram. As in the case of the island structure sample explained in FIG.
) by sending the X-Y stage i in the Y direction and repeating the operation of scanning in the stage 8B6x direction each time.
The entire surface of the Li silicon wafer 3 was irradiated with the laser beam.

発明が解決しようとする課題 第3図に示したレーザ照射装置において、目視によって
、試料上のパターンとレーザビームとの位置合わせを行
う精度には限界があり(1μm程度)また、第4図、第
5図に示したレーザ照射方法では、最初に多結晶Si島
1人あるいはSi3N4ストライプ14Aとレーザビー
ムLとを目合わせした後、すべて同一ピッチでX−Yス
テージ8Bを送る為に、試料加熱による前記パターンの
膨張にょる誤差が蓄積されるという問題があり、例えば
、X−Yステージ8BをY方向に1麿進めたときには、
前記レーザビームと前記パターンとの間の位置ずれは約
1μmにもなっていた。この為、多結晶Sl島1A〜1
nには均質にレーザビームLが照射されず、単結晶化が
不十分で形成された単結晶化Si中には多くの結晶粒界
が発生するという問題点があった。また、前記位置ずれ
の発生を防ぐ為には、x−y、+、テージ8BiY方向
に11+1I11程度送るごとに、X−Yステージの走
査を中止して位置補正をしなければならず、試料全面に
レーザ照射するには多大の時間と労力を要するという問
題点があった。
Problems to be Solved by the Invention In the laser irradiation device shown in FIG. 3, there is a limit to the accuracy of visually aligning the pattern on the sample and the laser beam (about 1 μm). In the laser irradiation method shown in Fig. 5, after first aligning a single polycrystalline Si island or Si3N4 stripe 14A with the laser beam L, the sample is heated to send the X-Y stage 8B at the same pitch. There is a problem that errors due to the expansion of the pattern are accumulated due to
The positional deviation between the laser beam and the pattern was about 1 μm. For this reason, polycrystalline Sl islands 1A-1
There was a problem in that the laser beam L was not uniformly irradiated onto the silicon substrate n, and many crystal grain boundaries were generated in the single crystallized Si formed due to insufficient single crystallization. In addition, in order to prevent the occurrence of positional deviation, it is necessary to stop scanning the X-Y stage and correct the position every time the stage is moved approximately 11+1I11 in the x-y, +, and stage 8BiY directions, and the entire surface of the sample must be There is a problem in that it takes a lot of time and effort to irradiate the area with a laser.

本発明はかかる点に鑑み、試料全面にわたってレーザ照
射する場合においても、レーザビームとパターンとの位
置ずれが発生しないレーザ照射方法を提供することを目
的とする。
In view of this, an object of the present invention is to provide a laser irradiation method that does not cause positional deviation between the laser beam and the pattern even when the entire surface of the sample is irradiated with the laser.

課題を解決するだめの手段 この目的を達成させるために、本発明は絶縁物基板上に
半導体島と位置検出用マークどを選択的に形成し、前記
半導体島に照射されるレーザビームと前記位置検出用マ
ークとを検出して前記レーザビームとマークとの位置合
わせを行い、前記半導体島に前記レーザビームを照射す
ることを特徴とするレーザ照射方法を用いるもので、ま
た、基板から反射されるレーザビームとマークとをそれ
ぞれ別の撮像装置で検出し、これらの撮像装置からの信
号をもとに前記マークとレーザビームの位置ずれ量を検
出し、前記位置ずれ量を前記基板の保持部に帰還して前
記保持部を移動させ、前記マークとビームの位置を一致
させて位置合わせを行うレーザ照射方法を提供するもの
である。
Means for Solving the Problems In order to achieve this object, the present invention selectively forms semiconductor islands and position detection marks on an insulating substrate, and detects the laser beam irradiated to the semiconductor islands and the position detection marks. The method uses a laser irradiation method characterized in that the laser beam is aligned with the mark by detecting a detection mark, and the semiconductor island is irradiated with the laser beam, and the laser beam is reflected from the substrate. The laser beam and the mark are detected by separate imaging devices, the amount of positional deviation between the mark and the laser beam is detected based on the signals from these imaging devices, and the amount of positional deviation is transferred to the holder of the substrate. The object of the present invention is to provide a laser irradiation method in which alignment is performed by returning and moving the holding section to align the mark and the beam.

作用 本発明は、レーザ照射する試料上のパターンとその重心
を同じくする位置検出専用のマークを設けることにより
、撮像装置たとえばCODカメラによりその位置座標を
正確に求めることができ、レーザビームと前記パターン
の正確な位置合わせを容易かつ自動的に可能とする。こ
の時、前記位置検出マークを前記位置検出マーク専用の
CCDカメラにて検出し、一方、前記レーザビームにつ
いても、前記レーザビーム位置検出専用のCODカメラ
にて検出し、これらの位置座標のデータをコンピュータ
にて解析し、そのずれ量を試料を保持しているX−Yス
テージに帰還することにより、前記レーザビームと前記
パターンとの位置合わせ精度をさらに向上させることを
可能とする〇実施例 以下に、本発明の実施例を図面に基づき説明する。第1
図は1本発明の一実施例に係るレーザ照射方法を説明す
る為に試料上のパターンと位置検出マークを模式的に示
したものである。1人は絶縁物例えばSiO2上に51
02で囲まれたSi島を示しており、2人、2Bは位置
検出マークであり、本実施例においては、十字形のマー
クを採用しているが、もちろん他の形でも撮像装置とし
てのCODカメラで位置検出が行いやすいものであれば
良い。第1図に示すように、X方向のSi島1人列の中
心線は、位置検出マーク2人、2Bのそれと一致してい
るので、シリコンウェハ3上のパターンの形状に関係な
く、位置検出マークのみに注目してレーザ照射をすれば
良く、非常に効率的である。
Effect of the present invention By providing a mark exclusively for position detection that has the same center of gravity as the pattern on the sample to be irradiated with laser, the position coordinates can be accurately determined by an imaging device such as a COD camera, and the laser beam and the pattern enables accurate positioning easily and automatically. At this time, the position detection mark is detected by a CCD camera dedicated to the position detection mark, and the laser beam is also detected by a COD camera dedicated to the laser beam position detection, and the data of these position coordinates are collected. By analyzing the amount of deviation using a computer and returning the amount of deviation to the X-Y stage holding the sample, it is possible to further improve the alignment accuracy between the laser beam and the pattern. Next, embodiments of the present invention will be described based on the drawings. 1st
The figure schematically shows a pattern on a sample and a position detection mark in order to explain a laser irradiation method according to an embodiment of the present invention. 51 on an insulator such as SiO2
02 shows the Si island surrounded by 2 people, 2B is a position detection mark, and in this embodiment, a cross-shaped mark is adopted, but of course other shapes can also be used as COD as an imaging device. Any device that can easily detect the position with a camera is fine. As shown in FIG. 1, the center line of the row of one Si island in the X direction coincides with that of the position detection mark 2B, so regardless of the shape of the pattern on the silicon wafer 3, Laser irradiation can be performed by focusing only on the mark, which is very efficient.

第2図は、第1図で説明したようなマーク2人。Figure 2 shows two people with marks as explained in Figure 1.

2Bを有するシリコンウェハ・3を全面に亘って高精度
で効率的にレーザ照射する為のレーザ照射装置のブロッ
ク図である。レーザ発振器4人から出だレーザビームL
は、全反射ミラー6ムによって対物レンズ6ムに垂直に
入射するように光路変更され、対物レンズ6ムによって
シリコンウェハ3面上でのレーザビーム径を調整された
後、加熱チャンバ7ムによって適当な温度、例えば40
0℃程度に加熱されているシリコンウェハ3人に照射さ
れる。シリコンウェハ3ムの全面を高精度にかつ効率的
にレーザ照射する為には、まずレーザ照射に先立ち、マ
ーク検出専用CODカメラ92台によってシリコンウェ
ハ3両端にある位置検出マーク2ム及び2Bを検出し、
その位置座標をコンピュータ11によって解析し、位置
検出マーク2人、2Bが一直線上に並ぶように、位置ず
れ量をX−Yステージ8ムに帰還する。次に、レーザビ
ーム検出専用CCDカメラ10によって、ウェハ3ム上
のレーザビーム乙の位置座標を検出し、マーク検出専用
C(jDカメラ9によって検出した位置検出マーク2人
の位置座標とのずれ量をコンピュータ11によって解析
し、その位置ずれ量をX−Yステージ8ムに帰還する。
FIG. 2 is a block diagram of a laser irradiation device for efficiently irradiating a silicon wafer 3 with high precision over the entire surface thereof. Laser beam L emitted from four laser oscillators
The optical path of the laser beam is changed by the total reflection mirror 6m so that it is perpendicularly incident on the objective lens 6m, and after adjusting the laser beam diameter on the silicon wafer 3 surface by the objective lens 6m, it is heated to an appropriate value by the heating chamber 7m. temperature, e.g. 40
Three silicon wafers heated to around 0 degrees Celsius are irradiated. In order to irradiate the entire surface of the silicon wafer 3 with a laser beam with high precision and efficiency, first, prior to laser irradiation, position detection marks 2 and 2B on both ends of the silicon wafer 3 are detected using 92 mark detection COD cameras. death,
The position coordinates are analyzed by the computer 11, and the amount of positional deviation is returned to the X-Y stage 8m so that the two position detection marks and 2B are aligned in a straight line. Next, the position coordinates of the laser beam B on the wafer 3 are detected by the CCD camera 10 exclusively for laser beam detection, and the position coordinates of the laser beam B on the wafer 3 are detected, and the amount of deviation from the position coordinates of the position detection mark 2 detected by the mark detection C (jD camera 9) is detected. is analyzed by the computer 11, and the amount of positional deviation is fed back to the XY stage 8m.

しかる後に、X−Yステージ8ムをX方向に走査し、第
一回目のレーザ照射を完了する。シリコンウェハ・3全
面に亘ってレーザ照射するには、あらかじめ決められた
ピッチ(21μm)でX−Yステージ8ムをY方向に送
りながら、常に、レーザビームLの座標と位置検出マー
ク2ムの位置座標のずれ量を、監視、補正しながら、X
−Yステージ8ムのX方向の走査を繰り返せばよい。こ
の結果、レーザビームLと位置検出マーク2人の位置ず
れ量は、最大でも0.2μm程度となり、6インチウェ
ハ全面のレーザ照射に際しても、レーザ照射途中でレー
ザ照射装置を止めることなく全自動でレー・ザ照射する
ことが可能となった。
Thereafter, the X-Y stage 8m is scanned in the X direction to complete the first laser irradiation. To irradiate the entire surface of silicon wafer 3 with laser, while moving the X-Y stage 8mm in the Y direction at a predetermined pitch (21 μm), always adjust the coordinates of the laser beam L and the position detection mark 2mm. While monitoring and correcting the amount of deviation in position coordinates,
- It is sufficient to repeat the scanning of the Y stage 8 mm in the X direction. As a result, the amount of positional deviation between the laser beam L and the two position detection marks is approximately 0.2 μm at most, and even when laser irradiating the entire surface of a 6-inch wafer, the laser irradiation device can be fully automatically irradiated without stopping during laser irradiation. Laser irradiation has become possible.

発明の詳細 な説明したように、本発明によればレーザ照射を行うに
際し、レーザビームと試料上に描かれたパターンとを高
精度に位置合わせを行い、しかも効率的にレーザ照射を
行うことが可能なレーザ照射方法及びレーザ照射装置が
実現され、大面積における多結晶シリコン島の再結晶化
等の量産工程にとってその実用的効果は極めて犬なるも
のである。
As described in detail, according to the present invention, when performing laser irradiation, it is possible to align the laser beam with a pattern drawn on a sample with high precision, and to perform laser irradiation efficiently. A possible laser irradiation method and laser irradiation device have been realized, and their practical effects are extremely significant for mass production processes such as recrystallization of polycrystalline silicon islands over large areas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明における一実施例のレーザ照射方法の説
明図、第2図はレーザ照射装置のブロック図、第3図は
従来のレーザ照射装置のブロック図、第4図、第6図は
従来のレーザ照射方法の説明図である。 1ム〜1n・・・・・・Si島、2人、2B・・・・・
・位置検出マーク、3・・・・・・シリコンウェハ、4
人・・・・・・レーザ発振器、6ム・・・・・・全反射
ミラー、6人・・・・・・対物レンズ、7A・・・・・
・加熱チャンバ、8人・・・・・・X−Yステージ、9
・・・・・・マーク検此専用CODカメラ、10・・・
・・・レーザビーム検出専用CCDカメラ、11・・・
・・・コンピュータ、12人・川・・テレビモニタ。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名−一
一一8 悪 図 厖 図 /4A S;ツN4ストライグ Jシリコンクエハ
FIG. 1 is an explanatory diagram of a laser irradiation method according to an embodiment of the present invention, FIG. 2 is a block diagram of a laser irradiation device, FIG. 3 is a block diagram of a conventional laser irradiation device, and FIGS. 4 and 6 are FIG. 2 is an explanatory diagram of a conventional laser irradiation method. 1mu~1n...Si Island, 2 people, 2B...
・Position detection mark, 3...Silicon wafer, 4
People...Laser oscillator, 6mm...Total reflection mirror, 6 people...Objective lens, 7A...
・Heating chamber, 8 people...X-Y stage, 9
・・・・・・Mark inspection COD camera, 10...
... CCD camera dedicated to laser beam detection, 11...
...Computer, 12 people, river...TV monitor. Name of agent: Patent attorney Shigetaka Awano and 1 other person - 1118 Akatsukuzu/4A S; TS N4 Strig J Silicon Queha

Claims (2)

【特許請求の範囲】[Claims] (1)絶縁物基板上に半導体島と位置検出用マークとを
選択的に形成し、前記半導体島に照射されるレーザビー
ムと前記位置検出用マークとを検出して前記レーザビー
ムとマークとの位置合わせを行い、前記半導体島に前記
レーザビームを照射することを特徴とするレーザ照射方
法。
(1) A semiconductor island and a position detection mark are selectively formed on an insulating substrate, a laser beam irradiated to the semiconductor island and the position detection mark are detected, and the laser beam and the mark are combined. A laser irradiation method characterized by performing positioning and irradiating the semiconductor island with the laser beam.
(2)基板から反射されるレーザビームとマークとをそ
れぞれ別の撮像装置で検出し、これらの撮像装置からの
信号をもとに前記マークとレーザビームの位置ずれ量を
検出し、前記位置ずれ量を前記基板の保持部に帰還して
前記保持部を移動させ、前記マークとビームの位置を一
致させて位置合わせを行うことを特徴とする特許請求の
範囲第1項記載のレーザ照射方法。
(2) The laser beam reflected from the substrate and the mark are detected by separate imaging devices, and the amount of positional deviation between the mark and the laser beam is detected based on the signals from these imaging devices, and the amount of positional deviation between the mark and the laser beam is detected. 2. The laser irradiation method according to claim 1, wherein the laser irradiation method is performed by returning the amount to the holding part of the substrate and moving the holding part to align the mark and the beam.
JP8032089A 1989-03-30 1989-03-30 Irradiation with laser Pending JPH02260419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8032089A JPH02260419A (en) 1989-03-30 1989-03-30 Irradiation with laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8032089A JPH02260419A (en) 1989-03-30 1989-03-30 Irradiation with laser

Publications (1)

Publication Number Publication Date
JPH02260419A true JPH02260419A (en) 1990-10-23

Family

ID=13714966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8032089A Pending JPH02260419A (en) 1989-03-30 1989-03-30 Irradiation with laser

Country Status (1)

Country Link
JP (1) JPH02260419A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005311327A (en) * 2004-03-25 2005-11-04 Semiconductor Energy Lab Co Ltd Laser irradiating equipment and forming method of semiconductor device using the same
JP2005354087A (en) * 2000-08-25 2005-12-22 Sharp Corp Method of manufacturing semiconductor device and semiconductor manufacturing apparatus
JP2007165770A (en) * 2005-12-16 2007-06-28 Advanced Lcd Technologies Development Center Co Ltd Laser crystallizing apparatus and method
JP2007194605A (en) * 2005-12-20 2007-08-02 Semiconductor Energy Lab Co Ltd Laser irradiation device and laser irradiation method
JP2007194604A (en) * 2005-12-20 2007-08-02 Semiconductor Energy Lab Co Ltd Laser irradiation device and laser irradiation method
JP2008153638A (en) * 2006-11-24 2008-07-03 Semiconductor Energy Lab Co Ltd Substrate with marker, manufacturing method of same, laser irradiation device and method, exposure system, and manufacturing method of semiconductor device
JP2009188251A (en) * 2008-02-07 2009-08-20 Semiconductor Energy Lab Co Ltd Method and device for producing laser projection position evaluating sample as well as method and device for evaluating stability of laser projecting position
US8525070B2 (en) 2005-12-20 2013-09-03 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus, laser irradiation method, and method for manufacturing semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59125612A (en) * 1983-01-06 1984-07-20 Nec Corp Device for forming single crystal thin-film
JPS63169725A (en) * 1987-01-07 1988-07-13 Agency Of Ind Science & Technol Mark structure for laser beam and intensity distribution measuring and mark-position sensing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59125612A (en) * 1983-01-06 1984-07-20 Nec Corp Device for forming single crystal thin-film
JPS63169725A (en) * 1987-01-07 1988-07-13 Agency Of Ind Science & Technol Mark structure for laser beam and intensity distribution measuring and mark-position sensing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005354087A (en) * 2000-08-25 2005-12-22 Sharp Corp Method of manufacturing semiconductor device and semiconductor manufacturing apparatus
JP4723926B2 (en) * 2000-08-25 2011-07-13 シャープ株式会社 Manufacturing method of semiconductor device
JP2005311327A (en) * 2004-03-25 2005-11-04 Semiconductor Energy Lab Co Ltd Laser irradiating equipment and forming method of semiconductor device using the same
JP2007165770A (en) * 2005-12-16 2007-06-28 Advanced Lcd Technologies Development Center Co Ltd Laser crystallizing apparatus and method
JP2007194605A (en) * 2005-12-20 2007-08-02 Semiconductor Energy Lab Co Ltd Laser irradiation device and laser irradiation method
JP2007194604A (en) * 2005-12-20 2007-08-02 Semiconductor Energy Lab Co Ltd Laser irradiation device and laser irradiation method
US8525070B2 (en) 2005-12-20 2013-09-03 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus, laser irradiation method, and method for manufacturing semiconductor device
JP2008153638A (en) * 2006-11-24 2008-07-03 Semiconductor Energy Lab Co Ltd Substrate with marker, manufacturing method of same, laser irradiation device and method, exposure system, and manufacturing method of semiconductor device
JP2009188251A (en) * 2008-02-07 2009-08-20 Semiconductor Energy Lab Co Ltd Method and device for producing laser projection position evaluating sample as well as method and device for evaluating stability of laser projecting position

Similar Documents

Publication Publication Date Title
US10037968B2 (en) Alignment systems and wafer bonding systems and methods
US4418467A (en) Semiconductor wafer with alignment marks and method for manufacturing semiconductor device
KR970004887B1 (en) Method for aligning photomasks
JP2943673B2 (en) Apparatus and method for manufacturing semiconductor substrate
JPH02260419A (en) Irradiation with laser
TW202225851A (en) Coaxial see-through alignment imaging system
JP2001118776A (en) Transfer aligner, and mask holding mechanism used for that device, and manufacturing method of semiconductor element
JPS61174717A (en) Positioning apparatus
CN102280400B (en) Wafer aligning method in laser beam processing
KR20190053110A (en) Light exposure system, light exposure method and manufacturing method of display panel substrate
JPH01173707A (en) Laser annealing method
JP2005311033A (en) Method of detecting misregistration of cutting blade
US10483149B2 (en) Wafer processing method for dividing a wafer, including a shield tunnel forming step
US20070035731A1 (en) Direct alignment in mask aligners
JPH06283663A (en) Method for matching semiconductor chips with each other
JP2001110864A (en) Method and device for inspecting polycrystalline semiconductor film
JP3294625B2 (en) Electronic component manufacturing method
US20210053150A1 (en) Laser processing device and laser processing method
JPH11145248A (en) Wafer transfer device and aligner
JP2003152037A (en) Method and apparatus for inspecting wafer as well as inspecting infrared imaging unit
JP2667977B2 (en) Laser beam intensity distribution measurement method
JPH0226368B2 (en)
JP2906094B2 (en) Probe device
JPH06334022A (en) Semiconductor-positioning method
JPH11251232A (en) Substrate, aligner, and manufacture of device