JPH0897214A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0897214A
JPH0897214A JP6235158A JP23515894A JPH0897214A JP H0897214 A JPH0897214 A JP H0897214A JP 6235158 A JP6235158 A JP 6235158A JP 23515894 A JP23515894 A JP 23515894A JP H0897214 A JPH0897214 A JP H0897214A
Authority
JP
Japan
Prior art keywords
film
metal film
hole
opening
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6235158A
Other languages
Japanese (ja)
Inventor
Shunji Nakao
俊二 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6235158A priority Critical patent/JPH0897214A/en
Publication of JPH0897214A publication Critical patent/JPH0897214A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods

Abstract

PURPOSE: To improve adhesion, barrier performance, and flatness of an aperture part like a through hole which connects a wiring of a multilayered film structure with a conducting region of a lower layer. CONSTITUTION: After a through hole 4a for connecting wirings is formed, a sticking barrier metal film 5a and a Ti film 22 are sequentially deposited. After a mask member 23a is formed in only the inside of the through hole 4a, the exposed Ti film 22a is changed into a titanium oxide film 24. The mask member 23a is eliminated, and the inner part of the through hole 4 is filled in the self alignment manner by nonelectrolytic plating. Buried Au 25 is formed, and the surface is flattened. The titanium oxide film 24 which has become unnecessary and the Ti film left below the titanium oxide film 24 are eliminated by etching, the barrier metal film is exposed, and an Au film 7c as the next layer is formed by an electrolytic plating method while the exposed barrier metal film 5a is used as a power supply path, Thereby, generation of a cavity in the through hole can be prevented, and flatness of a wiring can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の製造方法
に関し、特に配線の形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device manufacturing method, and more particularly to a wiring forming method.

【0002】[0002]

【従来の技術】高周波用の半導体装置などの配線材料と
して金(以下、Auと記す)を使用する場合、一般に下
地金属との合金化を防止するために、主導電路となるA
u膜の下層にいわゆるバリアメタルとして白金(以下P
tと記す)を使用する。さらにPt膜は酸化シリコン膜
などの絶縁膜との密着性が低いことから、このPt膜の
下層に密着用メタルとしてチタン(以下Tiと記す)を
介在させる。従ってAu膜/Pt膜/Ti膜の3層膜構
造の配線が使用される。このような配線の形成方法につ
いて説明する。
2. Description of the Related Art When gold (hereinafter referred to as Au) is used as a wiring material for a semiconductor device for high frequencies, it is generally used as a main conductive path to prevent alloying with a base metal.
Platinum (hereinafter P
(denoted as t). Further, since the Pt film has low adhesion to an insulating film such as a silicon oxide film, titanium (hereinafter referred to as Ti) is interposed as an adhesion metal in the lower layer of the Pt film. Therefore, a wiring having a three-layer film structure of Au film / Pt film / Ti film is used. A method of forming such wiring will be described.

【0003】まず、図3(a)に示すように、シリコン
基板上のフィールド酸化膜1などの絶縁膜を選択的に被
覆して第1層配線2を形成する。層間絶縁膜3aを全面
に推積し、図3(b)に示すように、スルーホール4a
を形成する。次にスパッタ法により、図3(c)に示す
ように、Ti膜およびPt膜を順次に推積して密着・バ
リアメタル膜5aを形成する。次に、図3(d)に示す
ように、ホトレジスト膜6aをマスクとして電気めっき
によりAu膜7aを形成する。次に図3(e)に示すよ
うに、ホトレジスト膜6aを除去し、Au膜7aで覆わ
れていない部分の密着・バリアメタル膜5aを除去する
ことにより第2層配線9aを形成する。
First, as shown in FIG. 3A, a first layer wiring 2 is formed by selectively covering an insulating film such as a field oxide film 1 on a silicon substrate. The interlayer insulating film 3a is deposited on the entire surface, and as shown in FIG. 3B, the through hole 4a is formed.
To form. Next, as shown in FIG. 3C, a Ti film and a Pt film are sequentially deposited by a sputtering method to form an adhesion / barrier metal film 5a. Next, as shown in FIG. 3D, an Au film 7a is formed by electroplating using the photoresist film 6a as a mask. Next, as shown in FIG. 3E, the photoresist film 6a is removed, and the adhesion / barrier metal film 5a in the portion not covered with the Au film 7a is removed to form the second-layer wiring 9a.

【0004】また、特開平2−129945号公報には
次にような手法が記載されている。
Japanese Patent Laid-Open No. 2-129945 discloses the following method.

【0005】図4(a)に示すように、層間絶縁膜3a
にスルーホール4aを形成し、めっき法により、図4
(b)に示すように、Auなどの埋込み金属10をスル
ーホール4a内に段差を充分に埋めて形成する。すなわ
ち、第1層配線2は、シリコン基板表面部の拡散層(図
示しない)に接触しているものとして、シリコン基板の
裏面側を陰極とし、第1層配線2を電導パスとして、第
1層配線2のスルーホール4a露出部とめっき液の間の
電位差によりAuめっき層を析出させる。こうして、次
に形成する第2層配線の下地の平滑性を向上させたの
ち、白金スパッタ膜5bを形成し、図4(d)に示すよ
うにホトレジスト膜6aをマスクとしてめっきを行いA
u膜7bを形成する。次に、図4(e)に示すように、
ホトレジスト膜6aを除去し、その下部にあった白金ス
パッタ膜5aを除去して第2層配線9bを形成する。
As shown in FIG. 4A, the interlayer insulating film 3a is formed.
The through hole 4a is formed in the
As shown in (b), a buried metal 10 such as Au is formed in the through hole 4a by sufficiently filling the step. That is, the first layer wiring 2 is in contact with a diffusion layer (not shown) on the front surface of the silicon substrate, the back surface side of the silicon substrate is the cathode, the first layer wiring 2 is the conductive path, and the first layer wiring 2 is the first layer wiring. The Au plating layer is deposited by the potential difference between the exposed portion of the through hole 4a of the wiring 2 and the plating solution. After improving the smoothness of the underlying layer of the second-layer wiring to be formed next, the platinum sputtered film 5b is formed, and plating is performed by using the photoresist film 6a as a mask as shown in FIG. 4D.
The u film 7b is formed. Next, as shown in FIG.
The photoresist film 6a is removed, and the platinum sputtered film 5a located therebelow is removed to form the second layer wiring 9b.

【0006】[0006]

【発明が解決しようとする課題】図3を参照して説明し
た従来例では、第1層配線2と第2層配線9aとを結合
するスルーホール4aの寸法が2μm以下になると、図
3(e)に示すようにスルーホール4a内の第2層配線
9aのAu膜7aに空洞8aが生じやすい。このため、
エレクトロマイグレーションを誘発する原因となり、配
線の信頼度低下を招く。
In the conventional example described with reference to FIG. 3, when the size of the through hole 4a for coupling the first layer wiring 2 and the second layer wiring 9a becomes 2 μm or less, FIG. As shown in e), a cavity 8a is likely to be formed in the Au film 7a of the second layer wiring 9a in the through hole 4a. For this reason,
This causes electromigration, which leads to a decrease in wiring reliability.

【0007】また、更に上層の配線を形成する場合に
は、図3(e)の状態にしたあと、図5(a)に示すよ
うに、層間絶縁膜3bを推積するが、スルーホール4a
上では平坦性が悪く、窪み19が生じる。この窪みは、
第2層配線の表面がスルーホール部で平滑性が悪いこと
によって生じる。次に、スルーホール4bを形成し、図
5(b)に示すように、ホトレジスト膜6bをマスクに
してAu膜7bを形成する。次に図5(c)に示すよう
に、ホトレジスト膜6bおよびその下部の密着・バリア
メタル膜5bをエッチング除去するが、層間絶縁膜3b
の窪み19部ではTiやPtのメタル残り21が発生
し、これが配線の漏れ電流を引き起こし歩留り低下の要
因となる問題がある。
Further, in the case of forming a wiring in an upper layer, after the state shown in FIG. 3 (e), the interlayer insulating film 3b is deposited as shown in FIG. 5 (a), but the through hole 4a is formed.
Above, the flatness is poor and the depression 19 is formed. This depression is
This is caused by the poor smoothness of the surface of the second layer wiring in the through hole portion. Next, a through hole 4b is formed, and as shown in FIG. 5B, an Au film 7b is formed using the photoresist film 6b as a mask. Next, as shown in FIG. 5C, the photoresist film 6b and the adhesion / barrier metal film 5b thereunder are removed by etching.
There is a problem that a metal residue 21 of Ti or Pt is generated in the dent 19 part, which causes a leakage current of the wiring and causes a reduction in yield.

【0008】このような不具合は、図4を参照して説明
した従来例では避けることができる。しかし、この場合
はスルーホール4aの側面および底面に密着・バリアメ
タル膜5bが存在しない。従って、スルーホール4aの
側面と埋込み金属10との密着性に難があり、機械的強
度が低く、また埋込み金属10形成時のめっき液の完全
除去が難しく経時変化が起るなどの信頼性上の問題があ
る。また第1層配線2の表面と埋込み金属10との合金
化反応を防止できないので材料の選択の自由度がほとん
どなく一般性に欠ける。もち論、埋込み金属10の形成
と密着・バリアメタル膜5bの形成の順序を入れかえれ
ば、このような不具合はないが、そうすると、適当なマ
スクを用いるなどの対策を施さないとAu膜が全面にめ
っきされてしまう。このようなめっき用のマスクを使用
する手法としては、特開昭63−41050号公報に記
載された例がある。この手法はバンプ電極の形成方法で
あるが、図6(a)に示すように、絶縁膜10上のアル
ミニウムパッド11を設けた後、保護絶縁膜12を推積
し、開口13を設ける。次に図6(b)に示すように、
Ti膜14を形成し、陽極酸化法などを用いて一部を酸
化チタン膜15に変換する。次に、図6(c)に示すよ
うに、アルミニウムパッド11上に開口13aを有する
ホトレジスト膜16を形成し、それをマスクとして酸化
チタン膜15を除去する。次に、無電解めっきおよびT
i膜14を給電電極とする電気めっきにより、図6
(d)に示すように、Auバンプ18を形成し、ホトレ
ジスト膜16およびその下部の酸化チタン膜15および
チタン膜14を除去する。この手法を前述したスルーホ
ールの埋込みに利用することができるが、ホトレジスト
膜16(マスク)の開口13aはリソグラフィー技術を
利用して形成するので、位置合せ精度による誤差のため
マスクの開口とスルーホールとの間には大なり小なりず
れが生じ、スルーホールの縁にはスルーホールの深さと
同じ厚さのめっきが形成される欠点がありそのまま適用
するわけにはいかない。さらに、このホトレジスト膜の
パターンを形成するために製造ステップが増え、高価な
パターン投影露光装置(ステッパ)を使用しているの
で、その分、半導体装置の原価が高くなる欠点がある。
Such a problem can be avoided in the conventional example described with reference to FIG. However, in this case, the adhesion / barrier metal film 5b does not exist on the side surface and the bottom surface of the through hole 4a. Therefore, the adhesion between the side surface of the through hole 4a and the embedded metal 10 is difficult, the mechanical strength is low, and it is difficult to completely remove the plating solution when the embedded metal 10 is formed. I have a problem. Further, since the alloying reaction between the surface of the first layer wiring 2 and the embedded metal 10 cannot be prevented, there is almost no degree of freedom in selecting the material, which lacks generality. If the order of the formation of the buried metal 10 and the formation of the adhesion / barrier metal film 5b is replaced by the theory, the problem will not occur. However, if the measures such as using an appropriate mask are not taken, the Au film is entirely covered. Will be plated. As a method of using such a plating mask, there is an example described in JP-A-63-41050. This method is a method of forming bump electrodes. As shown in FIG. 6A, after providing the aluminum pad 11 on the insulating film 10, the protective insulating film 12 is deposited and the opening 13 is provided. Next, as shown in FIG.
A Ti film 14 is formed, and a part thereof is converted into a titanium oxide film 15 by using an anodic oxidation method or the like. Next, as shown in FIG. 6C, a photoresist film 16 having an opening 13a is formed on the aluminum pad 11, and the titanium oxide film 15 is removed using the photoresist film 16 as a mask. Next, electroless plating and T
As a result of the electroplating using the i film 14 as a power supply electrode, FIG.
As shown in (d), Au bumps 18 are formed, and the photoresist film 16 and the titanium oxide film 15 and titanium film 14 thereunder are removed. Although this method can be used for filling the through holes described above, since the opening 13a of the photoresist film 16 (mask) is formed by using the lithography technique, the opening of the mask and the through hole are not formed due to the error due to the alignment accuracy. There is a large or small difference between the above and the above, and there is a defect that the plating having the same thickness as the depth of the through hole is formed on the edge of the through hole, and therefore it cannot be applied as it is. Further, since the number of manufacturing steps is increased to form the pattern of the photoresist film and an expensive pattern projection exposure apparatus (stepper) is used, there is a disadvantage that the cost of the semiconductor device is increased accordingly.

【0009】本発明の目的は、開口部における密着性お
よびバリア性ならびに表面の平滑性を確保できる多層膜
構造の配線を有する半導体装置の製造方法を提供するこ
とにある。
An object of the present invention is to provide a method of manufacturing a semiconductor device having a wiring of a multilayer film structure capable of ensuring the adhesion and barrier property in the opening and the smoothness of the surface.

【0010】[0010]

【課題を解決するための手段】本発明の半導体装置の製
造方法は、半導体基板上の所定の絶縁膜に開口を設けて
下方の導電領域の表面を露出させる工程と、前記絶縁膜
との密着性に優れた密着メタル膜およびバリアメタル膜
を順次に推積して密着・バリアメタル膜を形成し、その
酸化物が絶縁体である第1の金属膜を推積して前記絶縁
膜の表面、前記開口部の側面および前記導電領域の露出
表面を前記開口部を完全に埋込まない程度に被覆する工
程と、エッチバック法を利用して前記開口部にマスク部
材を埋込む工程と、前記マスク部材をマスクとする酸化
処理により前記第1の金属膜を酸化物に変換させる工程
と、前記マスク部材を除去した後めっきにより前記開口
部を金属で埋込む工程と、前記酸化物およびその直下の
第1の金属膜を除去して前記バリアメタル膜を露出させ
たのち第2の金属膜を選択的に形成して上層配線を形成
する工程とを有するというものである。
A method of manufacturing a semiconductor device according to the present invention comprises a step of exposing a surface of a lower conductive region by providing an opening in a predetermined insulating film on a semiconductor substrate, and a step of adhering to the insulating film. The adhesion metal film and the barrier metal film having excellent properties are sequentially deposited to form the adhesion / barrier metal film, and the oxide is deposited on the first metal film that is an insulator to form the surface of the insulation film. A step of covering the side surface of the opening and the exposed surface of the conductive region to such an extent that the opening is not completely buried; a step of burying a mask member in the opening using an etch-back method; A step of converting the first metal film into an oxide by an oxidation treatment using a mask member as a mask; a step of removing the mask member and then filling the opening with a metal by plating; Remove the first metal film of It is that a step of forming an upper layer wiring is selectively formed to the second metal layer after exposing the barrier metal film by.

【0011】第1の金属膜としてはTi,MoまたはT
aなどの弁金属膜を用いることができる。マスク部材と
してはレジスト膜やSOG膜を用い、酸化処理としては
電解液を利用した陽極酸化を用いることができる。ま
た、SOG膜を使用する場合はプラズマ酸化によっても
よい。まためっきは無電解めっきが好しい。
As the first metal film, Ti, Mo or T
A valve metal film such as a can be used. A resist film or an SOG film can be used as the mask member, and anodization using an electrolytic solution can be used as the oxidation treatment. Further, when an SOG film is used, plasma oxidation may be used. In addition, electroless plating is preferable for the plating.

【0012】[0012]

【作用】開口部の周辺は第1の金属膜の酸化物で被覆さ
れるのでこれをマスクとしてめっきを行い開口部のみに
金属を埋込むことができる。電気めっきでこの開口部に
金属を埋込む場合、電界集中の起こり易い開口縁辺に酸
化物があって金属の析出が生じないので空洞の発生が起
こり難い。無電解めっきによるときは、金属の析出が均
一に生じ空洞の発生が一層起こり難い。
Since the periphery of the opening is covered with the oxide of the first metal film, the metal can be embedded only in the opening by plating using this as a mask. When a metal is embedded in this opening by electroplating, the oxide is not present on the edge of the opening where electric field concentration is likely to occur and the metal is not deposited, so that the formation of voids is unlikely to occur. When electroless plating is used, metal deposition is evenly generated, and voids are less likely to occur.

【0013】[0013]

【実施例】次に本発明について図面を参照して説明す
る。
The present invention will be described below with reference to the drawings.

【0014】図1(a)〜(e)は本発明の一実施例の
説明のための工程順断面図である。
FIGS. 1A to 1E are sectional views in order of steps for explaining one embodiment of the present invention.

【0015】まず、図1(a)に示すように、シリコン
基板上のフィールド酸化膜1などの絶縁膜を選択的に被
覆して第1層配線2を形成する。第1層配線2の構造や
材料は必ずしも限定されないが、例えばAu膜/Pt膜
/Ti膜の3層構造でもよい。そして、下層の配線(図
示しない)やシリコン基板表面部の拡散層(図示しな
い)などの導電領域に接続されていてもよい。次に、厚
さ1〜1.5μmの層間絶縁膜3a、寸法1μm×1μ
m〜1.5μm×1.5μmのスルーホール4aを形成
し、スパッタ法により密着・バリアメタル5aとなる厚
さ50〜100nm(平坦部)のTi膜と厚さ30〜5
0nm(平坦部)のPt膜とを順次に形成し、さらに厚
み250〜500nmのTi膜22aを推積させる。つ
づいて、平坦性のよいレジスト(たとえば、富士ハント
社製のHPR204)を回転塗布し、平坦化膜23を形
成する。
First, as shown in FIG. 1A, a first layer wiring 2 is formed by selectively covering an insulating film such as a field oxide film 1 on a silicon substrate. The structure and material of the first layer wiring 2 are not necessarily limited, but may be, for example, a three-layer structure of Au film / Pt film / Ti film. Then, it may be connected to a conductive region such as a lower wiring (not shown) or a diffusion layer (not shown) on the surface of the silicon substrate. Next, an interlayer insulating film 3a having a thickness of 1 to 1.5 μm, dimensions of 1 μm × 1 μ
A through-hole 4a of m to 1.5 μm × 1.5 μm is formed, and a Ti film having a thickness of 50 to 100 nm (flat portion) to be an adhesion / barrier metal 5a by a sputtering method and a thickness of 30 to 5 are formed.
A 0 nm (flat portion) Pt film is sequentially formed, and a Ti film 22a having a thickness of 250 to 500 nm is deposited. Subsequently, a resist having good flatness (for example, HPR204 manufactured by Fuji Hunt Co., Ltd.) is spin-coated to form the flattening film 23.

【0016】次に、反応性イオンエッチング(RIE)
装置を使って、CF4 とO2 との混合ガスにより、図1
(b)に示すように平坦化膜23をエッチングし、スル
ーホール4a内部にのみマスク部材23aとして残す。
Next, reactive ion etching (RIE)
Using a gas mixture of CF 4 and O 2 with the equipment,
As shown in (b), the flattening film 23 is etched and left as a mask member 23a only inside the through hole 4a.

【0017】次に、露出したフィールドのTi膜22a
を陽極酸化法により酸化することにより、図1(c)に
示すように、厚さ100〜200nmの酸化チタン膜2
4を形成する。この結果、スルーホール4a内部のTi
膜22aはマスク部材23aによりマスクされているの
で酸化することはなく、スルーホール4a以外のTi膜
のみ自己整合的に酸化チタン膜に変換される。
Next, the exposed field Ti film 22a is formed.
As shown in FIG. 1 (c), the titanium oxide film 2 having a thickness of 100 to 200 nm is oxidized by anodic oxidation.
4 is formed. As a result, Ti inside the through hole 4a
Since the film 22a is masked by the mask member 23a, it is not oxidized, and only the Ti film other than the through holes 4a is converted into a titanium oxide film in a self-aligned manner.

【0018】次に、不要となったスルーホール4a内部
のマスク部材23aを有機溶剤等で剥離除去したあと、
無電解めっきによりスルーホール4a内部のTi膜22
aにAuめっきを行い、図1(d)に示すように、スル
ーホール4a内部に埋込みAu25を形成する。埋込み
Au25の表面が密着・バリアメタル膜5aの表面とほ
ぼ一致するか若干高くなるようにするのがよい。埋込み
Au25の形成は、均一にめっきできる無電解めっきに
よるのが好ましいが、密着・バリアメタル膜5aを給電
電極とする電気めっきを用いることもできる。その場合
は、スルーホール4a上部の縁辺部の電界集中が起こる
箇所を酸化チタン膜で覆うように、マスク部材23aの
高さをやや低めにするのがよい。
Next, after removing the mask member 23a inside the through hole 4a which has become unnecessary, by peeling off with an organic solvent or the like,
Ti film 22 inside through hole 4a by electroless plating
Au plating is applied to a to form a buried Au 25 inside the through hole 4a as shown in FIG. 1 (d). It is preferable that the surface of the embedded Au 25 is substantially aligned with or slightly higher than the surface of the adhesion / barrier metal film 5a. The embedded Au 25 is preferably formed by electroless plating capable of uniform plating, but electroplating using the adhesion / barrier metal film 5a as a power supply electrode can also be used. In that case, it is preferable that the height of the mask member 23a be slightly lower so that the titanium oxide film covers the location where the electric field concentration occurs at the upper edge of the through hole 4a.

【0019】次に、RIE装置を使ってCF4 とOS
の混合ガスにより、不要となった酸化チタン膜24とそ
の下にある酸化されずに残ったTi膜をエッチング除去
する。このCF4 +O2 系RIEは、酸化チタン膜24
およびTi膜と密着・バリアメタル膜5aのPt膜およ
び埋込みAu25とのエッチング選択比が少なくとも5
0以上とれるため、選択的に酸化チタン膜24とチタン
膜とを完全に除去することができる。つづいて、ホトリ
ソグラフィー技術により、図1(e)に示すように、ホ
トレジスト膜6aを形成し、電気めっきにより露出した
密着・バリアメタル膜5aに厚さ1μmのAu膜7cを
電着させる。
Next, a mixed gas of CF 4 and O S using an RIE apparatus, a Ti film remaining without being oxidized etching away some the titanium oxide film 24 which becomes unnecessary under it. This CF 4 + O 2 based RIE is a titanium oxide film 24.
And the etching selection ratio of the Ti film to the Pt film of the adhesion / barrier metal film 5a and the buried Au 25 is at least 5.
Since it can be 0 or more, the titanium oxide film 24 and the titanium film can be selectively removed completely. Subsequently, as shown in FIG. 1E, a photoresist film 6a is formed by a photolithography technique, and an Au film 7c having a thickness of 1 μm is electrodeposited on the exposed contact / barrier metal film 5a by electroplating.

【0020】不要となったホトレジスト膜6aを剥離除
去し、Au膜7cに覆われてない領域の密着・バリアメ
タル膜5aをアルゴンガスあるいは塩素系ガスのイオン
ミリング法によりエッチング除去して第2層配線9cの
形成を終了する。
The unnecessary photoresist film 6a is removed and removed, and the adhesion / barrier metal film 5a in the region not covered by the Au film 7c is removed by etching by an ion milling method using an argon gas or a chlorine-based gas to form a second layer. The formation of the wiring 9c is completed.

【0021】第3層配線を有する半導体装置の場合は、
図2(a)に示すように、更に層間絶縁膜3bを推積
し、スルーホール4bを形成し、密着・バリアメタル膜
5bとTi膜22bを順次推積させる。
In the case of a semiconductor device having a third layer wiring,
As shown in FIG. 2A, the interlayer insulating film 3b is further deposited, the through hole 4b is formed, and the adhesion / barrier metal film 5b and the Ti film 22b are sequentially deposited.

【0022】次に、前述の図1(a)〜(e)を参照し
て説明した手順にしたがって、図2(b)に示すよう
に、ホトレジスト膜6bをマスクとしてAu膜7dを形
成し、不要となったホトレジスト膜6b、密着・バリア
メタルをそれぞれ除去することによって、図2(c)に
示すように、第3層配線20bを形成する。
Next, according to the procedure described above with reference to FIGS. 1A to 1E, an Au film 7d is formed using the photoresist film 6b as a mask, as shown in FIG. 2B. By removing the photoresist film 6b and the adhesion / barrier metal that are no longer needed, the third layer wiring 20b is formed as shown in FIG. 2C.

【0023】スルーホール4aは密着・バリアメタル
膜、チタン膜および埋込みAu膜によってほぼ完全じ充
填されるので、層間絶縁膜3bには、図5を参照して説
明した場合のように窪み19は殆ど生じないが、むしろ
若干盛り上がるようにすることができ、メタル残り(図
5(c)の21)の生じる危険性は殆どない。
Since the through hole 4a is almost completely filled with the adhesion / barrier metal film, the titanium film and the buried Au film, the depression 19 is formed in the interlayer insulating film 3b as described with reference to FIG. Although it rarely occurs, it can be rather raised slightly, and there is almost no risk of metal residue (21 in FIG. 5C).

【0024】本実施例では、ホトレジスト膜を利用した
エッチバック法によりマスク部材を埋込んだが、SOG
膜を利用することもできる。すなわち、例えばC2 5
Si(OH)2 などのシラノール化合物と溶剤とからな
る塗布液を回転塗布し、100℃前後で溶剤を蒸発さ
せ、250〜350℃の窒素雰囲気中の熱処理によりガ
ラス化させる。次に、CF4 とO2 との混合ガスを使用
したRIEでエッチバックを行いマスク部材とする。こ
の場合、Ti膜の酸化に陽極酸化を使用できるが、プラ
ズマ酸化を使用することもできる。
In this embodiment, the mask member is buried by the etch back method using a photoresist film.
Membranes can also be used. That is, for example, C 2 H 5
A coating solution consisting of a silanol compound such as Si (OH) 2 and a solvent is spin-coated, the solvent is evaporated at around 100 ° C., and vitrified by heat treatment in a nitrogen atmosphere at 250 to 350 ° C. Next, etching back is performed by RIE using a mixed gas of CF 4 and O 2 to obtain a mask member. In this case, anodization can be used for the oxidation of the Ti film, but plasma oxidation can also be used.

【0025】第1の金属膜としてTi膜を用いた場合に
ついて説明したが、そのほかモリブデン(Mo)膜やタ
ンタル(Ta)膜を使用してもよい。Mo膜の場合、プ
ラズマ酸化により酸化モリブデン膜に容易に変換でき、
酸化モリブデン膜の除去は、塩素系ガスを使ったRIE
により達成できる。
Although the case where the Ti film is used as the first metal film has been described, a molybdenum (Mo) film or a tantalum (Ta) film may be used instead. In the case of Mo film, it can be easily converted into molybdenum oxide film by plasma oxidation,
Molybdenum oxide film is removed by RIE using chlorine gas
Can be achieved by

【0026】また、下方の導電領域として配線を例にあ
げたが、半導体基板の拡散層(FETのソース・ドレイ
ン領域や、バイポーラ・トランジスタのコレクタ領域な
ど)でもよいことは改めて説明するまでもない。
Although the wiring is taken as an example of the lower conductive region, it goes without saying that it may be a diffusion layer of the semiconductor substrate (source / drain region of FET, collector region of bipolar transistor, etc.). .

【0027】[0027]

【発明の効果】以上説明したように本発明は、下方の導
電領域と上方の配線との間の絶縁膜に設けられたスルー
ホールなどの開口を介して接続することにおいて、開口
部から外部まで延在して密着・バリアメタル膜で覆い、
かつ開口部内部のみを金属で良好に充填でき、密着性が
よく開口上で表面の平滑な多層膜構造の配線が形成でき
るので半導体装置の信頼性の向上が可能となる効果があ
る。また、開口埋込みを自己整合的におこなうので、ホ
トリソグラフィー工程が不要になり、ホトレジストパタ
ーンのずれによる埋込み不良をなくすことができるので
半導体装置を安価に提供できる効果もある。
As described above, according to the present invention, by connecting through the opening such as a through hole provided in the insulating film between the lower conductive region and the upper wiring, the connection from the opening to the outside can be achieved. Extend and cover it with a barrier metal film,
In addition, since only the inside of the opening can be well filled with the metal and the adhesion is good and the wiring having the multilayer film structure having a smooth surface on the opening can be formed, the reliability of the semiconductor device can be improved. Further, since the opening is buried in a self-aligning manner, the photolithography process is not required, and the filling failure due to the shift of the photoresist pattern can be eliminated, so that the semiconductor device can be provided at a low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の説明のため(a)〜(e)
に分図して示す工程順断面図である。
FIG. 1 (a) to (e) for explaining one embodiment of the present invention.
FIG. 7 is a sectional view in order of the processes, which is divided into FIGS.

【図2】図1に続いて(a)〜(c)に分図して示す工
程順断面図である。
2A to 2C are sectional views in order of the processes, which are illustrated in FIGS.

【図3】一従来例の説明のため(a)〜(e)に分図し
て示す工程順断面図である。
3A to 3E are cross-sectional views in order of the processes, which are illustrated by dividing them into (a) to (e) for explaining a conventional example.

【図4】別の従来例の説明のため(a)〜(e)に分図
して示す工程順断面図である。
4A to 4E are cross-sectional views in order of the processes, which are illustrated by dividing them into (a) to (e) for explaining another conventional example.

【図5】従来技術の説明のため図3に続いて(a)〜
(c)に分図して示す工程順断面図である。
FIG. 5 is a diagram (a) to FIG.
It is a process order sectional view divided and shown in (c).

【図6】バンプ形成法の説明のため(a)〜(d)に分
図して示す工程順断面図である。
6A to 6D are cross-sectional views in order of the processes, which are divided into (a) to (d) for explaining the bump forming method.

【符号の説明】[Explanation of symbols]

1 フィールド酸化膜 2 第1層配線 3a,3b 層間絶縁膜 4a,4b スルーホール 5a,5b 密着・バリアメタル膜 6a,6b ホトレジスト膜 7a,7b,7c,7d 金膜 8a,8b 空洞 9a,9b,9c 第2層配線 10 埋込み金属 11 アルミニウムパッド 12 保護絶縁膜 13,13a 開口 14 Ti膜 15 酸化チタン膜 16 ホトレジスト膜 17 Auめっき層 18 Auバンプ 19 窪み 20a,20b 第3層配線 21 メタル残り 22a,22b Ti膜 23 平坦化膜 24 酸化チタン膜 25 埋込みAu 1 Field oxide film 2 First layer wiring 3a, 3b Interlayer insulating film 4a, 4b Through hole 5a, 5b Adhesion / barrier metal film 6a, 6b Photoresist film 7a, 7b, 7c, 7d Gold film 8a, 8b Cavity 9a, 9b, 9c Second layer wiring 10 Buried metal 11 Aluminum pad 12 Protective insulating film 13, 13a Opening 14 Ti film 15 Titanium oxide film 16 Photoresist film 17 Au plating layer 18 Au bump 19 Recess 20a, 20b Third layer wiring 21 Metal remaining 22a, 22b Ti film 23 Flattening film 24 Titanium oxide film 25 Buried Au

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 9169−4M 604 B Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location 9169-4M 604 B

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上の所定の絶縁膜に開口を設
けて下方の導電領域の表面を露出させる工程と、前記絶
縁膜との密着性に優れた密着メタル膜およびバリアメタ
ル膜を順次に推積して密着・バリアメタル膜を形成し、
その酸化物が絶縁体である第1の金属膜を推積して前記
絶縁膜の表面、前記開口部の側面および前記導電領域の
露出表面を前記開口部を完全に埋込まない程度に被覆す
る工程と、エッチバック法を利用して前記開口部にマス
ク部材を埋込む工程と、前記マスク部材をマスクとする
酸化処理により前記第1の金属膜を酸化物に変換させる
工程と、前記マスク部材を除去した後めっきにより前記
開口部を金属で埋込む工程と、前記酸化物およびその直
下の第1の金属膜を除去して前記バリアメタル膜を露出
させたのち第2の金属膜を選択的に形成して上層配線を
形成する工程とを有することを特徴とする半導体装置の
製造方法。
1. A step of forming an opening in a predetermined insulating film on a semiconductor substrate to expose a surface of a conductive region therebelow, and an adhesive metal film and a barrier metal film having excellent adhesiveness with the insulating film are sequentially formed. Deposit and form a close contact / barrier metal film,
The oxide deposits a first metal film which is an insulator, and covers the surface of the insulating film, the side surface of the opening and the exposed surface of the conductive region to such an extent that the opening is not completely filled. A step of embedding a mask member in the opening using an etch back method, a step of converting the first metal film into an oxide by an oxidation treatment using the mask member as a mask, and the mask member And then filling the opening with metal by plating, and removing the oxide and the first metal film immediately thereunder to expose the barrier metal film, and then selectively removing the second metal film. And a step of forming an upper layer wiring, the method for manufacturing a semiconductor device.
【請求項2】 第1の金属膜はチタン膜、モリブデン膜
またはタンタル膜であり、マスク部材はレジスト膜また
はSOG膜であり、酸化処理は陽極酸化法で行う請求項
1記載の半導体装置の製造方法。
2. The manufacturing of a semiconductor device according to claim 1, wherein the first metal film is a titanium film, a molybdenum film or a tantalum film, the mask member is a resist film or an SOG film, and the oxidation treatment is performed by an anodic oxidation method. Method.
【請求項3】 第1の金属膜はモリブデン膜、チタン膜
またはタンタル膜であり、マスク部材はSOG膜であ
り、酸化処理をプラズマ酸化法で行う請求項1記載の半
導体装置の製造方法。
3. The method for manufacturing a semiconductor device according to claim 1, wherein the first metal film is a molybdenum film, a titanium film, or a tantalum film, the mask member is an SOG film, and the oxidation treatment is performed by a plasma oxidation method.
【請求項4】 導電領域の少なくとも表面部は金でな
り、第2の金属膜は金膜である請求項1,2または3記
載の半導体装置の製造方法。
4. The method of manufacturing a semiconductor device according to claim 1, wherein at least a surface portion of the conductive region is made of gold, and the second metal film is a gold film.
【請求項5】 めっきは無電解めっきである請求項1,
2,3または4記載の半導体装置の製造方法。
5. The plating is electroless plating.
2. The method for manufacturing a semiconductor device according to 2, 3, or 4.
JP6235158A 1994-09-29 1994-09-29 Manufacture of semiconductor device Pending JPH0897214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6235158A JPH0897214A (en) 1994-09-29 1994-09-29 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6235158A JPH0897214A (en) 1994-09-29 1994-09-29 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0897214A true JPH0897214A (en) 1996-04-12

Family

ID=16981915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6235158A Pending JPH0897214A (en) 1994-09-29 1994-09-29 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0897214A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6278153B1 (en) 1998-10-19 2001-08-21 Nec Corporation Thin film capacitor formed in via
US6305002B1 (en) 1997-12-04 2001-10-16 Nec Corporation Semiconductor integrated circuit having thereon on-chip capacitors
US7049179B2 (en) 2001-05-31 2006-05-23 Fujitsu Quantum Devices Limited Semiconductor device and manufacturing method thereof
JP2012500480A (en) * 2008-08-20 2012-01-05 エーシーエム リサーチ (シャンハイ) インコーポレーテッド Barrier layer removal method and apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029151A (en) * 1988-06-28 1990-01-12 Fujitsu Ltd Manufacture of semiconductor device
JPH0254927A (en) * 1988-08-19 1990-02-23 Seiko Epson Corp Manufacture of semiconductor device
JPH0555167A (en) * 1991-08-28 1993-03-05 Nec Corp Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029151A (en) * 1988-06-28 1990-01-12 Fujitsu Ltd Manufacture of semiconductor device
JPH0254927A (en) * 1988-08-19 1990-02-23 Seiko Epson Corp Manufacture of semiconductor device
JPH0555167A (en) * 1991-08-28 1993-03-05 Nec Corp Manufacture of semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6305002B1 (en) 1997-12-04 2001-10-16 Nec Corporation Semiconductor integrated circuit having thereon on-chip capacitors
US6430735B2 (en) 1997-12-04 2002-08-06 Nec Corporation Semiconductor integrated circuit having thereon on-chip capacitors
US6278153B1 (en) 1998-10-19 2001-08-21 Nec Corporation Thin film capacitor formed in via
US7049179B2 (en) 2001-05-31 2006-05-23 Fujitsu Quantum Devices Limited Semiconductor device and manufacturing method thereof
JP2012500480A (en) * 2008-08-20 2012-01-05 エーシーエム リサーチ (シャンハイ) インコーポレーテッド Barrier layer removal method and apparatus
US8598039B2 (en) 2008-08-20 2013-12-03 Acm Research (Shanghai) Inc. Barrier layer removal method and apparatus

Similar Documents

Publication Publication Date Title
JPH05206064A (en) Manufacture of semiconductor device
CN110383488B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
JPH09213794A (en) Semiconductor device and manufacture thereof
JPH0897214A (en) Manufacture of semiconductor device
JPH0758201A (en) Manufacture of multilayer wiring board
JP2570139B2 (en) Method for forming embedded wiring of semiconductor device
JPH02253628A (en) Manufacture of semiconductor device
JP2000031145A (en) Manufacture of semiconductor device
US5247204A (en) Semiconductor device having multilayer interconnection structure
JP2737762B2 (en) Method for manufacturing semiconductor device
JPH0558653B2 (en)
JPH02277242A (en) Manufacture of semiconductor device
JPH118249A (en) Manufacture of wiring
JPH0799199A (en) Manufacture for semiconductor device
JP3049872B2 (en) Method for manufacturing semiconductor device
JPH05114578A (en) Semiconductor device and manufacture thereof
JP2929850B2 (en) Method for manufacturing semiconductor device
JP3166912B2 (en) Method for manufacturing semiconductor device
JPH0856024A (en) Manufacture of integrated circuit
JPH06291194A (en) Manufacture for semiconductor device
JP2998454B2 (en) Method for manufacturing semiconductor device
JPH0629292A (en) Semiconductor device and manufacture thereof
JPH06236928A (en) Semiconductor device and its manufacture
JPH07221108A (en) Structure of electrode of semiconductor device and formation of electrode
JPH02168625A (en) Multilayer wiring structure body and its manufacture

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970527