JPH0891932A - High-density aluminum fluoride sintered compact and its production - Google Patents

High-density aluminum fluoride sintered compact and its production

Info

Publication number
JPH0891932A
JPH0891932A JP6248698A JP24869894A JPH0891932A JP H0891932 A JPH0891932 A JP H0891932A JP 6248698 A JP6248698 A JP 6248698A JP 24869894 A JP24869894 A JP 24869894A JP H0891932 A JPH0891932 A JP H0891932A
Authority
JP
Japan
Prior art keywords
aluminum fluoride
sintered body
raw material
alf
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6248698A
Other languages
Japanese (ja)
Other versions
JP3570640B2 (en
Inventor
Kazuyuki Oshima
一之 大嶋
Koichi Imura
浩一 井村
Shunzo Shimai
駿蔵 島井
Shigeko Sugiyama
滋子 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP24869894A priority Critical patent/JP3570640B2/en
Publication of JPH0891932A publication Critical patent/JPH0891932A/en
Application granted granted Critical
Publication of JP3570640B2 publication Critical patent/JP3570640B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE: To obtain a new raw material usable as various structural members, having suitable high corrosion resistance, especially also as a member of a derive for producing semiconductors and having low dust-generating property. CONSTITUTION: The characteristics of this high-density aluminum fluoride sintered compact are to have >=90% relative density and <=100ppm content (based on element) of impurities other than oxygen. The aluminum fluoride sintered compact having >=90% relative density is produced by (1) a step for preparing aluminum raw material powder having 0.1-100μm particle size distribution, (2) a step for forming the aluminum fluoride raw material powder and (3) a sintering step for sintering the resultant formed body at 900-1500 deg.C under pressure of an inert gas atmosphere. In this time, the pressure sintering is preferably carried out by a hot press method or hot isostatic press method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高密度フッ化アルミニ
ウム焼結体及びその製造方法に関し、特に、半導体製造
工程の中のCVD工程やドライエッチング工程で使用さ
れる装置のチャンバ、ベルジャ、サセプタ、クランプリ
ング等の各種構成部材用に好適な高純度で、高密度フッ
化アルミニウム焼結体及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-density aluminum fluoride sintered body and a method for manufacturing the same, and more particularly to a chamber, bell jar, and susceptor of an apparatus used in a CVD process or a dry etching process in a semiconductor manufacturing process. The present invention relates to a high-purity, high-density aluminum fluoride sintered body suitable for various structural members such as a clamp ring, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】半導体製造工程において、CVDにより
シリコンウエハ上に酸化膜や配線のメタル膜等を形成す
るCVD装置のウエハ以外に付着した膜成分の除去する
ための定期的セルフクリーニングのためや、エッチング
装置の熱エッチングやプラズマエッチングによるCVD
で形成した膜を除去するために、腐食性の高いNF3
CF4 、ClF3 等フッ素系ガスが用いられている。こ
れら高腐食性ガス等厳しい条件下で使用する、例えば、
ベルジャー、チャンバー、サセプター、クランプリン
グ、フォーカスリング等半導体装置の構成部材は、従
来、シリコン(Si)、アルミニウム(Al)等金属、
石英ガラス、炭化珪素等が用途に応じて選択適用されて
きた。しかし、従来用いられている各種材料においても
種々の問題があった。例えば、石英ガラスは高純度の部
材が得られること、及び、製造するウエハのシリコンと
同種の元素から構成されていることから、半導体製造装
置に多用されているが、反応性の高いフッ素系ガスの存
在下ではフッ化珪素等反応生成化合物の蒸気圧が高く気
体となって揮散するため、腐食が連続的に進行し部材の
消失が生じるおそれがある。また、炭化珪素は基本的に
は石英ガラスよりも耐食性が優れているが、半導体製造
装置用として使用する炭化珪素は、主にシリコン含浸炭
化珪素であるため、シリコン部が石英ガラスと同様にフ
ッ素系ガスとの反応により消失するため、構造組織が粗
密化され機材より炭化珪素が離脱し易く、パーティクル
の原因となる。
2. Description of the Related Art In a semiconductor manufacturing process, for periodic self-cleaning for removing film components attached to other than a wafer of a CVD apparatus for forming an oxide film and a metal film of wiring on a silicon wafer by CVD, CVD by thermal etching of etching equipment or plasma etching
NF 3 , which is highly corrosive, to remove the film formed in
Fluorine-based gas such as CF 4 and ClF 3 is used. Use under severe conditions such as these highly corrosive gases, for example,
Conventionally, components such as a bell jar, a chamber, a susceptor, a clamp ring, and a focus ring are semiconductors such as silicon (Si) and aluminum (Al).
Quartz glass, silicon carbide, etc. have been selectively applied according to the application. However, there are various problems in various materials that have been conventionally used. For example, quartz glass is widely used in semiconductor manufacturing equipment because it is possible to obtain a high-purity member, and because it is composed of the same element as the silicon of the wafer to be manufactured, it is highly reactive fluorine-based gas. In the presence of the above, since the vapor pressure of the reaction product compound such as silicon fluoride is high and vaporizes as a gas, corrosion may proceed continuously and the member may disappear. Further, silicon carbide is basically superior in corrosion resistance to quartz glass, but since silicon carbide used for semiconductor manufacturing equipment is mainly silicon-impregnated silicon carbide, the silicon part has the same fluorine content as quartz glass. Since it disappears due to the reaction with the system gas, the structural structure is coarsened and silicon carbide is easily released from the equipment, which causes particles.

【0003】[0003]

【発明が解決しようとする課題】一方、上記石英ガラス
や炭化珪素に比し、アルミニウム(金属)、酸化アルミ
ニウム(アルミナ)、窒化アルミニウム等のアルミニウ
ム系材料は、フッ素系ガスと反応して生成されるフッ化
アルミニウム(AlF3 )が、蒸気圧がフッ化珪素に比
し著しく低いことからその使用が試みられている。ま
た、アルミニウム系材料においてはその種類で腐食速度
に差がある。例えば、金属系とセラミック系とを比較す
ると、原子間結合強度が低い金属系は耐食性が低く、結
合強度が高いセラミック系は高耐食性を有する。セラミ
ック系アルミニウムでは、セラミック材の種類と生成物
AlF3 との熱膨張差が問題となり、熱履歴を受けた場
合、その種類によっては、セラミック基材からAlF3
が剥離しパーティクルとなるおそれがある。上記のよう
に、蒸気圧の低いAlF3 が生成され、その適用が期待
されたアルミニウム系材料でも、フッ素系ガスに晒され
るような半導体製造装置の構成部材として、更に改良を
待たねばならない状況にある。
On the other hand, aluminum-based materials such as aluminum (metal), aluminum oxide (alumina), and aluminum nitride are produced by reacting with a fluorine-based gas, as compared with the above-mentioned quartz glass and silicon carbide. Aluminum fluoride (AlF 3 ) has a vapor pressure remarkably lower than that of silicon fluoride, and its use has been attempted. Further, in aluminum-based materials, there is a difference in corrosion rate depending on the type. For example, comparing a metal system and a ceramic system, a metal system having low interatomic bond strength has low corrosion resistance, and a ceramic system having high bond strength has high corrosion resistance. The ceramic aluminum, becomes a difference in thermal expansion problems between the product AlF 3 the type of ceramic material, when subjected to heat history, depending on its kind, AlF 3 ceramic substrate
May peel off and become particles. As described above, AlF 3 having a low vapor pressure is generated, and even aluminum-based materials that are expected to be applied have to wait for further improvement as a constituent member of a semiconductor manufacturing apparatus that is exposed to a fluorine-based gas. is there.

【0004】発明者らは、上記現状に鑑み、厳しい条件
下におかれる半導体製造装置の構成部材として好適な高
耐食性、低発塵性の材料を開発することを目的に検討を
重ねた結果、上記のアルミニウム系材料表面の生成物で
あるAlF3 そのものを構成部材に適用することにし、
フッ素系ガスに晒される半導体製造のCVD工程やドラ
イエッチング工程の装置の構成部材にも適用可能な純度
の原料AlF3 、その原料粉末の成形、及び、成形体を
AlF3 単相の多結晶体により構成されるAlF3 焼結
体の製造等、更に種々検討を重ねた結果、本発明に到っ
た。今までは、従来公知のセラミック材の改良等により
耐食性を高める努力が図られていたのに対し、本発明
は、未だ構成部材の素材料として検討されていないAl
3 そのものを素材として、半導体製造装置部材に適用
可能な原料とすることを積極的に意図してなされたもの
である。特に、AlF3 は加熱により溶融することなく
昇華する等従来の原材料と同等には取り扱えない特性を
有するため、その長所を利用すると共に効率的且つ効果
的にAlF3 焼結体、特に、半導体製造装置用部材用A
lF3 焼結体を形成するものである。
In view of the above situation, the inventors have conducted extensive studies for the purpose of developing a material having high corrosion resistance and low dust generation suitable as a constituent member of a semiconductor manufacturing apparatus under severe conditions. AlF 3 itself, which is a product of the above aluminum-based material surface, is applied to the constituent members,
Raw material AlF 3 having a purity applicable to the constituent members of the apparatus for the CVD process and the dry etching process for the semiconductor manufacturing exposed to the fluorine-based gas, the molding of the raw material powder, and the molded product of AlF 3 single-phase polycrystal As a result of further various studies such as the production of an AlF 3 sintered body composed of Up to now, efforts have been made to improve the corrosion resistance by improving conventionally known ceramic materials, but the present invention has not been studied as a raw material for the constituent members.
It was made with the intention of using F 3 itself as a raw material and making it a raw material applicable to semiconductor manufacturing equipment members. In particular, AlF 3 has characteristics that cannot be handled in the same way as conventional raw materials, such as sublimation without being melted by heating, and therefore, its advantages can be utilized and an AlF 3 sintered body, particularly semiconductor manufacturing, can be used efficiently and effectively. Device member A
It forms an IF 3 sintered body.

【0005】[0005]

【課題を解決するための手段】本発明によれば、相対密
度が90%以上であり、酸素以外の不純物含有量が元素
基準で100ppm以下であることを特徴とする高密度
フッ化アルミニウム焼結体が提供される。更に、(1)
粒度分布0.1〜100μmのフッ化アルミニウム原料
粉末を調製する工程、(2)前記フッ化アルミニウム原
料粉末を成形する工程、及び、(3)成形体を不活性ガ
ス雰囲気下で900〜1500℃で加圧焼成して焼結す
る焼結工程を有して構成され、得られる焼結体の相対密
度が90%以上であることを特徴とする高密度フッ化ア
ルミニウム焼結体の製造方法が提供される。本発明にお
ける上記焼結工程の加圧は、ホットプレス法またはホッ
トアイソスタティックプレス法で行うのが好ましい。ま
た、上記原料粉末として酸素を除いた含有不純物が元素
基準で総量50ppm以下の高純度フッ化アルミニウム
粉末を用いことが好ましい。更に、本発明の高密度フッ
化アルミニウム焼結体の純度は99.99%以上が好ま
しい。
According to the present invention, a high-density aluminum fluoride sintered body having a relative density of 90% or more and an impurity content other than oxygen of 100 ppm or less on an elemental basis. The body is provided. Furthermore, (1)
A step of preparing an aluminum fluoride raw material powder having a particle size distribution of 0.1 to 100 μm, (2) a step of molding the aluminum fluoride raw material powder, and (3) a molded body in an inert gas atmosphere at 900 to 1500 ° C. The method for producing a high-density aluminum fluoride sintered body is characterized by comprising a sintering step of pressure-calcining and sintering, and the relative density of the obtained sintered body is 90% or more. Provided. The pressing in the sintering step in the present invention is preferably performed by a hot pressing method or a hot isostatic pressing method. Further, it is preferable to use, as the raw material powder, high-purity aluminum fluoride powder having a total amount of impurities of 50 ppm or less on an elemental basis except oxygen. Furthermore, the purity of the high-density aluminum fluoride sintered body of the present invention is preferably 99.99% or more.

【0006】[0006]

【作用】本発明は上記のように構成され、合成フッ化ア
ルミニウムを原料粉末に用いることにより不純物含有量
が低減され、また、昇華し易いフッ化アルミニウムの特
性から多結晶体を溶融法を避けて昇華温度より低い温度
で焼成して相対密度90%以上で、酸素以外の不純物が
元素基準で100ppm以下であるフッ化アルミニウム
焼結体を効果的に得ることができる。また、フッ化アル
ミニウム原料粉末を成形し、ホットプレス(HP)また
はホットアイソスタティックプレス(HIP)で、加圧
加温焼結するため各原料粉末粒子間が緻密状態となり焼
結への駆動力となる。また、900〜1500℃の温度
範囲の高温域においても昇華が抑制され、焼結が効率的
に行われ、相対密度90%以上の焼結体を得ることがで
きる。更に、原料粉末として高純度フッ化アルミニウ
ム、特に元素基準での不純物含有量が50ppmである
場合には、得られるフッ化アルミニウム焼結体も99.
99%以上の高純度となり、腐食性ガス、特に、フッ素
系ガスやそのプラズマに対する耐食性が高く、発塵性が
低く半導体ウエハを汚染することがなく半導体製造装置
の構成部材として好適なものとなる。
The present invention is configured as described above, the content of impurities is reduced by using synthetic aluminum fluoride as the raw material powder, and the melting method of the polycrystalline body is avoided because of the characteristics of aluminum fluoride which easily sublime. By sintering at a temperature lower than the sublimation temperature, an aluminum fluoride sintered body having a relative density of 90% or more and impurities other than oxygen of 100 ppm or less on an elemental basis can be effectively obtained. In addition, since aluminum fluoride raw material powder is molded and subjected to pressure heating and sintering by hot pressing (HP) or hot isostatic pressing (HIP), each raw material powder particle is in a dense state and has a driving force for sintering. Become. Further, sublimation is suppressed even in a high temperature range of 900 to 1500 ° C., sintering is efficiently performed, and a sintered body having a relative density of 90% or more can be obtained. Further, as the raw material powder, high-purity aluminum fluoride, especially when the content of impurities on the elemental basis is 50 ppm, the aluminum fluoride sintered body obtained is 99.
It has a high purity of 99% or more, has high corrosion resistance to corrosive gases, particularly fluorine-based gas and its plasma, has low dust generation, does not contaminate semiconductor wafers, and is suitable as a constituent member of a semiconductor manufacturing apparatus. .

【0007】以下、本発明について、詳細に説明する。
本発明の焼結体を構成するフッ化アルミニウム(AlF
3 )そのものは、極めて安定であり、一般に、耐食性に
優れ酸やアルカリ等の腐食に強く、また、耐熱性にも富
み、耐熱衝撃性が高いアルミニウムのフッ素化合物とし
て、よく知られている。従来、アルミニウムのフッ素化
合物として天然に産出される鉱石氷晶石(cryoli
te)(Na3 AlF6 )が、琺瑯や、ゆう薬の乳濁
剤、アルミニウム精練用溶融剤として使用されている。
AlF3 は、工業的に上記氷晶石と硫酸アルミニウムと
を共融した後水洗する等して結晶構造中に含まれるナト
リウム分除去等により製造されている。また、一般に、
金属アルミニウムとフッ化水素または四フッ化珪素との
反応や、アルミナとフッ化水素酸との熱処理によってフ
ッ化アルミニウムが製造されることも知られている。
The present invention will be described in detail below.
The aluminum fluoride (AlF that constitutes the sintered body of the present invention
3 ) itself is extremely stable, is generally well known as a fluorine compound of aluminum having excellent corrosion resistance, strong resistance to corrosion by acids and alkalis, etc., and also having high heat resistance and high thermal shock resistance. Conventionally, ore cryolite naturally produced as a fluorine compound of aluminum (cryoli)
te) (Na 3 AlF 6 ) is used as an enamel, an emulsifying agent for broth, and a melting agent for aluminum scouring.
AlF 3 is industrially produced by eutectic melting of the cryolite and aluminum sulfate and then washing with water to remove the sodium content contained in the crystal structure. Also, in general,
It is also known that aluminum fluoride is produced by the reaction between metallic aluminum and hydrogen fluoride or silicon tetrafluoride, or the heat treatment of alumina and hydrofluoric acid.

【0008】しかしながら、発明者らは、上記の従来の
氷晶石から製造されているAlF3は、鉄(Fe)、ナ
トリウム(Na)、カルシウム(Ca)、ニッケル(N
i)、珪素(Si)等の不純物元素を多く含有するた
め、特に、汚染を厳格に制限する半導体製造装置のCV
D工程やドライエッチング工程等のチャンバ、ベルジ
ャ、サセプタ、クランプリング等の各種構成部材を形成
するためのフッ化アルミニウム焼結体用の原料に用いる
には純度的に不十分であり、上記金属アルミニウムとフ
ッ化水素または四フッ化珪素との反応や、アルミナとフ
ッ化水素酸との熱処理によって得られるAlF3 が適す
ることを知見した。また、成形用の原料粉末としては、
0.1〜100μmの粒度分布を有するものが好まし
い。原料粉末の粒度分布が、上記範囲外であると十分緻
密化しないためである。上記及び下記するAlF3 の製
造法において、製造工程の各種生成条件を制御すること
により、上記の粒度分布に調整するのが好ましい。ま
た、生成条件を制御しても粒度分布を調整不可能な場合
は、得られたAlF3 生成物を不純物の混入をでき得る
限り抑制して粉砕等の処理により、粒度分布を上記範囲
に調整して用いるのが好ましい。
However, the inventors have found that AlF 3 produced from the above-mentioned conventional cryolite is iron (Fe), sodium (Na), calcium (Ca), nickel (N).
i), CV of a semiconductor manufacturing apparatus that contains a large amount of impurity elements such as silicon (Si), so that pollution is strictly limited.
In terms of purity, it is insufficient to be used as a raw material for an aluminum fluoride sintered body for forming various constituent members such as chambers, bell jars, susceptors, and clamp rings in the D step and dry etching step, and the above-mentioned metallic aluminum. It was found that AlF 3 obtained by the reaction of hydrogen fluoride or silicon tetrafluoride or the heat treatment of alumina and hydrofluoric acid is suitable. Further, as the raw material powder for molding,
Those having a particle size distribution of 0.1 to 100 μm are preferable. This is because if the particle size distribution of the raw material powder is outside the above range, the material powder will not be sufficiently densified. In the method for producing AlF 3 described above and below, it is preferable to adjust the above particle size distribution by controlling various production conditions in the production process. If the particle size distribution cannot be adjusted even by controlling the production conditions, the obtained AlF 3 product is suppressed as much as possible by mixing impurities, and the particle size distribution is adjusted to the above range by a treatment such as pulverization. It is preferable to use it.

【0009】更にまた、本発明においては、更に、不純
物が元素基準で総量50ppm以下の高純度なAlF3
を製造し、その高純度AlF3 を用いることができる。
この高純度AlF3 の製造方法としては、特に、発明者
らが見出した方法の、上記の従来法で得られるAlF3
を、塩化水素を含有する非酸化性ガス雰囲気下、例え
ば、水素、窒素、アルゴン及びヘリウムから選択された
少なくとも1のガス、または、窒素、アルゴン及びヘリ
ウムから選択された少なくとも1のガスと水素を含有す
る非酸化性ガス雰囲気で、好ましくは950℃以上で加
熱昇華処理すると共に300〜600℃の低温部にAl
3 を再凝集させる方法により、製造された酸素以外の
不純物含有量を元素基準で50ppm以下の高純度のA
lF3 を用いるのが好ましい。この場合、加熱昇華処理
は、上記非酸化性ガス雰囲気には、塩化水素を約0.5
容量%以上、好ましくは1.0容量%以上含有させて行
うのが好ましい。更に好ましくは、窒素、アルゴン及び
ヘリウムから選ばれた少なくとも1のガスと水素との2
種以上を組合せて用いる混合ガス中に、塩化水素を0.
5容量%以上を含有する非酸化性ガス雰囲気下で行うの
が好ましい。
Furthermore, in the present invention, high-purity AlF 3 having a total amount of impurities of 50 ppm or less on the basis of elements is further used.
Can be produced and the high-purity AlF 3 can be used.
As a method for producing this high-purity AlF 3 , in particular, the AlF 3 obtained by the above-mentioned conventional method of the method found by the inventors.
In a non-oxidizing gas atmosphere containing hydrogen chloride, for example, at least one gas selected from hydrogen, nitrogen, argon and helium, or at least one gas selected from nitrogen, argon and helium and hydrogen. In a contained non-oxidizing gas atmosphere, preferably heat sublimation treatment is performed at 950 ° C. or higher and Al is added to a low temperature portion of 300 to 600 ° C.
By the method of re-aggregating F 3 , the content of impurities other than oxygen produced was 50 ppm or less based on the element, and the purity of A was high.
it is preferable to use a lF 3. In this case, the heat sublimation treatment is carried out by adding about 0.5 hydrogen chloride to the non-oxidizing gas atmosphere.
It is preferable to carry out by containing at least 1.0% by volume, preferably at least 1.0% by volume. More preferably, 2 of at least one gas selected from nitrogen, argon and helium and hydrogen is used.
Hydrogen chloride was added to the mixed gas of 0.
It is preferably carried out in a non-oxidizing gas atmosphere containing 5% by volume or more.

【0010】本発明において、次いで、上記の比較的高
純度で、上記0.1〜100μmの粒度分布の原料粉末
を用い、所望形状に成形する。成形は、公知の一軸加圧
や静水圧加圧等プレス成形、射出成形、押出成形、鋳込
成形等各種成形方法のいずれを用いてもよい。好ましく
は、プレス成形するのがよい。次工程の加圧焼結がより
円滑となるためである。本発明の成形において、潤滑剤
としての溶媒や、成形体に強度を付与するための結合剤
を添加することができる。溶媒は、水、アルコール類が
使用できるが、AlF3 が水に約5重量%溶解するた
め、アルコール類が好ましい、また、結合剤としては、
各種公知の有機物を用いることができるが、好ましくは
低温揮発性で、残渣物が残らないもの、例えば、ポリビ
ニルブチラール等を用いるのがよい。また、これら有機
物結合剤を添加した場合は、次工程の焼成前に、不活性
雰囲気下で加熱処理して脱脂する。
In the present invention, the raw material powder having a relatively high purity and a particle size distribution of 0.1 to 100 μm is used to form a desired shape. For the molding, any of various known molding methods such as press molding such as uniaxial pressing and isostatic pressing, injection molding, extrusion molding, and casting molding may be used. It is preferable to perform press molding. This is because the pressure sintering in the next step becomes smoother. In the molding of the present invention, a solvent as a lubricant or a binder for imparting strength to the molded body can be added. As the solvent, water and alcohols can be used, but since AlF 3 dissolves in water in an amount of about 5% by weight, alcohols are preferable, and as the binder,
Although various known organic substances can be used, it is preferable to use those which are volatile at low temperature and do not leave a residue, such as polyvinyl butyral. When these organic binders are added, they are heat-treated and degreased in an inert atmosphere before firing in the next step.

【0011】上記成形工程で得られ、要すれば脱脂した
成形体を、次いで加圧焼成して焼結体を形成する。本発
明の焼成は、窒素、アルゴン等の不活性ガス雰囲気下、
900〜1500℃で加圧状態で行うことにより焼結体
とすることができる。不活性ガス雰囲気はAlF3 の酸
化を抑制しするためである。また、焼成温度が900℃
未満であれば緻密化が不十分であり、一方、1500℃
を超えると昇華が著しくなるためである。本発明の焼結
工程における加圧焼成は、ホットプレス(HP)法及び
ホットアイソスタティックプレス(HIP)法で行うの
が好ましい。これらHP法及びHIP法は、成形体を所
定の形状型枠内に配置して加熱と共に加圧するものであ
り、成形された原料AlF3 粒子をより緻密状態で加圧
しながら、加熱することができる。従って、本発明の加
圧下の焼結工程において、各AlF3 粒子間をより一層
緻密化し、蒸気圧の低い比較的低温で焼結を円滑に進行
させる駆動力を付与することができる。更に、上記加熱
温度範囲の高温域は、AlF3 昇華の可能性があるが、
それらを抑制しつつ緻密化して、焼結を円滑に進行させ
ることができる。
The molded body obtained in the above molding step and degreased if necessary is then fired under pressure to form a sintered body. Firing of the present invention, nitrogen, under an inert gas atmosphere such as argon,
A sintered body can be obtained by performing the treatment under pressure at 900 to 1500 ° C. This is because the inert gas atmosphere suppresses the oxidation of AlF 3 . Also, the firing temperature is 900 ° C
If less than 1, the densification is insufficient, while 1500 ° C
It is because sublimation becomes remarkable when the value exceeds. The pressure firing in the sintering step of the present invention is preferably performed by a hot press (HP) method and a hot isostatic press (HIP) method. In these HP method and HIP method, a molded body is placed in a mold having a predetermined shape and heated and pressed, and the molded raw material AlF 3 particles can be heated while being pressed in a more dense state. . Therefore, in the sintering process under pressure of the present invention, it is possible to further densify the AlF 3 particles and to provide a driving force for smoothly proceeding the sintering at a relatively low temperature with a low vapor pressure. Further, in the high temperature range of the above heating temperature range, AlF 3 sublimation may occur,
Suppressing them while densifying them allows the sintering to proceed smoothly.

【0012】上記のようにして得られる本発明のAlF
3 焼結体は、相対密度が90%以上となり、更に、要す
ればHP法により99.5%以上に形成することもで
き、AlF3 自体の特性の高耐食性に加えて機械的強度
が大きくなり、精密構造部材として好適となる。また、
AlF3 原料粉末の純度を適宜選択することにより、酸
素を除く不純物が元素基準で100ppm以下の、更に
は純度95%以上のAlF3 焼結体を得ることができ
る。従って、本発明のAlF3 焼結体は汚染を厳しく制
限する半導体製造装置部材として好適である。特に、含
有される不純物が元素基準で50ppm以下の高純度の
AlF3 原料粉末を用いた場合は、得られる焼結体も更
に高純度となり、腐食性の強いフッ素系ガスに対しても
優れた耐食性を示し、発塵性の低下も顕著となり、半導
体製造装置のCVD装置やエッチング装置の構成部材用
として好適である。また、得られたAlF3 焼結体は、
その用途に応じた形状に適宜加工して用いることができ
る。
AlF of the present invention obtained as described above
The 3 sintered body has a relative density of 90% or more, and can be formed to 99.5% or more by the HP method if necessary, and has high mechanical strength in addition to the high corrosion resistance of AlF 3 itself. Therefore, it is suitable as a precision structural member. Also,
By appropriately selecting the purity of the AlF 3 raw material powder, it is possible to obtain an AlF 3 sintered body in which impurities other than oxygen are 100 ppm or less on the elemental basis, and further, the purity is 95% or more. Therefore, the AlF 3 sintered body of the present invention is suitable as a semiconductor manufacturing apparatus member that severely limits contamination. In particular, when using a high-purity AlF 3 raw material powder having an impurity content of 50 ppm or less on the elemental basis, the obtained sintered body also has a higher purity, and is excellent even with a corrosive fluorine-based gas. Corrosion resistance is exhibited, and dust generation is significantly reduced, which is suitable for a constituent member of a CVD apparatus or an etching apparatus of a semiconductor manufacturing apparatus. Also, the obtained AlF 3 sintered body is
It can be used after being appropriately processed into a shape according to its application.

【0013】[0013]

【実施例】本発明について実施例に基づき、更に詳細に
説明する。但し、本発明は、下記の実施例に制限される
ものでない。 実施例1 図1に示すように、内径150mm、長さ1500mm
の炉心管1に、3系統で制御可能なヒータ2、3、4を
配設して電気炉を構成した。このように構成した電気炉
は、昇華部X、低温部Yの温度が独立して制御可能とな
り、ほぼ中央部の昇華部Xにあたる均熱部長が訳300
mmであり、炉心管の端部にAlF3 凝集用の低温部Y
が形成されるようになっている。上記のように構成した
電気炉を用い、昇華部Xの温度を1000℃、低温部Y
の温度を450℃、炉内の雰囲気を窒素ガスとし、その
昇華部に、従来法によって氷晶石と硫酸アルミニウムを
共融して水洗いして製造された粒度分布10〜100μ
m、平均粒子径50μmのAlF3 粉末(関東化学
(株)製)を出発原料として配置して、昇華、再凝集さ
せることにより高純度化した高純度AlF3 粉末を得
た。得られた高純度AlF3 粉末の不純物含有量を、原
料として表1に示した。上記のようにして高純度化して
得た粒度分布3〜50μm、平均粒子径12μmの原料
AlF3 粉末100gに、ポリビニルブチラールを結合
剤として1重量%、更に溶媒としてイソプロピルアルコ
ール100mlを添加して、ボールミルにて約1時間攪
拌混合した。得られた混合物を70℃で乾燥し、溶媒を
除去後、#60篩で通篩して造粒体を得た。得られた造
粒体を用い、20mmφの円柱状に30MPaで一軸加
圧成形し、更に100MPaでCIP成形した。得られ
た成形体を1000℃で、且つ60MPaの条件でHP
焼結した。得られた焼結体について、試料を切り出し、
化学分析し不純物の含有量を測定すると共に、アルキメ
デス法を用いて密度を測定し、相対密度を算出した。そ
れらの結果を表1に示した。
EXAMPLES The present invention will be described in more detail based on examples. However, the present invention is not limited to the following examples. Example 1 As shown in FIG. 1, inner diameter 150 mm, length 1500 mm
An electric furnace was constructed by arranging heaters 2, 3 and 4 which can be controlled by three systems in the furnace core tube 1. In the electric furnace configured as described above, the temperatures of the sublimation part X and the low temperature part Y can be independently controlled, and the soaking section length corresponding to the sublimation part X in the central portion is approximately 300.
mm, and the low temperature part Y for agglomerating AlF 3 at the end of the core tube
Are formed. Using the electric furnace configured as described above, the temperature of the sublimation part X is 1000 ° C. and the low temperature part Y is
Temperature of 450 ° C., the atmosphere in the furnace was nitrogen gas, and the sublimation part was prepared by eutectic melting of cryolite and aluminum sulfate by a conventional method and washing with water to obtain a particle size distribution of 10 to 100 μm.
AlF 3 powder (manufactured by Kanto Kagaku Co., Ltd.) having a particle size of m and an average particle diameter of 50 μm was placed as a starting material, and sublimated and reaggregated to obtain highly purified AlF 3 powder. The impurity content of the obtained high-purity AlF 3 powder is shown in Table 1 as a raw material. To 100 g of raw AlF 3 powder having a particle size distribution of 3 to 50 μm and an average particle diameter of 12 μm obtained by high purification as described above, 1% by weight of polyvinyl butyral as a binder and 100 ml of isopropyl alcohol as a solvent were added, The mixture was stirred and mixed in a ball mill for about 1 hour. The obtained mixture was dried at 70 ° C., the solvent was removed, and the mixture was passed through a # 60 sieve to obtain a granule. Using the obtained granule, uniaxial pressure molding was performed at 30 MPa into a cylindrical shape of 20 mmφ, and CIP molding was further performed at 100 MPa. HP of the obtained compact at 1000 ° C. and 60 MPa
Sintered. For the obtained sintered body, cut out a sample,
The chemical analysis was performed to measure the content of impurities, the density was measured using the Archimedes method, and the relative density was calculated. The results are shown in Table 1.

【0014】[0014]

【表1】 [Table 1]

【0015】実施例2 実施例1と同一の炉を用い、炉内の雰囲気を塩化水素ガ
ス2容量%、残部を窒素ガスとした以外は実施例1と同
様にして高純度AlF3 粉末を得た。得られた高純度A
lF3 粉末の不純物量を表1に原料として示した。上記
高純度AlF3 粉末を用い、実施例1と全く同様にして
AlF3 焼結体を得た。得られた焼結体から切り出した
試料を用い、同様に不純物含有量及び相対密度を測定
し、その結果を表1に示した。
Example 2 Using the same furnace as in Example 1, a high-purity AlF 3 powder was obtained in the same manner as in Example 1 except that the atmosphere in the furnace was 2% by volume of hydrogen chloride gas and the balance was nitrogen gas. It was High purity A obtained
The amount of impurities in the 1F 3 powder is shown in Table 1 as a raw material. Using the above high-purity AlF 3 powder, an AlF 3 sintered body was obtained in exactly the same manner as in Example 1. Using a sample cut out from the obtained sintered body, the impurity content and the relative density were measured in the same manner, and the results are shown in Table 1.

【0016】実施例3 実施例1と同一の炉を用い、炉内の雰囲気を塩化水素ガ
ス2容量%、残部を窒素ガスと水素ガスの1:1の混合
ガスとした以外は実施例1と同様にして高純度AlF3
粉末を得た。得られた高純度AlF3 粉末の不純物量を
表1に原料として示した。上記高純度AlF3 粉末を用
い、実施例1と全く同様にしてAlF3 焼結体を得た。
得られた焼結体から切り出した試料を用い、同様に不純
物含有量および相対密度を測定し、その結果を表1に示
した。
Example 3 As Example 1, except that the same furnace as in Example 1 was used, the atmosphere in the furnace was 2% by volume of hydrogen chloride gas, and the balance was 1: 1 mixed gas of nitrogen gas and hydrogen gas. Similarly, high purity AlF 3
A powder was obtained. The amount of impurities in the obtained high-purity AlF 3 powder is shown in Table 1 as a raw material. Using the above high-purity AlF 3 powder, an AlF 3 sintered body was obtained in exactly the same manner as in Example 1.
Using the sample cut out from the obtained sintered body, the impurity content and the relative density were measured in the same manner, and the results are shown in Table 1.

【0017】比較例1 実施例1で出発原料として用いた、氷晶石と硫酸アルミ
ニウムを共融して水洗して得られた粒度分布10〜10
0μm、平均粒子径50μmのAlF3 粉末(関東化学
(株)製)をそのまま原料粉末として用いた。この原料
AlF3 粉末の不純物量を表1に示した。上記原料Al
3 粉末を、実施例1と全く同様にしてAlF3 焼結体
を得た。得られた焼結体から切り出した試料を用い、同
様に不純物含有量および相対密度を測定し、その結果を
表1に示した。
Comparative Example 1 Particle size distribution 10 to 10 obtained by eutectic melting of cryolite and aluminum sulfate used as starting materials in Example 1 and washing with water
AlF 3 powder (manufactured by Kanto Chemical Co., Inc.) having a particle size of 0 μm and an average particle size of 50 μm was used as a raw material powder as it was. The amount of impurities in this raw material AlF 3 powder is shown in Table 1. Raw material Al
The F 3 powder to obtain AlF 3 sintered body in the same manner as in Example 1. Using the sample cut out from the obtained sintered body, the impurity content and the relative density were measured in the same manner, and the results are shown in Table 1.

【0018】上記実施例及び比較例より明らかなよう
に、天然鉱石の氷晶石から製造されたAlF3 は、得ら
れる焼結体の密度特性は本発明と同等ではあるものの、
高純度化処理されたAlF3 を用いたものに比し、半導
体製造装置用としては不純物含有量が多く適さないこと
が分かる。
As is clear from the above Examples and Comparative Examples, AlF 3 produced from cryogenic natural ore, although the density characteristics of the obtained sintered body are equivalent to those of the present invention,
It can be seen that the content of impurities is not suitable for a semiconductor manufacturing apparatus, as compared with the one using highly purified AlF 3 .

【0019】実施例4〜7及び比較例2〜5 実施例2と同様にして得た成形体を、図2に示したカー
ボン加圧成形型にセットし60MPa加圧下で加熱し焼
結するHP焼結、HP焼結で得られた焼結体を更にアル
ゴンガスを圧力媒体に用いて150MPa加圧下で加熱
し焼結するHIP焼結、及び、カーボンルツボ中でアル
ゴンガスを流通させつつ加熱焼結する無加圧(NP)焼
結の3種の方法を用い、表2に示した900〜1300
℃の温度に加熱して焼結体を得た。なお、図2のカーボ
ン成形型は、カーボン製の周壁を有するモールド11内
周に配設されたカーボン製のスペーサ12、上パンチ1
3及び下パンチ14により囲まれる空間内Sに、成形用
原料粉末Fをそれぞれスペーサ15を介して充填するよ
うに構成されている。成形用原料粉末Fは充填後、高周
波により加熱されつつ上下パンチ13、14により加圧
されて、焼結される。また、実施例7のHIP焼結に用
いたHP焼結体は、実施例2で得られた焼結体を用い
た。得られた各焼結体から試料を切り出し実施例1と同
様に相対密度を測定した。その結果を表2に示した。
Examples 4 to 7 and Comparative Examples 2 to 5 The compacts obtained in the same manner as in Example 2 were set in the carbon pressure mold shown in FIG. 2 and heated under 60 MPa pressure to sinter HP. Sintering, HP sintering, the sintered body obtained by further heating the sintered body under a pressure of 150 MPa using argon gas as a pressure medium to sinter, and heating and firing while circulating argon gas in a carbon crucible. 900 to 1300 shown in Table 2 by using three types of pressureless (NP) sintering for binding.
It was heated to a temperature of ℃ to obtain a sintered body. The carbon mold of FIG. 2 has a carbon spacer 12 and an upper punch 1 which are arranged on the inner circumference of a mold 11 having a carbon peripheral wall.
The space S surrounded by the lower punch 3 and the lower punch 14 is filled with the forming raw material powder F via the spacers 15, respectively. After the molding raw material powder F is filled, it is pressed by the upper and lower punches 13 and 14 while being heated by a high frequency, and is sintered. As the HP sintered body used for the HIP sintering of Example 7, the sintered body obtained in Example 2 was used. A sample was cut out from each of the obtained sintered bodies and the relative density was measured in the same manner as in Example 1. The results are shown in Table 2.

【0020】[0020]

【表2】 [Table 2]

【0021】上記実施例及び比較例より、HP焼結の温
度が900℃未満であると90%以上の相対密度を得る
ことができないことが分かる。また、加圧焼結しない場
合は、十分な相対密度が得られないことも分かる。
From the above Examples and Comparative Examples, it can be seen that if the HP sintering temperature is lower than 900 ° C., a relative density of 90% or more cannot be obtained. Further, it is also understood that a sufficient relative density cannot be obtained without pressure sintering.

【0022】[0022]

【発明の効果】本発明で製造されるフッ化アルミニウム
焼結体は、高密度であって高強度であり、また不純物の
含有量も少なく半導体ウエハへの汚染源となることもな
く、半導体装置の構成部材として好適に用いることがで
きる。
The aluminum fluoride sintered body produced according to the present invention has a high density and high strength, has a small content of impurities, and does not become a source of contamination on semiconductor wafers. It can be suitably used as a constituent member.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例で用いた電気炉の構成説明図で
ある。
FIG. 1 is a structural explanatory view of an electric furnace used in an example of the present invention.

【図2】本発明の一実施例に用いたHP焼結用成形型の
構成説明図である。
FIG. 2 is a structural explanatory view of a HP sintering mold used in one example of the present invention.

【符号の説明】[Explanation of symbols]

1 炉芯管 2、3、4 ヒータ X 昇華部 Y 低温部 11 モールド 12 スペーサ 13 上パンチ 14 下パンチ 15 スペーサ S 空間部 F 原料粉末 1 Furnace Core Tube 2, 3, 4 Heater X Sublimation Part Y Low Temperature Part 11 Mold 12 Spacer 13 Upper Punch 14 Lower Punch 15 Spacer S Space Part F Raw Material Powder

フロントページの続き (72)発明者 杉山 滋子 神奈川県秦野市曽屋30 東芝セラミックス 株式会社開発研究所内Front Page Continuation (72) Inventor Shigeko Sugiyama 30 Soya, Hadano, Kanagawa Prefecture Toshiba Ceramics Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 相対密度が90%以上であり、酸素以外
の不純物含有量が元素基準で100ppm以下であるこ
とを特徴とする高密度フッ化アルミニウム焼結体。
1. A high-density aluminum fluoride sintered body having a relative density of 90% or more and an impurity content other than oxygen of 100 ppm or less on an elemental basis.
【請求項2】 (1)粒度分布0.1〜100μmのフ
ッ化アルミニウム原料粉末を調製する工程、(2)前記
フッ化アルミニウム原料粉末を成形する工程、及び、
(3)成形体を不活性ガス雰囲気下で900〜1500
℃で加圧焼成して焼結する焼結工程を有して構成され、
得られる焼結体の相対密度が90%以上であることを特
徴とする高密度フッ化アルミニウム焼結体の製造方法。
2. (1) A step of preparing an aluminum fluoride raw material powder having a particle size distribution of 0.1 to 100 μm, (2) a step of molding the aluminum fluoride raw material powder, and
(3) 900-1500 moldings in an inert gas atmosphere
It is configured to have a sintering step of sintering by pressurizing and firing at ℃,
A method for producing a high-density aluminum fluoride sintered body, characterized in that the relative density of the obtained sintered body is 90% or more.
【請求項3】 前記焼結工程の加圧を、ホットプレス法
またはホットアイソスタティックプレス法で行う請求項
2記載の高密度フッ化アルミニウム焼結体の製造方法。
3. The method for producing a high-density aluminum fluoride sintered body according to claim 2, wherein the pressing in the sintering step is performed by a hot pressing method or a hot isostatic pressing method.
【請求項4】 前記原料粉末が、酸素を除いた含有不純
物が元素基準で総量50ppm以下の高純度フッ化アル
ミニウムである請求項2または3記載の高密度フッ化ア
ルミニウム焼結体の製造方法。
4. The method for producing a high-density aluminum fluoride sintered body according to claim 2, wherein the raw material powder is high-purity aluminum fluoride having a total content of 50 ppm or less on an element basis except for oxygen.
【請求項5】 前記焼結体が純度95%以上である請求
項2、3または4記載の高密度フッ化アルミニウム焼結
体の製造方法。
5. The method for producing a high-density aluminum fluoride sintered body according to claim 2, 3 or 4, wherein the sintered body has a purity of 95% or more.
JP24869894A 1994-09-16 1994-09-16 High density aluminum fluoride sintered body and method for producing the same Expired - Fee Related JP3570640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24869894A JP3570640B2 (en) 1994-09-16 1994-09-16 High density aluminum fluoride sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24869894A JP3570640B2 (en) 1994-09-16 1994-09-16 High density aluminum fluoride sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0891932A true JPH0891932A (en) 1996-04-09
JP3570640B2 JP3570640B2 (en) 2004-09-29

Family

ID=17182009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24869894A Expired - Fee Related JP3570640B2 (en) 1994-09-16 1994-09-16 High density aluminum fluoride sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP3570640B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6383964B1 (en) 1998-11-27 2002-05-07 Kyocera Corporation Ceramic member resistant to halogen-plasma corrosion
WO2024018928A1 (en) * 2022-07-19 2024-01-25 パナソニックIpマネジメント株式会社 Structure, infrared detection device, light-emitting device, and method for producing structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6383964B1 (en) 1998-11-27 2002-05-07 Kyocera Corporation Ceramic member resistant to halogen-plasma corrosion
WO2024018928A1 (en) * 2022-07-19 2024-01-25 パナソニックIpマネジメント株式会社 Structure, infrared detection device, light-emitting device, and method for producing structure

Also Published As

Publication number Publication date
JP3570640B2 (en) 2004-09-29

Similar Documents

Publication Publication Date Title
US4040849A (en) Polycrystalline silicon articles by sintering
KR101593922B1 (en) Polycrystal silicon carbide bulky part for a semiconductor process by chemical vapor deposition and preparation method thereof
US4040848A (en) Polycrystalline silicon articles containing boron by sintering
JPH1012692A (en) Dummy wafer
JP4798693B2 (en) Yttria ceramic parts for plasma processing apparatus and method for manufacturing the same
US9676631B2 (en) Reaction bonded silicon carbide bodies made from high purity carbonaceous preforms
JP2000086344A (en) High density fluoride sintered body, its production, and member for semiconductor-producing apparatus by using the same
JPS6311589A (en) Heat resistant tool and manufacture
JP3093897B2 (en) High purity alumina ceramics and method for producing the same
JP3570640B2 (en) High density aluminum fluoride sintered body and method for producing the same
JPH09275078A (en) Silicon wafer retaining jig
JP2002220282A (en) Aluminum nitride sintered compact and method of manufacture
JP4382919B2 (en) Method for producing silicon-impregnated silicon carbide ceramic member
JP4458692B2 (en) Composite material
JPS6152106B2 (en)
JP2000239066A (en) Corrosionproof member and its production, and member for plasma treatment device using the same
JPS632913B2 (en)
JP2000351679A (en) Production of silicon carbide-based porous form and the resultant silicon carbide-based porous form
JP3480499B2 (en) Method for producing high-density polycrystalline silicon carbide molded article
JP2007223828A (en) Yttria ceramic sintered compact and method of manufacturing the same
JPH0359033B2 (en)
JPH0568433B2 (en)
JP4376881B2 (en) Yttria ceramic sintered body and manufacturing method thereof
JP2009107864A (en) Parts for manufacturing semiconductor
JPS589882A (en) Super hard heat-resistant ceramics and manufacture

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040618

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371