JPH0878007A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH0878007A
JPH0878007A JP6213416A JP21341694A JPH0878007A JP H0878007 A JPH0878007 A JP H0878007A JP 6213416 A JP6213416 A JP 6213416A JP 21341694 A JP21341694 A JP 21341694A JP H0878007 A JPH0878007 A JP H0878007A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
battery
secondary battery
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6213416A
Other languages
Japanese (ja)
Other versions
JP3422441B2 (en
Inventor
Tokuo Inamasu
徳雄 稲益
Kazuya Kuriyama
和哉 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP21341694A priority Critical patent/JP3422441B2/en
Publication of JPH0878007A publication Critical patent/JPH0878007A/en
Application granted granted Critical
Publication of JP3422441B2 publication Critical patent/JP3422441B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To provide a lithium secondary battery with high energy density, allowable to deep charge/discharge, and with long life by constituting a positive electrode active material with a specified composite oxide. CONSTITUTION: A positive electrode active material is made of a composite oxide (example: Li1.03 Ni0.89 Mn0.10 Al0.01 O2 ) having layer structure represented by a formula of Lia Nib Mc <1> Md <2> O2 (M<1> is Mn, Fe, Ti, V, Cr, or Cu, and M<2> is at least one of Al, In, and Sn.). For example, the active material is mixed with acetylene black and polytetrafluoroethylene powder, the mixture is molded to form a positive electrode 1, the positive electrode 1 is pressed into a positive can 4 with a positive current collector 6, and a negative electrode (example: lithium foil) 2 is pressed in a negative can 5 through a negative current collector 7, then an electrolyte (example: LiPF6 -EC/DEC solution) and a separator 3 are combined to obtain a lithium secondary battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はリチウム二次電池に関す
るもので、さらに詳しくはその正極活物質に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly to a positive electrode active material thereof.

【0002】[0002]

【従来の技術】近年、高エネルギー密度化のために作動
電圧が4V前後を示す活物質や長寿命化のために負極に
炭素材料を用いる電池などが注目を集めている。長寿命
化のため負極に炭素材料を用いる場合であっても、正極
の作動電圧が高いものでなければ高エネルギー密度電池
が得られにくいということからLiCoO2 やLiNi
2 等の、LiMO2 で示される層状構造を有する化合
物またはLiMn2 4 等の、LiM2 4 で示される
スピネル構造を有する化合物が提案され、すでに一部実
用化されている。
2. Description of the Related Art In recent years, an active material having an operating voltage of about 4 V for high energy density, a battery using a carbon material for a negative electrode for a long life, and the like have been attracting attention. Even when a carbon material is used for the negative electrode to prolong the life, it is difficult to obtain a high energy density battery unless the positive electrode has a high operating voltage. Therefore, LiCoO 2 or LiNi
Such as O 2, such as a compound or LiMn 2 O 4 having a layered structure represented by LiMO 2, a compound having a spinel structure represented by LiM 2 O 4 have been proposed and already partially commercialized.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、LiC
oO2 はコバルトが資源的に少なく価格が高く、また容
量が小さいという欠点がある。また資源的に安定なニッ
ケルを用いたLiNiO2 は、LiCoO2 に比べて容
量が大きい反面、サイクルに伴う容量の劣化が大きいこ
と、及びLiCoO2 に比べて量産規模での安定化した
合成が難しいことにより実用化するには問題があった。
However, LiC
oO 2 has the disadvantages of low cobalt, high cost, and low capacity. Further, LiNiO 2 using nickel, which is resource-stable, has a larger capacity than LiCoO 2 , but has a large capacity deterioration with cycles, and it is difficult to perform stable synthesis on a mass production scale as compared with LiCoO 2. Therefore, there was a problem in putting it to practical use.

【0004】これらの問題を解決するために、LiNi
2 のNiの一部を置換し複合化する研究開発も盛んに
行われている。例えば、特開昭62−264560、特
開昭63−114063、特開昭63−211565、
特開昭63−299056、特開平1−120765、
特開平2−40861、特開平5−325966ではL
iNix Co1-x 2 で示される複合酸化物を正極に用
いることが提案されているが、LiNiO2 に比べ初期
容量が低下するという問題がある。
In order to solve these problems, LiNi
Research and development for substituting a part of Ni in O 2 to form a composite are also actively conducted. For example, JP-A-62-264560, JP-A-63-114063, JP-A-63-121565,
JP-A-63-299056, JP-A-1-120765,
In JP-A-2-40861 and JP-A-5-325966, L
Although the composite oxide represented by iNi x Co 1-x O 2 to be used for the positive electrode have been proposed, there is a problem that the initial capacity decreases compared with LiNiO 2.

【0005】また、特開昭62−256371、特開平
5−101827、特開平5−198301、特開平5
−283076、特開平5−299092、特開平6−
96768等は、LiNiO2 中のNiの一部をCo,
V,Cr,Fe,Cu,Mg,Ti,Mn等の各種遷移
金属で置換することが提案されているが、サイクル特性
の改善が不十分である。
Further, JP-A-62-256371, JP-A-5-101827, JP-A-5-198301, and JP-A-5-301827.
-283076, JP-A-5-299092, JP-A-6-
96768 and the like describe a part of Ni in LiNiO 2 as Co,
Substitution with various transition metals such as V, Cr, Fe, Cu, Mg, Ti, and Mn has been proposed, but improvement in cycle characteristics is insufficient.

【0006】一方、特開平4−253162ではLiC
oO2 のCoの一部をPb,Bi,Bで置換する事が提
案され、また特公平4−24831では一般式Ax y
z2 のNi等遷移金属元素Mに、Al,In,Sn
の中の少なくとも1種の元素Nで置換する事が提案され
ている。さらに特開平5−54889では、一般式Li
x y z 2 の、Ni等の遷移金属元素Mに、周期律
表IIIB、IVB、及びVB族の非金属元素及び半金
属元素、アルカリ土類金属元素及びZn,Cu,Ti等
の金属元素の中から選ばれた1種または2種以上の元素
Lで置換することが提案されている。
On the other hand, in JP-A-4-253162, LiC is used.
part Pb of Co oO 2, Bi, it is proposed to replace in B, also the general formula in Kokoku 4-24831 A x M y
The transition metal element M such as Ni of N z O 2 contains Al, In, Sn.
Substitution with at least one element N of the above is proposed. Further, in JP-A-5-54889, the general formula Li
In x M y L z O 2 , a transition metal element M such as Ni is added to non-metal elements and metalloid elements of Group IIIB, IVB and VB of the periodic table, alkaline earth metal elements and Zn, Cu, Ti and the like. Substitution with one or more elements L selected from metal elements has been proposed.

【0007】しかし、LiCoO2 ではCoの一部を元
素Lでの置換が容易であったのに対し、LiNiO2
Niの一部を元素Lで置換した活物質の合成は困難であ
り、元素Lが構造中に取り込まれず、活物質中に不純物
として残存し充放電効率の低下や自己放電の増大といっ
た電池性能に悪影響を与えることが分かった。理由は断
定できないが、LiNiO2 の場合LiCoO2 に比べ
層状構造をとり難く、元素Lは結晶成長段階でC軸方向
への成長を阻害させ、元素Lの置換が起こり難く、不純
物として残存したと考えられる。
However, in LiCoO 2 , it was easy to replace a part of Co with the element L, whereas it is difficult to synthesize an active material in which a part of Ni of LiNiO 2 is replaced with the element L. It was found that L was not incorporated into the structure and remained as an impurity in the active material, which adversely affects the battery performance such as a decrease in charge / discharge efficiency and an increase in self-discharge. Although the reason cannot be determined, in the case of LiNiO 2 , it is more difficult to form a layered structure than in LiCoO 2 , and the element L hinders the growth in the C-axis direction at the crystal growth stage, the substitution of the element L is difficult to occur, and it remains as an impurity. Conceivable.

【0008】[0008]

【課題を解決するための手段】本発明は上記問題点に鑑
みてなされたものであって、その目的とするところは、
エネルギー密度の大きい長寿命リチウム二次電池を提供
することにある。
The present invention has been made in view of the above problems, and its object is to:
It is to provide a long-life lithium secondary battery having a high energy density.

【0009】上記課題について鋭意検討した結果、Li
NiO2 においてはNiの一部をAl,In,Sn等の
元素で置換する場合、Mn,Fe,Ti,V,Cr,C
uを加えることにより非常に容易になることが分かっ
た。この理由は断定できないが、Mn,Fe,Ti,
V,Cr,CuはNiと同じLiMO2 型の層状構造を
とり易く、Mn,Fe,Ti,V,Cr,Cuを加える
ことでC軸方向への成長を阻害することなく置換され
る。さらにLiCoO2 中では、Al,In,Sn等の
元素とMn,Fe,Ti,V,Cr,Cuが容易に置換
し層状構造をとることができる。したがって、LiNi
2 中のNiは、Mn,Fe,Ti,V,Cr,Cuと
同時にAl,In,Sn等の元素を加えることによりは
じめてC軸方向への成長を阻害することなく均一に置換
することができたものと考えられる。
As a result of extensive studies on the above problems, Li
In NiO 2 , when a part of Ni is replaced with an element such as Al, In, Sn, Mn, Fe, Ti, V, Cr, C
It has been found that the addition of u makes it much easier. The reason cannot be determined, but Mn, Fe, Ti,
V, Cr, and Cu are likely to have the same LiMO 2 type layered structure as Ni, and are added by adding Mn, Fe, Ti, V, Cr, and Cu without inhibiting growth in the C-axis direction. Further, in LiCoO 2 , elements such as Al, In and Sn can be easily replaced with Mn, Fe, Ti, V, Cr and Cu to form a layered structure. Therefore, LiNi
Ni in O 2 can be uniformly replaced without inhibiting growth in the C-axis direction by adding elements such as Al, In and Sn at the same time as Mn, Fe, Ti, V, Cr and Cu. It is thought that it was possible.

【0010】また、LiNiO2 中のNiの一部をA
l,In,Sn等の元素で置換することを選択した理由
を以下に示す。
Further, a part of Ni in LiNiO 2 is
The reason why the substitution with elements such as l, In, and Sn is selected is shown below.

【0011】Al,Inは3価を、Snは4価をとるこ
とが知られているが、このような元素は電池反応に寄与
しない。
It is known that Al and In have trivalence and Sn has tetravalence, but such elements do not contribute to the battery reaction.

【0012】3価の元素Al,Inで置換された部分で
は、リチウムが固定された形で存在する。この部分がL
i層の柱的な役割を果たし、充電末状態で酸素層間の反
発を抑え、結晶構造の変化を抑制する。さらに検討した
ところ、これらの元素Al,InがMn,Fe,Ti,
V,Cr,Cuの存在により一様に結晶内に存在し、そ
の効果を発揮することが分かった。その結果、酸素層間
に残存するリチウムも一様に分散し、その効果を高めて
いる。
In the portion substituted with the trivalent elements Al and In, lithium exists in a fixed form. This part is L
It plays a pillar role for the i-layer, and suppresses repulsion between oxygen layers in a charged state and suppresses changes in crystal structure. As a result of further study, these elements Al and In show that Mn, Fe, Ti,
It was found that due to the presence of V, Cr and Cu, they were uniformly present in the crystal and exhibited their effects. As a result, the lithium remaining between the oxygen layers is evenly dispersed, enhancing its effect.

【0013】また、4価の元素Snで置換された部分
は、酸素と強く結合しているために、充電末状態で酸素
層間の反発を抑え、結晶構造の変化を抑制する。さらに
検討したところ、Sn元素がMn,Fe,Ti,V,C
r,Cuの存在により一様に結晶内に存在し、その効果
を発揮することが分かった。その結果、酸素層間で全体
的に反発が抑制され、その効果を高めている。
Further, since the portion substituted with the tetravalent element Sn is strongly bound to oxygen, it suppresses repulsion between oxygen layers in a charged state and suppresses a change in crystal structure. Further investigation revealed that the Sn element was Mn, Fe, Ti, V, and C.
It was found that the presence of r and Cu uniformly existed in the crystal and exhibited its effect. As a result, the repulsion is suppressed between the oxygen layers as a whole, which enhances the effect.

【0014】よって、以上の効果により本発明の活物質
は、従来のLiNiO2 に比べより深い充放電が可能で
あるので、容量が増大し、サイクル経過後の容量低下が
小さいものと思われる。
Therefore, the active material of the present invention can be charged and discharged deeper than the conventional LiNiO 2 by the above effects, so that the capacity is increased, and it is considered that the capacity decrease after the lapse of cycles is small.

【0015】[0015]

【作用】LiNiO2 にMn,Fe,Ti,V,Cr,
Cuの存在下、Al,In,Sn等の元素で置換すると
容量の増加及びサイクル特性が向上する理由は以下のよ
うに考える。
Function: LiNiO 2 is mixed with Mn, Fe, Ti, V, Cr,
The reason why the capacity and the cycle characteristics are improved by substituting with an element such as Al, In, Sn in the presence of Cu is considered as follows.

【0016】一般的に、LiNiO2 を深い深度で充電
すると、結晶構造の変化を起こし、さらには結晶構造の
崩壊を起こす。層状構造中のLiが抜けることにより、
酸素層間の反発が起こりより安定な結晶構造に変化した
り、反発に耐えきれず結晶が崩壊する。
Generally, when LiNiO 2 is charged at a deep depth, the crystal structure changes, and further the crystal structure collapses. By removing Li in the layered structure,
Repulsion between the oxygen layers occurs and changes to a more stable crystal structure, or the crystal cannot collapse due to the inability to withstand the repulsion.

【0017】これに対し、LiNiO2 中のNiの一部
をMn,Fe,Ti,V,Cr,Cuの存在下、Al,
In,Snの様な元素で置換することにより、層状構造
中にLiの動かない部分を作ることや酸素間の反発力を
抑えることができるので、結晶構造の変化や崩壊を防ぐ
ことができる。よって、従来のLiNiO2 に比べ、深
い充放電を行っても優れたサイクル安定性を示すものと
思われる。
On the other hand, a part of Ni in LiNiO 2 is mixed with Al, in the presence of Mn, Fe, Ti, V, Cr and Cu.
By substituting with an element such as In or Sn, it is possible to form a non-moving portion of Li in the layered structure and suppress the repulsive force between oxygen, so that it is possible to prevent the change or collapse of the crystal structure. Therefore, as compared with the conventional LiNiO 2 , it seems that even if deep charge / discharge is performed, excellent cycle stability is exhibited.

【0018】[0018]

【実施例】以下、本発明の実施例について以下に説明す
る。
EXAMPLES Examples of the present invention will be described below.

【0019】(実施例1)層状構造を有するリチウム複
合酸化物の調製にあたっては、LiOH・H2 0、Ni
2 CO3 、MnO2 、Al(NO3 3 ・9H2 Oを用
い、Li:Ni:Mn:Alのモル比が1.03:0.
89:0.10:0.01となるように秤量、混合し、
酸素中、750℃で20時間焼成した。焼成後乾燥空気
中で冷却し、乾燥雰囲気で粉砕したものを正極活物質と
した。
[0019] In the preparation of (Example 1) lithium composite oxide having a layered structure, LiOH · H 2 0, Ni
2 CO 3, MnO 2, Al (NO 3) using the 3 · 9H 2 O, Li: Ni: Mn: Al molar ratio of 1.03: 0.
Weigh and mix so as to be 89: 0.10: 0.01,
It was baked in oxygen at 750 ° C. for 20 hours. After firing, the product was cooled in dry air and ground in a dry atmosphere to obtain a positive electrode active material.

【0020】得られた正極活物質のX線回折パターンに
より、結晶が単一相で得られていることが分かった。
From the X-ray diffraction pattern of the obtained positive electrode active material, it was found that crystals were obtained in a single phase.

【0021】この活物質を用いて次のようにしてコイン
型リチウム二次電池を試作した。活物質とアセチレンブ
ラック及びポリテトラフルオロエチレン粉末とを重量比
85:10:5で混合し、トルエンを加えて十分混練し
た。これをローラープレスにより厚み0.8mmのシー
ト状に成形した。次にこれを直径16mmの円形に打ち
抜き減圧下200℃で15時間熱処理し正極1を得た。
正極1は正極集電体6の付いた正極缶4に圧着して用い
た。負極2は、厚み0.3mmのリチウム箔を直径15
mmの円形に打ち抜き、負極集電体7を介して負極缶5
に圧着して用いた。エチレンカーボネートとジエチルカ
ーボネートとの体積比1:1の混合溶剤にLiPF6
1mol/l溶解した電解液を用い、セパレータ3には
ポリプロピレン製微多孔膜を用いた。上記正極、負極、
電解液及びセパレータを用いて直径20mm厚さ1.6
mmのコイン型リチウム電池を作製した。この電池をA
1とする。
Using this active material, a coin-type lithium secondary battery was manufactured as follows. The active material was mixed with acetylene black and polytetrafluoroethylene powder at a weight ratio of 85: 10: 5, toluene was added, and the mixture was sufficiently kneaded. This was formed into a sheet having a thickness of 0.8 mm by a roller press. Next, this was punched into a circle having a diameter of 16 mm and heat-treated at 200 ° C. for 15 hours under reduced pressure to obtain a positive electrode 1.
The positive electrode 1 was used by pressure bonding to a positive electrode can 4 having a positive electrode current collector 6. The negative electrode 2 is made of a lithium foil having a thickness of 0.3 mm and a diameter of 15 mm.
punched into a circular shape of mm, and the negative electrode can 5 via the negative electrode current collector 7.
It was used by pressure bonding to. An electrolytic solution in which 1 mol / l of LiPF 6 was dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1 was used, and a polypropylene microporous film was used as the separator 3. The positive electrode, the negative electrode,
Diameter 20mm and thickness 1.6 using electrolyte and separator
mm coin type lithium battery was prepared. This battery is A
Set to 1.

【0022】(実施例2)Al(NO3 3 ・9H2
の代わりにIn(NO3 3 ・xH2 Oを用い、Li:
Ni:Mn:Inのモル比が1.03:0.89:0.
10:0.01となるように秤量すること以外は上記実
施例1と同様にして電池を作製した。得られた正極活物
質のX線回折パターンより、結晶が単一相で得られてい
ることが分かった。この電池をA2とする。
[0022] (Example 2) Al (NO 3) 3 · 9H 2 O
In (NO 3 ) 3 · xH 2 O is used in place of Li:
The molar ratio of Ni: Mn: In is 1.03: 0.89: 0.
A battery was produced in the same manner as in Example 1 except that the weight was adjusted to 10: 0.01. From the X-ray diffraction pattern of the obtained positive electrode active material, it was found that crystals were obtained in a single phase. This battery is designated as A2.

【0023】(実施例3)B2 3 の代わりにSnOを
用い、Li:Ni:Mn:Snのモル比が1.03:
0.89:0.10:0.01となるように秤量するこ
と以外は上記実施例1と同様にして電池を作製した。得
られた正極活物質のX線回折パターンより、結晶が単一
相で得られていることが分かった。この電池をA3とす
る。
Example 3 SnO was used instead of B 2 O 3 , and the molar ratio of Li: Ni: Mn: Sn was 1.03:
A battery was made in the same manner as in Example 1 except that the weight was adjusted to 0.89: 0.10: 0.01. From the X-ray diffraction pattern of the obtained positive electrode active material, it was found that crystals were obtained in a single phase. This battery is designated as A3.

【0024】(実施例4)MnO2 の代わりにFe(N
3 3 ・9H2 Oを用い、Li:Ni:Fe:Alの
モル比が1.03:0.89:0.10:0.01とな
るように秤量すること以外は上記実施例1と同様にして
電池を作製した。得られた正極活物質のX線回折パター
ンより、結晶が単一相で得られていることが分かった。
この電池をA4とする。
(Example 4) Instead of MnO 2 , Fe (N
O 3) using the 3 · 9H 2 O, Li: Ni: Fe: Al molar ratio of 1.03: 0.89: 0.10: except that weighed so that 0.01 Example 1 A battery was prepared in the same manner as in. From the X-ray diffraction pattern of the obtained positive electrode active material, it was found that crystals were obtained in a single phase.
This battery is designated as A4.

【0025】(実施例5)MnO2 の代わりにCr(N
3 3 ・9H2 Oを用い、Li:Ni:Fe:Alの
モル比が1.03:0.89:0.10:0.01とな
るように秤量すること以外は上記実施例1と同様にして
電池を作製した。得られた正極活物質のX線回折パター
ンより、結晶が単一相で得られていることが分かった。
この電池をA5とする。
(Example 5) Instead of MnO 2 , Cr (N
O 3) using the 3 · 9H 2 O, Li: Ni: Fe: Al molar ratio of 1.03: 0.89: 0.10: except that weighed so that 0.01 Example 1 A battery was prepared in the same manner as in. From the X-ray diffraction pattern of the obtained positive electrode active material, it was found that crystals were obtained in a single phase.
This battery is designated as A5.

【0026】(比較例1)LiOH・H2 O、NiCO
3 を用い、Li:Niのモル比が1.03:1.00と
なるように秤量することの他は上記実施例1と同様にし
て電池を作製した。得られた正極活物質のX線回折パタ
ーンより、結晶が単一相で得られていることが分かっ
た。この電池をB1とする。
(Comparative Example 1) LiOH.H 2 O, NiCO
A battery was produced in the same manner as in Example 1 except that 3 was used and weighed so that the molar ratio of Li: Ni was 1.03: 1.00. From the X-ray diffraction pattern of the obtained positive electrode active material, it was found that crystals were obtained in a single phase. This battery is designated as B1.

【0027】(比較例2)LiOH・H2 0、NiCO
3 、MnO2 を用い、Li:Ni:Coのモル比が1.
03:0.90:0.10となるように秤量することの
他は上記実施例1と同様にして電池を作製した。得られ
た正極活物質のX線回折パターンから、結晶が単一相で
得られていることが分かった。この電池をB2とする。
[0027] (Comparative Example 2) LiOH · H 2 0, NiCO
3 , MnO 2 is used, and the molar ratio of Li: Ni: Co is 1.
A battery was produced in the same manner as in Example 1 except that the weight was adjusted to 03: 0.90: 0.10. From the X-ray diffraction pattern of the obtained positive electrode active material, it was found that crystals were obtained in a single phase. This battery is designated as B2.

【0028】(比較例3)LiOH・H2 0、NiCO
3 、Al(NO3 3 ・9H2 Oを用い、Li:Ni:
あいのモル比が1.03:0.90:0.10となるよ
うに秤量することの他は上記実施例1と同様にして電池
を作製した。得られた正極活物質のX線回折パターンか
ら、LiNiO2 の層状結晶の成長が悪く、十分に特定
できない化合物の混合物であることが確認された。さら
に、得られた正極活物質の化学分析を行なったところ、
2価のNiが残存しており、Niの十分な酸化が起こら
なかったことが推察される。この電池をB3とする。
[0028] (Comparative Example 3) LiOH · H 2 0, NiCO
3, Al (NO 3) using the 3 · 9H 2 O, Li: Ni:
A battery was made in the same manner as in Example 1 except that the weight ratio was adjusted to 1.03: 0.90: 0.10. From the X-ray diffraction pattern of the obtained positive electrode active material, it was confirmed that the layered crystal of LiNiO 2 grew poorly and was a mixture of compounds that could not be sufficiently specified. Furthermore, when a chemical analysis of the obtained positive electrode active material was performed,
It is inferred that divalent Ni remained, and Ni was not sufficiently oxidized. This battery is designated as B3.

【0029】このようにして作製した電池A1,A2,
A3,B1,B2,B3を用いて充放電サイクル試験を
行った。試験条件は、充電電流3mA、充電終止電圧
4.2V、放電電流3mA、放電終止電圧3.0Vとし
た。
Batteries A1, A2 thus produced
A charge / discharge cycle test was performed using A3, B1, B2 and B3. The test conditions were a charge current of 3 mA, a charge end voltage of 4.2 V, a discharge current of 3 mA, and a discharge end voltage of 3.0 V.

【0030】これら作製した電池の充放電試験の結果を
表1に示す。
Table 1 shows the results of the charge / discharge test of the batteries thus manufactured.

【0031】[0031]

【表1】 [Table 1]

【0032】表1から分かるように本発明による電池A
1,A2,A3,A4,A5は比較電池B1、B2,B
3に比べて初期充放電容量が大きく、さらに10サイク
ル後の減少が小さかった。
As can be seen from Table 1, Battery A according to the invention
1, A2, A3, A4, A5 are comparative batteries B1, B2, B
The initial charge and discharge capacity was larger than that of 3, and the decrease after 10 cycles was small.

【0033】実施例においては、Lia Nib 1 c
2 d 2 のM1 がMn,Fe,Cr、M2 がB,Pb,
Geについて挙げたが、同様の効果がM1 ではTi,
V,Cu、M2 ではP,Ga,Tl,Bi,Sb,Si
についても確認された。
In the examples, Li a Ni b M 1 c M
2 d O 2 M 1 is Mn, Fe, Cr, M 2 is B, Pb,
Although Ge is mentioned, the same effect can be obtained by using Ti and M in M 1 .
For V, Cu, M 2 , P, Ga, Tl, Bi, Sb, Si
Was also confirmed.

【0034】このようにしてLiNiO2 のNiをM
n,Fe,Ti,V,Cr,CuとAl,In,Snの
共存下置換することにより初めて容量の増大とサイクル
の安定性が実現できる。
In this way, Ni of LiNiO 2 is added to M
Only by substituting under the coexistence of n, Fe, Ti, V, Cr, Cu and Al, In, Sn, the capacity increase and cycle stability can be realized.

【0035】なお、本発明は上記実施例に記載された活
物質の出発原料、製造方法、正極、負極、電解質、セパ
レータ及び電池形状などに限定されるものではない。ま
た、負極に炭素材料を用いるものや、電解質、セパレー
タの代わりに固体電解質を用いるものなどにも適用可能
である。
The present invention is not limited to the starting materials of the active material, the manufacturing method, the positive electrode, the negative electrode, the electrolyte, the separator and the shape of the battery described in the above embodiments. Further, it is also applicable to those using a carbon material for the negative electrode, those using a solid electrolyte instead of the electrolyte or separator, and the like.

【0036】[0036]

【発明の効果】本発明は上述の如く構成されているの
で、放電容量の大きい可逆性に優れた長寿命のリチウム
二次電池を提供できる。
As described above, the present invention can provide a long-life lithium secondary battery having a large discharge capacity and excellent reversibility.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1に係るコイン型リチウム二次
電池の断面図である。
FIG. 1 is a sectional view of a coin-type lithium secondary battery according to a first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 正極缶 5 負極缶 6 正極集電体 7 負極集電体 8 絶縁パッキング 1 Positive electrode 2 Negative electrode 3 Separator 4 Positive electrode can 5 Negative electrode can 6 Positive electrode current collector 7 Negative electrode current collector 8 Insulation packing

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質がLia Nib 1 c 2 d
2 で示される層状構造を有する複合酸化物からなり、
1 はMn,Fe,Ti,V,Cr,Cuであり、M2
は少なくともAl,In,Snから選ばれた1種以上の
元素を含むことを特徴とするリチウム二次電池。
1. The positive electrode active material is Li a Ni b M 1 c M 2 d.
Consisting of a composite oxide having a layered structure represented by O 2 .
M 1 is Mn, Fe, Ti, V, Cr, Cu, and M 2
Is a lithium secondary battery containing at least one element selected from Al, In and Sn.
JP21341694A 1994-09-07 1994-09-07 Lithium secondary battery Expired - Lifetime JP3422441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21341694A JP3422441B2 (en) 1994-09-07 1994-09-07 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21341694A JP3422441B2 (en) 1994-09-07 1994-09-07 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH0878007A true JPH0878007A (en) 1996-03-22
JP3422441B2 JP3422441B2 (en) 2003-06-30

Family

ID=16638871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21341694A Expired - Lifetime JP3422441B2 (en) 1994-09-07 1994-09-07 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3422441B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000023380A1 (en) * 1998-10-16 2000-04-27 Pacific Lithium Limited Lithium manganese oxide and methods of manufacture
JP2003515911A (en) * 1999-12-03 2003-05-07 フェッロ ゲーエムベーハー Electrode material for positive electrode of rechargeable lithium battery
WO2003041193A1 (en) 2001-11-09 2003-05-15 Sony Corporation Positive plate material and cell comprising it

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000023380A1 (en) * 1998-10-16 2000-04-27 Pacific Lithium Limited Lithium manganese oxide and methods of manufacture
JP2003515911A (en) * 1999-12-03 2003-05-07 フェッロ ゲーエムベーハー Electrode material for positive electrode of rechargeable lithium battery
WO2003041193A1 (en) 2001-11-09 2003-05-15 Sony Corporation Positive plate material and cell comprising it
JP2003151548A (en) * 2001-11-09 2003-05-23 Sony Corp Positive electrode material and battery using it
US9054378B2 (en) 2001-11-09 2015-06-09 Sony Corporation Positive plate material and cell comprising it

Also Published As

Publication number Publication date
JP3422441B2 (en) 2003-06-30

Similar Documents

Publication Publication Date Title
JP4353808B2 (en) Particulate cathode active material for lithium secondary battery
JP4109847B2 (en) Lithium-containing transition metal composite oxide and method for producing the same
JP2002145623A (en) Lithium-containing transition metal multiple oxide and manufacturing method thereof
JP2000277116A (en) Lithium secondary battery
JP2000235857A (en) Lithium secondary battery
KR101463881B1 (en) Manganese spinel-type lithium transition metal oxide
JP4318002B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JPH04267053A (en) Lithium secondary battery
JP2006236830A (en) Lithium secondary battery
JPH08273665A (en) Positive electrode material for lithium secondary battery and its manufacture and lithium secondary battery using it
JP2003208895A (en) Lithium-nickel compound oxide for lithium secondary battery positive electrode active material, manufacturing method thereof and lithium secondary battery using the same
JPH11317226A (en) Positive active material for lithium secondary battery and its manufacture
JPH0878006A (en) Lithium secondary battery
JP4519220B2 (en) Lithium secondary battery
JP3536947B2 (en) Lithium secondary battery
JP2967051B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3670864B2 (en) Lithium secondary battery
JP3625679B2 (en) Lithium secondary battery
JP3422440B2 (en) Lithium secondary battery
JPH1173958A (en) Manufacture of positive electrode active material
JPH0878009A (en) Lithium secondary battery
JP4189457B2 (en) Lithium ion secondary battery
JP2512239B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP3422441B2 (en) Lithium secondary battery
JP3429328B2 (en) Lithium secondary battery and method of manufacturing the same

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 11

EXPY Cancellation because of completion of term