JPH0873202A - Controller for amount of ozone to be generated for water treating facility - Google Patents

Controller for amount of ozone to be generated for water treating facility

Info

Publication number
JPH0873202A
JPH0873202A JP21343094A JP21343094A JPH0873202A JP H0873202 A JPH0873202 A JP H0873202A JP 21343094 A JP21343094 A JP 21343094A JP 21343094 A JP21343094 A JP 21343094A JP H0873202 A JPH0873202 A JP H0873202A
Authority
JP
Japan
Prior art keywords
ozone
water
amount
target value
generation amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21343094A
Other languages
Japanese (ja)
Inventor
Koji Kageyama
晃治 陰山
Naoto Komatsu
直人 小松
Naoki Hara
直樹 原
Nobuyoshi Yamakoshi
信義 山越
Shoji Watanabe
昭二 渡辺
Kenji Baba
研二 馬場
Tetsuro Haga
鉄郎 芳賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21343094A priority Critical patent/JPH0873202A/en
Publication of JPH0873202A publication Critical patent/JPH0873202A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE: To adequately control the amt. of ozone to be generated with respect to a flow rate of inflow water by adding an arithmetic section for correcting the control target value on the flow rate of the inflow water to the fore stage of an existing control system for the ozone to be generated. CONSTITUTION: The raw water taken in from rivers, etc., is introduced to a flocculating and settling treatment 1, where a flocculating agent is injected into the raw water to remove sand and suspended materials. The raw water is automatically measured by a flow meter 3 and is introduced by a raw water pump 2 to an ozone contact basin 4. The gaseous raw material of an ozonizing gas is supplied by a blower 10 to an ozone generator 11 and the generated gaseous ozone is supplied as fine bubbles by a gas diffusion pipe 12 into the ozone contact basin 4, by which the dissolved org. materials in the water to be treated are oxidation decomposed. At this time, the ozone injection rate set by an ozone injection rate setter 6 is corrected by the measured value of the flowmeter 3 in the arithmetic section 7 for correcting the ozone injection rate and is transmitted to the arithmetic section 8 for the amt. of the ozone to be generated and the control section 9 for the amt. of the ozone to be generated. The effluent water from the ozone contact basin 4 enters a bioactive carbon treating device 5 where the dissolved org. materials are adsorbed away and the effluent water is subjected to the oxidation decomposition of microorganisms then to sterilization with chlorine. This water is distributed as city water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、オゾン処理を用いた水
処理施設において、被処理水に注入するオゾン発生量を
最適に制御するオゾン発生量制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ozone generation amount control device for optimally controlling the amount of ozone generation injected into water to be treated in a water treatment facility using ozone treatment.

【0002】[0002]

【従来の技術】近年、水源である湖沼や河川の水質悪化
に伴って、大都市近郊において上水道の異臭味被害が毎
年のように報告されている。異臭味被害はジェオスミン
やジメチルイソボルネオール(以下、2−MIBと記
す)に代表される溶存有機物質が原因で発生する。よっ
て、これらの溶存有機物質を水道水中から除去すること
が要求されている。しかし、従来の凝集沈殿法による浄
水処理は主に懸濁物を除去することを目的としており、
溶存有機物質を十分に取り除くことは困難であった。
2. Description of the Related Art In recent years, with the deterioration of water quality in lakes and rivers, which are the water sources, the offensive odor damage of water supply is reported every year in the suburbs of large cities. The offensive odor damage is caused by dissolved organic substances represented by geosmin and dimethylisoborneol (hereinafter referred to as 2-MIB). Therefore, it is required to remove these dissolved organic substances from tap water. However, water purification treatment by the conventional coagulation-sedimentation method mainly aims to remove the suspended matter,
It was difficult to remove dissolved organic substances sufficiently.

【0003】高度浄水処理はこれらの溶存有機物質を除
去する目的で、凝集沈殿法の後段に設置されるものであ
る。この種の高度浄水処理法は特開昭58−174288号公
報,特開平2−233197号公報および特開平4−281893号公
報等に開示されている。以下、高度浄水処理の概略を説
明する。
The advanced water purification treatment is installed after the coagulation-sedimentation method for the purpose of removing these dissolved organic substances. This type of advanced water purification method is disclosed in JP-A-58-174288, JP-A-2-233197 and JP-A-4-281893. The outline of the advanced water purification treatment will be described below.

【0004】高度浄水処理は一般的にオゾン処理と生物
活性炭処理から構成される。オゾン接触池では被処理水
に細かい気泡状のオゾンガスを注入する。気液接触によ
ってオゾンガスは溶解し、溶存オゾンになる。溶存オゾ
ンの強力な酸化力によって、被処理水中の溶存有機物質
は酸化分解される。溶存オゾンを十分除去した後、オゾ
ン処理した被処理水を生物活性炭処理に導入する。生物
活性炭処理では、活性炭表面の無数の細孔による有機物
の吸着と、活性炭表面および内部に繁殖した微生物によ
るアンモニア性窒素等の硝化除去および有機物の代謝除
去が行われる。以上の処理によって被処理水中の溶存有
機物質が除去され、異臭味を取り除くことができる。
Advanced water purification treatment is generally composed of ozone treatment and biological activated carbon treatment. In the ozone contact pond, fine bubbles of ozone gas are injected into the water to be treated. Ozone gas is dissolved by gas-liquid contact to become dissolved ozone. Due to the strong oxidizing power of dissolved ozone, dissolved organic substances in the water to be treated are oxidatively decomposed. After sufficiently removing the dissolved ozone, the ozone-treated water is introduced into the biological activated carbon treatment. In biological activated carbon treatment, adsorption of organic substances by the numerous pores on the surface of activated carbon, nitrification of ammonia nitrogen and the like by microorganisms propagated on and inside the activated carbon and metabolism of organic substances are removed. By the above treatment, the dissolved organic substances in the water to be treated are removed, and the off-flavor can be removed.

【0005】以上に述べた高度浄水処理におけるオゾン
処理においては、溶存有機物質の高い除去率の維持と共
に、オゾン処理後の水質が常に安定していることが要求
される。また、オゾン発生器はオゾン発生効率が低くか
つ電力費が高いことから、発生および注入するオゾン量
は必要最小限に抑え、効率的な処理を行うことが要求さ
れる。これらの要求を満たすように制御を行う必要があ
る。
In the ozone treatment in the above-mentioned advanced water purification treatment, it is required that the high removal rate of dissolved organic substances be maintained and that the water quality after ozone treatment is always stable. Further, since the ozone generator has a low ozone generation efficiency and a high electric power cost, it is required to suppress the amount of ozone to be generated and injected to a necessary minimum and perform an efficient treatment. It is necessary to control so as to meet these requirements.

【0006】[0006]

【発明が解決しようとする課題】オゾン注入量を最適に
するためのオゾン発生器の理想的なオゾン発生量制御方
式として、流出する溶存有機物質濃度を制御目標とする
方式が理想的である。これを自動制御化するためには、
溶存有機物種類および濃度をオンラインで計測する測定
器が必要である。しかし、現在のところ、処理水中の微
量な溶存有機物の種類および濃度を十分な精度でリアル
タイムで測定する測定器は存在しないため、このオゾン
発生量制御方式は実現不可能である。
As an ideal ozone generation amount control system for the ozone generator for optimizing the ozone injection amount, a system in which the concentration of the dissolved organic substance flowing out is a control target is ideal. To make this automatic control,
There is a need for a measuring instrument that measures the type and concentration of dissolved organic matter online. However, at present, there is no measuring instrument that can measure the kind and concentration of a trace amount of dissolved organic matter in the treated water in real time with sufficient accuracy, so this ozone generation control method cannot be realized.

【0007】現在提唱および実用化されている一般的な
オゾン発生量制御方式としては、オゾン注入率を一定値
にしたオゾン注入率一定制御(特開昭61−68195 号)お
よび排ガス中のオゾン濃度が一定値を保持するようなフ
ィードバックをかけた排オゾン濃度一定制御(特開平5
−161894号,特開昭56−58583号)および流出水中の溶
存オゾン濃度が一定値を保持するようなフィードバック
をかけた溶存オゾン濃度一定制御(特開昭59−39388
号,特開昭62−176594号)がある。これら3種類の制御
方式を以後、現行オゾン発生量制御方式と呼称する。
As a general ozone generation control method which has been proposed and put into practical use, there are constant ozone injection rate control in which the ozone injection rate is constant (Japanese Patent Laid-Open No. 61-68195) and ozone concentration in exhaust gas. Exhaust ozone concentration constant control by applying feedback so that
-161894, JP-A-56-58583) and constant control of dissolved ozone concentration by feedback such that the dissolved ozone concentration in the effluent maintains a constant value (JP-A-59-39388).
And JP-A-62-176594). Hereinafter, these three types of control methods will be referred to as the current ozone generation control method.

【0008】以上に述べた現行オゾン発生量制御方式に
ついて、外乱に対する各制御方式の安定性を計算機実験
によって検討した。すなわち、オゾン接触池の数学モデ
ルを構築し、外乱を加えた場合の注入率一定制御、およ
び溶存オゾン濃度一定制御、および排オゾン濃度一定制
御の状態をシミュレーションし、検討した。
With respect to the current ozone generation amount control system described above, the stability of each control system against disturbance was examined by computer experiments. In other words, a mathematical model of an ozone contact pond was constructed, and the states of constant injection rate control, constant dissolved ozone concentration control, and constant exhaust ozone concentration control were simulated and examined.

【0009】実際に浄水場でオゾン処理を行う場合、流
入水質や流入水量などのパラメータが変動する。そこ
で、外乱として流入水量の変動を仮定し、各制御方式に
ついてシミュレーションした。
When actually performing ozone treatment in a water purification plant, parameters such as inflow water quality and inflow water amount vary. Therefore, the fluctuation of the inflow of water was assumed as a disturbance, and simulations were performed for each control method.

【0010】その結果、いずれの制御方式においても、
外乱として流入水量が変動した場合、流出水質もほぼ比
例して変動することが示された。水処理施設ではどのよ
うな外乱に対しても安定した流出水質を維持することが
要求されているため、流入水量の変動に対して流出水質
が変動することは、制御の観点から不都合となる。すな
わち、現行のオゾン発生量制御方式を用いるだけでは、
流出水質を常に目標値に維持する目的を達成するために
は不十分である。
As a result, in any control method,
It was shown that when the inflow water quantity fluctuates as a disturbance, the outflow water quality also fluctuates almost in proportion. Since the water treatment facility is required to maintain stable outflow water quality regardless of any disturbance, it is inconvenient from the viewpoint of control that the outflow water quality fluctuates in response to the fluctuation of the inflow water amount. In other words, just using the current ozone generation control method,
It is not enough to achieve the purpose of keeping the runoff quality at the target value.

【0011】本発明は上述した不都合に鑑みてなされた
もので、その目的とするところは、流入水量変動等の外
乱に影響されず、処理水質を適正に維持して、かつ過不
足のないオゾン注入量を達成するオゾン発生量制御装置
を提供することにある。
The present invention has been made in view of the above-mentioned inconvenience, and an object of the present invention is not to be affected by disturbance such as fluctuation of inflow water amount, to properly maintain the treated water quality, and to provide ozone without excess or deficiency. An object is to provide an ozone generation amount control device that achieves an injection amount.

【0012】[0012]

【課題を解決するための手段】本発明は上述した課題、
すなわち流入水量の変化によって流出水質が変化する問
題を解決し、流出水質の安定化を図るためのオゾン接触
池と、該オゾン接触池に吹き込むオゾンを発生するオゾ
ン発生器と、前記オゾン接触池へ流入する流入水量を計
測する流入水量計測手段と、前記オゾン発生器のオゾン
発生量を制御するオゾン発生量制御部と、を備えたオゾ
ン接触池において、該オゾン発生量制御部で用いるオゾ
ン発生量制御演算値を求めるために、(1)前記流入水
量計測手段によって測定された流入水量とあらかじめ定
めた基準時の流入水量との比を、該オゾン注入率設定器
で設定されたオゾン注入率に乗算することによって、オ
ゾン注入率を補正するオゾン注入率補正演算部と、該オ
ゾン注入率補正演算部によって補正されたオゾン注入率
と前記流入水量計測手段によって測定された流入水量と
の積から前記オゾン発生器のオゾン発生量制御演算値を
求めるオゾン発生量演算部と、を備える。あるいは、
(2)前記オゾン接触池の排ガス中のオゾン濃度を測定
する排オゾン濃度計測手段と、一定の排オゾン濃度目標
値をあらかじめ設定する排オゾン濃度目標値設定器と、
前記流入水量計測手段によって測定された流入水量とあ
らかじめ定めた基準時の流入水量との比を、該排オゾン
濃度目標値設定器で設定された排オゾン濃度目標値に乗
算することによって、排オゾン濃度目標値を補正する排
オゾン濃度目標値補正演算部と、前記排オゾン濃度計測
手段によって測定された排オゾン濃度が、該排オゾン濃
度目標値補正演算部によって演算された排オゾン濃度目
標値補正量と等しくなるようなオゾン発生量制御演算値
を求めるオゾン発生量演算部と、を備える。あるいは、
(3)前記オゾン接触池の水中の溶存オゾン濃度を測定
する溶存オゾン濃度計測手段と、一定の溶存オゾン濃度
目標値をあらかじめ設定する溶存オゾン濃度目標値設定
器と、前記流入水量計測手段によって測定された流入水
量とあらかじめ定めた基準時の流入水量との比を該溶存
オゾン濃度目標値設定器で設定された溶存オゾン濃度目
標値に乗算することによって、溶存オゾン濃度目標値を
補正する溶存オゾン濃度目標値補正演算部と、前記溶存
オゾン濃度計測手段によって測定された溶存オゾン濃度
が、該溶存オゾン濃度目標値補正演算部によって演算さ
れた溶存オゾン濃度目標値補正量と等しくなるようなオ
ゾン発生量制御演算値を求めるオゾン発生量演算部と、
を備える。
The present invention has the above-mentioned problems,
That is, to solve the problem that the outflow water quality changes due to changes in the inflow water amount, to stabilize the outflow water quality, an ozone contact pond, an ozone generator that generates ozone blown into the ozone contact pond, and the ozone contact pond. In an ozone contact pond including an inflow water amount measuring means for measuring the inflow amount of inflow and an ozone generation amount control unit for controlling the ozone generation amount of the ozone generator, the ozone generation amount used in the ozone generation amount control unit In order to obtain the control calculation value, (1) the ratio of the inflow water amount measured by the inflow water amount measuring means and the inflow water amount at a predetermined reference time is set to the ozone injection rate set by the ozone injection rate setting device. An ozone injection rate correction calculation unit that corrects the ozone injection rate by multiplication, an ozone injection rate corrected by the ozone injection rate correction calculation unit, and the inflow water meter And a ozone generation amount calculating unit for obtaining the amount of ozone generated control calculation value of the ozone generator from the product of the measured inflow water amount by means. Alternatively,
(2) Exhaust ozone concentration measuring means for measuring the ozone concentration in the exhaust gas of the ozone contact pond, and an exhaust ozone concentration target value setting device for presetting a constant exhaust ozone concentration target value,
By multiplying the ratio of the inflow water amount measured by the inflow water amount measuring means and the inflow water amount at a predetermined reference time to the exhaust ozone concentration target value set by the exhaust ozone concentration target value setting device, the exhaust ozone Exhaust ozone concentration target value correction calculator for correcting the target concentration value, and exhaust ozone concentration target value correction calculated by the exhaust ozone concentration target value correction calculator for the exhaust ozone concentration measured by the exhaust ozone concentration measuring means. And an ozone generation amount calculation unit that obtains an ozone generation amount control calculation value that is equal to the amount. Alternatively,
(3) Measured by the dissolved ozone concentration measuring means for measuring the dissolved ozone concentration in the ozone contact pond water, the dissolved ozone concentration target value setting device for presetting a constant dissolved ozone concentration target value, and the inflow water amount measuring means Dissolved ozone for correcting the dissolved ozone concentration target value by multiplying the dissolved ozone concentration target value set by the dissolved ozone concentration target value setter by the ratio of the inflow water amount thus determined and the inflow water amount at a predetermined reference time Generation of ozone such that the dissolved ozone concentration measured by the concentration target value correction calculation unit and the dissolved ozone concentration measurement unit becomes equal to the dissolved ozone concentration target value correction amount calculated by the dissolved ozone concentration target value correction calculation unit. An ozone generation amount calculation unit for obtaining the amount control calculation value;
Is provided.

【0013】[0013]

【作用】本発明で述べたオゾン発生量制御方式を用いる
ことで、流入水量の変動に対して安定な制御が実現でき
る理由を以下に示す。
The reason why stable control can be realized against fluctuations in the amount of inflow water by using the ozone generation amount control method described in the present invention will be described below.

【0014】流入水量が変化することによって、 (1)単位時間あたりの流入溶存有機物質量 (2)オゾン接触池内での処理水の滞留時間 (3)被処理水とオゾンガス気泡との気液接触時間 の三つの要素が常に変化する。By changing the amount of inflow water, (1) amount of inflowing dissolved organic substances per unit time (2) residence time of treated water in the ozone contact pond (3) gas-liquid contact time between treated water and ozone gas bubbles The three elements of are constantly changing.

【0015】しかし、現行のオゾン発生量制御方式は
(1)についてしか考慮されていなかったために、注入
するオゾン量が不足あるいは過剰となっていた。本発明
は、上記(1),(2),(3)全てについて考慮した制
御方式となっている。
However, since the current ozone generation control method only considers (1), the amount of injected ozone is insufficient or excessive. The present invention is a control system considering all of the above (1), (2), and (3).

【0016】本発明は、現行のオゾン注入率一定制御お
よび排ガス中オゾン濃度一定制御および溶存オゾン濃度
一定制御をベースにして、(3)の影響を相殺する効果
を持つ流入水量補正を制御目標値に加える部分を新たに
設けた。流入水量補正の演算は、現在の流入水量と基準
時の流入水量との比を各制御方式の制御目標値に乗算す
ることによって行う。
The present invention is based on the current ozone injection rate constant control, exhaust gas ozone concentration constant control and dissolved ozone concentration constant control, and controls the amount of inflow water having the effect of canceling the influence of (3) as a control target value. I added a part to add to. The calculation of the inflow water amount correction is performed by multiplying the control target value of each control method by the ratio of the current inflow water amount and the reference time inflow water amount.

【0017】これによって流出水質の安定化が実現で
き、理想的なオゾン発生量制御が可能となる。
As a result, the quality of outflow water can be stabilized, and ideal ozone generation amount control can be realized.

【0018】[0018]

【実施例】以下、本発明の実施例について説明する。Embodiments of the present invention will be described below.

【0019】図1は流入水量補正注入率制御方式の構成
図である。図1において、1は凝集沈殿処理、2は原水
ポンプ、3は流量計、4はオゾン接触池、5は生物活性
炭処理装置、6はオゾン注入率設定器、7はオゾン注入
率補正演算部、8はオゾン発生量演算部、9はオゾン発
生量制御部、10はブロワ、11はオゾン発生器、12
は散気管である。
FIG. 1 is a block diagram of an inflow water amount correction injection rate control system. In FIG. 1, 1 is a coagulation sedimentation treatment, 2 is a raw water pump, 3 is a flow meter, 4 is an ozone contact basin, 5 is a biological activated carbon treatment device, 6 is an ozone injection rate setting device, 7 is an ozone injection rate correction calculation unit, 8 is an ozone generation amount calculation unit, 9 is an ozone generation amount control unit, 10 is a blower, 11 is an ozone generator, 12
Is an air diffuser.

【0020】河川等から導水管(図示せず)を経て取水
された原水は凝集沈殿処理1に導かれる。
Raw water taken from a river or the like through a water pipe (not shown) is guided to a coagulating sedimentation treatment 1.

【0021】凝集沈殿処理1では凝集剤の注入によっ
て、流入した原水中の砂や懸濁物質が除去される。
In the coagulation-precipitation treatment 1, sand and suspended matter in the inflowing raw water are removed by injecting a coagulant.

【0022】凝集沈殿処理1からの流出水は原水ポンプ
2によってオゾン接触池4に導かれる。
Outflow water from the coagulating sedimentation treatment 1 is introduced into an ozone contact basin 4 by a raw water pump 2.

【0023】オゾン接触池4への流入水量は流量計3で
自動計測される。
The amount of water flowing into the ozone contact pond 4 is automatically measured by the flow meter 3.

【0024】オゾン発生器11において発生したオゾン
化ガスは、散気管12によってオゾン接触池4内に微細
な気泡として供給される。
The ozonized gas generated in the ozone generator 11 is supplied to the ozone contact basin 4 as fine bubbles by the air diffuser 12.

【0025】ブロワ10はオゾン発生器11へオゾン化
ガスの原料気体を供給する。
The blower 10 supplies a raw material gas of ozonized gas to the ozone generator 11.

【0026】散気管12からオゾン接触池4内に供給さ
れたオゾン化ガスのオゾンは、被処理水中に溶解し被処
理水中の溶存有機物質を酸化分解する。
The ozone of the ozonized gas supplied from the air diffuser 12 into the ozone contact basin 4 dissolves in the water to be treated and oxidizes and decomposes the dissolved organic substances in the water to be treated.

【0027】オゾン接触池4の流出水は、生物活性炭処
理装置5に流入する。
Outflow water from the ozone contact pond 4 flows into the biological activated carbon treatment apparatus 5.

【0028】低分子化した溶存有機物質は、生物活性炭
処理装置5において活性炭表面に吸着除去される。さら
に、吸着した低分子化溶存有機物は活性炭表面に付着し
た微生物によって酸化分解される。
The low-molecular-weight dissolved organic substance is adsorbed and removed on the surface of the activated carbon in the biological activated carbon treatment apparatus 5. Further, the adsorbed low molecular weight dissolved organic matter is oxidatively decomposed by the microorganisms attached to the surface of the activated carbon.

【0029】以上の処理過程を経て原水は浄化された処
理水となり、塩素殺菌後、水道水として配水される。
Through the above treatment process, the raw water becomes purified treated water, which is sterilized with chlorine and then distributed as tap water.

【0030】(1)流入水量補正注入率制御方式 図1は流入水量補正注入率制御方式の構成図である。図
1に示す浄水処理において、オゾン注入率設定器6によ
って設定されたオゾン注入率は、流量計3の測定値によ
ってオゾン注入率補正演算部7で補正される。なお、オ
ゾン注入率は、あらかじめオペレータ等によってオゾン
注入率設定器6に入力され、かつ任意に変更可能であ
る。
(1) Inflow Water Quantity Corrected Injection Rate Control Method FIG. 1 is a block diagram of an inflow water quantity corrected injection rate control method. In the water purification process shown in FIG. 1, the ozone injection rate set by the ozone injection rate setter 6 is corrected by the ozone injection rate correction calculator 7 by the measurement value of the flow meter 3. The ozone injection rate is input to the ozone injection rate setting device 6 in advance by an operator or the like and can be arbitrarily changed.

【0031】オゾン注入率補正演算部7は、流量計3の
現在の測定値とあらかじめ定めた基準時の流入水量との
比をオゾン注入率に乗じる演算を行う。ただし基準時と
は、オゾン処理の効果が理想的に達成されている場合と
する。この演算を式で書くと、次のようになる。
The ozone injection rate correction calculation unit 7 calculates the ozone injection rate by multiplying the ratio of the current measured value of the flow meter 3 and the inflow water amount at a predetermined reference time. However, the reference time is when the effect of ozone treatment is ideally achieved. When this operation is written as an expression, it becomes as follows.

【0032】(補正後オゾン注入率)=(オゾン注入率
設定値)×(現在の流入水量)/(基準時の流入水量) 補正されたオゾン注入率は、流量計3の測定値を乗ずる
ことによってオゾン発生量演算部8でオゾン発生量制御
演算値に換算される。この演算を式で書くと、次のよう
になる。
(Corrected ozone injection rate) = (Ozone injection rate set value) × (Current inflow water amount) / (Reference inflow water amount) The corrected ozone injection rate should be multiplied by the measured value of the flow meter 3. Is converted into an ozone generation amount control calculation value by the ozone generation amount calculation unit 8. When this operation is written as an expression, it becomes as follows.

【0033】(オゾン発生量制御演算値)=(補正後オ
ゾン注入率)×(現在の流入水量) オゾン発生量制御部9はこのオゾン発生量制御演算値を
用いて、オゾン発生器11およびブロワ10の運転量を
制御する。
(Ozone generation amount control calculation value) = (corrected ozone injection rate) × (current inflow water amount) The ozone generation amount control unit 9 uses the ozone generation amount control calculation value to generate the ozone generator 11 and the blower. Control the operation amount of 10.

【0034】(2)流入水量補正排ガス中オゾン濃度制
御方式 図2は流入水量補正排ガス中オゾン濃度制御方式の構成
図である。図2に示す浄水処理において、排オゾン濃度
目標値設定器14で設定された排ガス中オゾン濃度目標
値は、流量計3の測定値によって排オゾン濃度目標値補
正演算部15で補正される。この補正は、流量計3の現
在の測定値とあらかじめ定めた基準時の流入水量との比
を排オゾン濃度目標値に乗じることで達成される。すな
わち、 (補正後排オゾン濃度目標値)=(排オゾン濃度目標
値)×(現在の流入水量)/(基準時の流入水量) ただし基準時とは、オゾン処理の効果が理想的に達成さ
れている場合である。また排ガス中オゾン濃度目標値と
しては、基準時における排ガス中オゾン濃度を用いる。
(2) Inflow water amount correction exhaust gas ozone concentration control system FIG. 2 is a block diagram of an inflow water amount correction ozone gas concentration control system. In the water purification process shown in FIG. 2, the exhaust ozone concentration target value target value set by the exhaust ozone concentration target value setting unit 14 is corrected by the exhaust ozone concentration target value correction calculation unit 15 by the measurement value of the flow meter 3. This correction is achieved by multiplying the exhaust ozone concentration target value by the ratio of the current measured value of the flow meter 3 and the inflow water amount at a predetermined reference time. That is, (corrected exhaust ozone concentration target value) = (exhaust ozone concentration target value) × (current inflow water amount) / (reference water inflow amount) However, with reference time, the effect of ozone treatment is ideally achieved. That is the case. As the ozone concentration target value in exhaust gas, the ozone concentration in exhaust gas at the standard time is used.

【0035】オゾン発生量演算部16では、補正された
排オゾン濃度目標値と、オゾン接触池4の気相部分に設
けられた排オゾン濃度計測手段13によって測定された
値とが等しくなるようにオゾン発生量制御演算値を求め
る。
In the ozone generation amount calculator 16, the corrected exhaust ozone concentration target value and the value measured by the exhaust ozone concentration measuring means 13 provided in the gas phase portion of the ozone contact basin 4 become equal. Calculate the ozone generation control value.

【0036】このオゾン発生量制御演算値を用いて、オ
ゾン発生量制御部9はオゾン発生器11およびブロワ1
0を制御する。
Using this ozone generation amount control calculation value, the ozone generation amount control unit 9 causes the ozone generator 11 and the blower 1 to operate.
Control 0.

【0037】(3)流入水量補正溶存オゾン濃度制御方
式 図3は流入水量補正溶存オゾン濃度制御方式の構成図で
ある。図3に示す浄水処理において、溶存オゾン濃度目
標値設定器18で設定された溶存オゾン濃度目標値は、
流量計3の測定値によって溶存オゾン濃度目標値補正演
算部19で補正される。この補正は、流量計3の現在の
測定値とあらかじめ定めた基準時の流入水量との比を溶
存オゾン濃度目標値に乗じることで達成される。すなわ
ち、 (補正後溶存オゾン濃度目標値)=(溶存オゾン濃度目
標値)×(現在の流入水量)/(基準時の流入水量) ただし基準時とは、オゾン処理が理想的に行われている
場合であり、また溶存オゾン濃度目標値は、基準時にお
ける溶存オゾン濃度を用いる。
(3) Inflow water amount correction dissolved ozone concentration control method FIG. 3 is a block diagram of the inflow water amount correction dissolved ozone concentration control system. In the purified water treatment shown in FIG. 3, the dissolved ozone concentration target value set by the dissolved ozone concentration target value setting device 18 is
The dissolved ozone concentration target value correction calculation unit 19 corrects the measured value of the flow meter 3. This correction is achieved by multiplying the dissolved ozone concentration target value by the ratio of the current measured value of the flow meter 3 and the inflow water amount at a predetermined reference time. That is, (corrected dissolved ozone concentration target value) = (dissolved ozone concentration target value) × (current inflow water amount) / (reference water inflow amount) However, the ozone treatment is ideally performed in the reference time. This is the case, and the dissolved ozone concentration target value uses the dissolved ozone concentration at the reference time.

【0038】オゾン発生量演算部16では、補正された
溶存オゾン濃度目標値と、オゾン接触池4の液相部分に
設けられた溶存オゾン濃度計測手段17によって測定さ
れた値とが等しくなるようにオゾン発生量制御演算値を
求める。
In the ozone generation amount calculation unit 16, the corrected dissolved ozone concentration target value and the value measured by the dissolved ozone concentration measuring means 17 provided in the liquid phase portion of the ozone contact pond 4 become equal. Calculate the ozone generation control value.

【0039】このオゾン発生量制御演算値の値を用い
て、オゾン発生量制御部9はオゾン発生器11およびブ
ロワ10を制御する。
The ozone generation amount control unit 9 controls the ozone generator 11 and the blower 10 using the value of the ozone generation amount control calculation value.

【0040】次に、本発明の効果をシミュレーションで
検証した例について説明する。
Next, an example in which the effects of the present invention are verified by simulation will be described.

【0041】シミュレーションのための数学的オゾン接
触池モデルとして、完全混合槽列モデルを用いた。典型
的なオゾン接触池モデルとしては、完全混合モデルと押
し出し流れモデルが存在するが、実際のオゾン接触池内
はそれらの中間状態にあるのが普通である。そこで、そ
の中間状態を表現可能な完全混合槽列モデルを採用し、
シミュレーションを行った。
As a mathematical ozone contact pond model for simulation, a complete mixing tank array model was used. As typical ozone contact pond models, there are a fully mixed model and an extruded flow model, but the actual ozone contact pond model is usually in an intermediate state between them. Therefore, we adopted a complete mixing tank row model that can express the intermediate state,
A simulation was performed.

【0042】完全混合槽列モデルの概念図を図4に示
す。完全混合槽列モデルは、オゾン接触池全体が概念上
N個の小さな仮想槽から構成されており、それぞれの仮
想槽の内部が完全混合状態にあると仮定したモデルであ
る。第[i]槽についての完全混合槽列モデル式を式
(1)から式(3)に示す。ただし、Vlは仮想槽内部
の液体の全容積、Vgは仮想槽内部に存在する気泡の全
容積、Qlは流入水量(流量)、Qgは流入ガス量、C
lは溶存オゾン濃度、Cgは気相オゾン濃度、Csは溶
存有機物濃度、KLaは総括物質移動係数、Sは分配係
数、Kdeは自己分解反応係数、Koxは有機物酸化分
解反応係数、Krは有機物1gを酸化分解するために消
費されるオゾンの量を表わす。また、[ ]内数値iは
各槽の番号を表わす。
FIG. 4 shows a conceptual diagram of the complete mixing tank row model. The complete mixing tank array model is a model in which the entire ozone contact tank is conceptually composed of N small virtual tanks, and the inside of each virtual tank is assumed to be in a completely mixed state. Equations (1) to (3) show the model equations of the complete mixing vessel array for the [i] th vessel. However, Vl is the total volume of the liquid inside the virtual tank, Vg is the total volume of the air bubbles existing inside the virtual tank, Ql is the inflow water amount (flow rate), Qg is the inflow gas amount, C
l is the dissolved ozone concentration, Cg is the vapor ozone concentration, Cs is the dissolved organic matter concentration, KLa is the overall mass transfer coefficient, S is the distribution coefficient, Kde is the self-decomposition reaction coefficient, Kox is the organic matter oxidative decomposition reaction coefficient, and Kr is the organic matter 1g. Represents the amount of ozone consumed for the oxidative decomposition of. The numerical value i in [] represents the number of each tank.

【0043】 Vl×dCl[i]/dt=Ql×(Cl[i−1]−Cl[i])+KLa ×(S×Cg[i]−Cl[i])−Kde ×Cl[i]−Kox×Kr×Cl[i] ×Cs[i] 式(1) Vg×dCg[i−1]/dt=Qg×(Cg[i]−Cg[i−1])−Vl ×KLa×(S×Cg[i]−Cl[i]) 式(2) Vl×dCs[i]/dt=Ql×(Cs[i−1]−Cs[i])−Kox ×Cl[i]×Cs[i] 式(3) このモデル式は、溶存オゾン濃度:式(1),気相オゾ
ン濃度:式(2),溶存有機物質濃度:式(3)につい
ての物質収支に関する連立常微分方程式から構成され、
オゾンの溶解反応および溶存オゾンの自己分解反応およ
び溶存有機物質の酸化分解反応を考慮している。
Vl × dCl [i] / dt = Ql × (Cl [i−1] −Cl [i]) + KLa × (S × Cg [i] −Cl [i]) − Kde × Cl [i] − Kox × Kr × Cl [i] × Cs [i] Formula (1) Vg × dCg [i−1] / dt = Qg × (Cg [i] −Cg [i−1]) − Vl × KLa × (S XCg [i] -Cl [i]) Formula (2) VlxdCs [i] / dt = Qlx (Cs [i-1] -Cs [i])-Kox xCl [i] xCs [i [Equation (3)] This model equation is composed of simultaneous ozone differential equations related to the material balance for dissolved ozone concentration: equation (1), gas-phase ozone concentration: equation (2), dissolved organic substance concentration: equation (3). ,
The ozone dissolution reaction, the self-decomposition reaction of dissolved ozone, and the oxidative decomposition reaction of dissolved organic substances are considered.

【0044】溶存オゾンの自己分解反応は溶存オゾン濃
度に関して1次反応,溶存有機物質の酸化分解反応は溶
存オゾン濃度と溶存有機物質濃度とのそれぞれ1次反応
とした。
The self-decomposition reaction of dissolved ozone was a primary reaction with respect to the dissolved ozone concentration, and the oxidative decomposition reaction of a dissolved organic substance was a primary reaction with each of the dissolved ozone concentration and the dissolved organic substance concentration.

【0045】ただし、Vl,Vgはそれぞれオゾン接触
池体積Vおよびガスホールドアップφを用いて次式で表
わされる。
However, Vl and Vg are expressed by the following equations using the ozone contact cell volume V and the gas holdup φ, respectively.

【0046】 Vl=V×(1−φ) 式(4) Vg=V×φ 式(5) また、モデル式(1)〜(5)中に使用されている各係数
の設定値を表1に示す。
Vl = V × (1−φ) Formula (4) Vg = V × φ Formula (5) Further, Table 1 shows the setting values of the coefficients used in the model formulas (1) to (5). Shown in.

【0047】検証に用いた計算条件を表2に示す。流入
有機物質として、異臭味被害の原因の一つである2−M
IBを用いた。
Table 2 shows the calculation conditions used for the verification. 2-M, which is one of the causes of offensive odor damage, as an inflowing organic substance
IB was used.

【0048】また、流入ガス量は一定とし、オゾン発生
量を変化させる際はガス中のオゾン濃度を変化させた。
The amount of inflowing gas was kept constant, and the ozone concentration in the gas was changed when the amount of ozone generated was changed.

【0049】[0049]

【表1】 [Table 1]

【0050】[0050]

【表2】 [Table 2]

【0051】以上の条件のもとで、シミュレーションに
よる検証を行った。
Under the above conditions, verification by simulation was performed.

【0052】現行オゾン発生量制御方式について、流入
水量が変動した場合の流出有機物質濃度の変化を、上述
の完全混合槽列モデルを使用したシミュレーションによ
って求めた。
With respect to the current ozone generation amount control method, the change in the concentration of outflowing organic substances when the amount of inflowing water was changed was obtained by a simulation using the above-mentioned complete mixing tank array model.

【0053】検討した制御方式は、オゾン注入率制御,
排オゾン濃度制御,溶存オゾン濃度制御の3種類であ
る。
The control method studied is ozone injection rate control,
There are three types: exhaust ozone concentration control and dissolved ozone concentration control.

【0054】本実施例では、オゾン接触時間が5(mi
n)となる流入水量0.06(m3/min),オゾン注入率2
(g/m3)の場合を、理想的な処理が達成されている基
準時と仮定した。そして、各制御方式の制御目標値がこ
の基準時におけるオゾン注入率,排オゾン濃度,溶存オ
ゾン濃度と等しくなるように設定値を決定した。すなわ
ち、制御目標がオゾン注入率ならば2(g/m3),排
オゾン濃度なら4.58(g/Nm3),溶存オゾン濃度
なら1.41(g/m3)を基準設定値とした。
In this example, the ozone contact time was 5 (mi
n) inflow rate of 0.06 (m 3 / min), ozone injection rate 2
The case of (g / m 3 ) was assumed to be the reference time when the ideal treatment was achieved. Then, the set value was determined so that the control target value of each control method becomes equal to the ozone injection rate, the exhaust ozone concentration, and the dissolved ozone concentration at this reference time. That is, if the control target is the ozone injection rate, 2 (g / m 3 ), the exhaust ozone concentration is 4.58 (g / Nm 3 ), and the dissolved ozone concentration is 1.41 (g / m 3 ) as the standard set value. did.

【0055】数値解法としてRunge−Kutta 法を使用し
て、式(1),(2),(3)の数値解を算出した。
The Runge-Kutta method was used as the numerical solution, and the numerical solutions of the equations (1), (2) and (3) were calculated.

【0056】(検証例1)(現行オゾン発生量制御方
式) オゾン注入率一定制御,排ガス中オゾン濃度一定制御,
溶存オゾン濃度一定制御の3種類の方式について、定値
制御した場合のオゾン接触池流出水の水質シミュレーシ
ョン結果を図5に示す。
(Verification example 1) (Current ozone generation amount control system) Ozone injection rate constant control, exhaust gas ozone concentration constant control,
FIG. 5 shows the water quality simulation results of the ozone contact pond effluent in the case where the constant value control is performed for the three types of the dissolved ozone concentration constant control.

【0057】これは、十分時間が経過した定常状態にお
ける流入水量と流出臭気物濃度との関係である。
This is the relationship between the inflow water amount and the outflow odorant concentration in a steady state after a sufficient time has passed.

【0058】図中、丸印はオゾン注入率一定制御のシミ
ュレーション結果,三角印は排ガス中オゾン濃度一定制
御のシミュレーション結果,四角印は溶存オゾン濃度一
定制御のシミュレーション結果である。基準時である流
入水量が0.06(m3/min)の場合、流出臭気物濃度は
約25(ng/L)である。
In the figure, the circles show the simulation result of ozone constant injection rate control, the triangles show the simulation result of exhaust gas ozone concentration constant control, and the squares show the simulation result of dissolved ozone concentration constant control. When the inflow water amount which is the reference time is 0.06 (m 3 / min), the outflow odorant concentration is about 25 (ng / L).

【0059】流入水量が基準時の2倍の0.12(m3/m
in)になった場合、流出臭気物濃度は注入率一定制御で
は45(ng/L),排オゾン濃度一定制御では50
(ng/L),溶存オゾン濃度一定制御では62(ng
/L)という計算結果になった。
The amount of inflowing water is 0.12 (m 3 / m)
in), the outflow odor concentration is 45 (ng / L) in the constant injection rate control and 50 in the exhaust ozone constant control.
(Ng / L), 62 (ng
/ L) was calculated.

【0060】逆に、流入水量が基準時の半分の0.03
(m3/min )になった場合、流出臭気物濃度は注入率
一定制御では11(ng/L),排オゾン濃度一定制御
では4(ng/L),溶存オゾン濃度一定制御では8
(ng/L)という計算結果になった。
On the contrary, the amount of inflow water is 0.03 which is half of the standard time.
When it becomes (m 3 / min), the outflow odor concentration is 11 (ng / L) in the constant injection rate control, 4 (ng / L) in the exhaust ozone constant control, and 8 in the dissolved ozone concentration constant control.
The calculation result was (ng / L).

【0061】このように、上述した現行のオゾン発生量
制御方式を用いた場合、流入水量の変動に対して流出水
の水質も大きく変動し、安定した処理水を得ることがで
きない。これは、流出水質が常に所定の目標値を維持す
ることをオゾン処理制御の目的とした場合、不都合な点
となる。
As described above, when the above-mentioned current ozone generation amount control method is used, the water quality of the outflow water greatly changes with the change of the inflow water amount, and stable treated water cannot be obtained. This is an inconvenient point when the purpose of ozone treatment control is to constantly maintain the outflow water quality at a predetermined target value.

【0062】(検証例2)(本発明制御方式) 本発明で述べた、制御目標値に補正を加えるオゾン発生
量制御方式について、シミュレーションで検証した。こ
れは、前記した各制御方式の制御目標であるオゾン注入
率あるいは排オゾン濃度あるいは溶存オゾン濃度の値を
流入水量によって補正し、その補正した制御目標値を用
いる制御方式である。
(Verification Example 2) (Control System of the Present Invention) The ozone generation control system for correcting the control target value described in the present invention was verified by simulation. This is a control method in which the value of the ozone injection rate, the exhaust ozone concentration, or the dissolved ozone concentration, which is the control target of each control method described above, is corrected by the amount of inflowing water and the corrected control target value is used.

【0063】ここでは、次式の演算によって補正した制
御目標値を求めた。
Here, the control target value corrected by the calculation of the following equation was obtained.

【0064】 (補正した制御目標値) =(制御目標値)×(現在の流入水量)/(基準流入水量) 式(6) 式(6)に示した補正を付加した制御方式を用いたシミ
ュレーション結果を図6に示す。
(Corrected control target value) = (control target value) × (current inflow water amount) / (reference inflow water amount) Equation (6) Simulation using the control method with the correction shown in Equation (6). Results are shown in FIG.

【0065】(検証例1)で述べた現行の制御方式の場
合と同様にして接触時間5(min),流入水量0.06(m
3/min)の場合を基準時としてシミュレーションを行っ
た。なお、シミュレーション条件は表2の値を用いた。
As in the case of the current control method described in (Verification example 1), the contact time was 5 (min) and the inflow water amount was 0.06 (m).
3 / min) was used as the reference time for the simulation. The simulation conditions used the values in Table 2.

【0066】図6で、黒丸印は補正を付加した注入率制
御のシミュレーション結果,黒三角印は補正を付加した
排オゾン濃度制御のシミュレーション結果,黒四角印は
補正を付加した溶存オゾン濃度制御のシミュレーション
結果である。
In FIG. 6, black circles represent simulation results of injection rate control with correction, black triangles represent simulation results of exhaust ozone concentration control with correction, and black squares represent dissolved ozone concentration control with correction. It is a simulation result.

【0067】基準時である流入水量が0.06(m3/mi
n)の場合、流出臭気物濃度は約25(ng/L)であ
る。
The amount of inflow water which is the standard time is 0.06 (m 3 / mi)
In the case of n), the outflow odor concentration is about 25 (ng / L).

【0068】流入水量が基準時の2倍の0.12(m3/m
in)になった場合の流出臭気物濃度は、流入水量補正を
付加した注入率制御では22(ng/L),流入水量補
正を付加した排オゾン濃度制御では40(ng/L),
流入水量補正を付加した溶存オゾン濃度制御では25
(ng/L)という計算結果になった。
The amount of inflowing water was 0.12 (m 3 / m)
The inflow odorous substance concentration in the case of becoming in) is 22 (ng / L) in the injection rate control with the inflow water amount correction, 40 (ng / L) in the exhaust ozone concentration control with the inflow water amount correction,
25 for dissolved ozone concentration control with inflow correction
The calculation result was (ng / L).

【0069】逆に、流入水量が基準時の半分の0.03
(m3/min)になった場合の流出臭気物濃度は、補正を
付加した注入率制御では29(ng/L),補正を付加
した排オゾン濃度制御では17(ng/L),補正を付
加した溶存オゾン濃度制御では21(ng/L)という
計算結果になった。
On the contrary, the amount of inflow water is 0.03 which is half of the standard time.
The effluent odorous substance concentration when it becomes (m 3 / min) is 29 (ng / L) in the corrected injection rate control and 17 (ng / L) in the corrected exhaust ozone concentration control. With the added dissolved ozone concentration control, the calculation result was 21 (ng / L).

【0070】いずれの計算結果においても、(検証例
1)で算出された結果と比較して、基準時の流出臭気物
濃度25(ng/L)との差異が小さくなっている。3
種類の制御方式の中では、溶存オゾン濃度制御と流入水
量補正とを組み合わせたものが安定性の面で最も良好な
結果を示している。これは、溶存オゾン濃度制御方式と
式(6)の補正式とが適切に整合した結果と考えられ
る。
In all the calculation results, the difference from the outflow odorant concentration of 25 (ng / L) at the reference time is smaller than that of the result calculated in (Verification example 1). Three
Among the various control methods, the combination of dissolved ozone concentration control and inflow water amount correction shows the best result in terms of stability. This is considered to be a result of the dissolved ozone concentration control method and the correction equation of the equation (6) being properly matched.

【0071】このように流入水量による補正を現行の各
制御方式に付加することで、流入水量の変動に対して安
定した水質を維持可能なオゾン発生量制御が可能とな
る。今回の補正値は式(6)のように単純な式で算出し
たが、この式を各制御方式ごとに整合,発展させること
で制御精度向上が可能である。
As described above, by adding the correction based on the inflow water amount to each of the existing control methods, it becomes possible to control the ozone generation amount capable of maintaining the stable water quality against the variation of the inflow water amount. The correction value this time was calculated by a simple equation like the equation (6), but the control accuracy can be improved by matching and developing this equation for each control method.

【0072】[0072]

【発明の効果】以上のように、本発明によれば、流入水
量に関する制御目標値補正演算部を現行のオゾン発生量
制御方式の前段に付加することによって、流入水量に対
してオゾン発生量を適切に制御することが可能となる。
As described above, according to the present invention, by adding the control target value correction calculation unit for the inflow water amount to the preceding stage of the current ozone generation amount control system, the ozone generation amount can be compared with the inflow water amount. It becomes possible to control appropriately.

【図面の簡単な説明】[Brief description of drawings]

【図1】流入水量補正演算部を付加したオゾン注入率制
御方式を示すブロック図。
FIG. 1 is a block diagram showing an ozone injection rate control system to which an inflow water amount correction calculation unit is added.

【図2】流入水量補正演算部を付加した排オゾン濃度制
御方式を示すブロック図。
FIG. 2 is a block diagram showing an exhaust ozone concentration control system in which an inflow water correction calculation unit is added.

【図3】流入水量補正演算部を付加した排オゾン濃度制
御方式を示すブロック図。
FIG. 3 is a block diagram showing an exhaust ozone concentration control system to which an inflow water amount correction calculation unit is added.

【図4】完全混合槽列モデルの概念を表わす説明図。FIG. 4 is an explanatory view showing the concept of a complete mixing tank row model.

【図5】現行オゾン発生量制御方式を用いたシミュレー
ション結果を示す図。
FIG. 5 is a diagram showing a simulation result using a current ozone generation amount control method.

【図6】本発明の補正付オゾン発生量制御方式を用いた
シミュレーション結果を示す図。
FIG. 6 is a diagram showing a simulation result using the corrected ozone generation amount control method of the present invention.

【符号の説明】[Explanation of symbols]

1…凝集沈殿処理、2…原水ポンプ、3…流量計、4…
オゾン接触池、5…生物活性炭処理装置、6…オゾン注
入率設定器、7…オゾン注入率補正演算部、8…オゾン
発生量演算部、9…オゾン発生量制御部、10…ブロ
ワ、11…オゾン発生器、12…散気管、13…排オゾ
ン濃度計測手段、14…排オゾン濃度目標値設定器、1
5…排オゾン濃度目標値補正演算部、16…オゾン発生
量演算部、17…溶存オゾン濃度計測手段、18…溶存
オゾン濃度目標値設定器、19…溶存オゾン濃度目標値
補正演算部。
1 ... Coagulation sedimentation treatment, 2 ... Raw water pump, 3 ... Flowmeter, 4 ...
Ozone contact pond, 5 ... Biological activated carbon treatment device, 6 ... Ozone injection rate setting device, 7 ... Ozone injection rate correction calculation section, 8 ... Ozone generation rate calculation section, 9 ... Ozone generation rate control section, 10 ... Blower, 11 ... Ozone generator, 12 ... Air diffuser, 13 ... Exhaust ozone concentration measuring means, 14 ... Exhaust ozone concentration target value setting device, 1
5 ... Exhaust ozone concentration target value correction calculation unit, 16 ... Ozone generation amount calculation unit, 17 ... Dissolved ozone concentration measurement means, 18 ... Dissolved ozone concentration target value setting device, 19 ... Dissolved ozone concentration target value correction calculation unit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山越 信義 茨城県日立市大みか町五丁目2番1号 株 式会社日立製作所大みか工場内 (72)発明者 渡辺 昭二 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 馬場 研二 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 芳賀 鉄郎 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nobuyoshi Yamakoshi 5-2-1 Omika-cho, Hitachi City, Ibaraki Prefecture Hitachi Ltd. Omika Plant, Ltd. (72) Inventor Shoji Watanabe 7-chome, Omika-cho, Hitachi City, Ibaraki Prefecture No. 1 Hitachi Ltd., Hitachi Research Laboratory (72) Inventor Kenji Baba 7-11 Omika-cho, Hitachi City, Ibaraki Prefecture Hitachi Ltd. (72) Inventor Tetsuro Haga Omi Mika, Hitachi City, Ibaraki Prefecture 7-1-1, Machi, Hitachi Co., Ltd. Hitachi Research Laboratory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】オゾン接触池と、 該オゾン接触池に吹き込むオゾンを発生するオゾン発生
器と、を有するオゾン処理工程を含む水処理施設におい
て、 オゾン注入率を設定するオゾン注入率設定器と、 前記オゾン接触池へ流入する流入水量を測定する流入水
量計測手段と、 該流入水量計測手段によって測定された流入水量とあら
かじめ定めた基準時の流入水量との比を乗ずることによ
って、前記オゾン注入率設定器のオゾン注入率を補正す
るオゾン注入率補正演算部と、 該オゾン注入率補正演算部によって補正されたオゾン注
入率と前記流入水量計測手段によって測定された流入水
量から、前記オゾン発生器のオゾン発生量制御演算値を
算出するオゾン発生量演算部と、 該オゾン発生量演算部で求めたオゾン発生量制御演算値
によって、前記オゾン発生器のオゾン発生量を制御する
オゾン発生量制御部と、を備えたことを特徴とする水処
理施設のオゾン発生量制御装置。
1. A water treatment facility including an ozone treatment step, which comprises an ozone contact pond and an ozone generator for generating ozone to be blown into the ozone contact pond, and an ozone injection rate setting device for setting an ozone injection rate, The ozone injection rate is obtained by multiplying the inflow water amount measuring means for measuring the inflow water amount flowing into the ozone contact pond and the ratio of the inflow water amount measured by the inflow water amount measuring means to the inflow water amount at a predetermined reference time. An ozone injection rate correction calculation unit for correcting the ozone injection rate of the setter, and an ozone injection rate corrected by the ozone injection rate correction calculation unit and an inflow water amount measured by the inflow water amount measuring means, The ozone generation amount calculation unit for calculating the ozone generation amount control calculation value, and the ozone generation amount control calculation value obtained by the ozone generation amount calculation unit, Ozone generation amount control device of the water treatment facility, characterized in that it comprises an ozone generation amount control unit for controlling the amount of ozone generated Zon generator, a.
【請求項2】オゾン接触池と、 該オゾン接触池に吹き込むオゾンを発生するオゾン発生
器と、を有するオゾン処理工程を含む浄水処理施設にお
いて、 前記オゾン接触池へ流入する流入水量を計測する流入水
量計測手段と、 前記オゾン接触池の排ガス中のオゾン濃度を測定する排
オゾン濃度計測手段と、 前記オゾン接触池の排オゾン濃度目標値をあらかじめ設
定する排オゾン濃度目標値設定器と、 前記流入水量計測手段によって測定された流入水量とあ
らかじめ定めた基準時の流入水量との比を乗ずることに
よって、該排オゾン濃度目標値設定器の排オゾン濃度目
標値を補正する排オゾン濃度目標値補正演算部と、 前記排オゾン濃度計測手段によって測定された排オゾン
濃度が、該排オゾン濃度目標値補正演算部によって演算
された排オゾン濃度目標値補正量と等しくなるようにオ
ゾン発生量制御演算値を求めるオゾン発生量演算部と、 該オゾン発生量演算部で求められたオゾン発生量制御演
算値によって、前記オゾン発生器のオゾン発生量を制御
するオゾン発生量制御部と、を備えたことを特徴とする
水処理施設のオゾン発生量制御装置。
2. A water purification treatment facility including an ozone treatment step, which comprises an ozone contact pond and an ozone generator for generating ozone to be blown into the ozone contact pond, and an inflow for measuring the amount of inflow water flowing into the ozone contact pond. A water amount measuring means, an exhaust ozone concentration measuring means for measuring the ozone concentration in the exhaust gas of the ozone contact pond, an exhaust ozone concentration target value setting device for presetting an exhaust ozone concentration target value of the ozone contact pond, and the inflow Exhaust ozone concentration target value correction calculation for correcting the exhaust ozone concentration target value of the exhaust ozone concentration target value setting device by multiplying the ratio of the inflow water amount measured by the water amount measuring means and the inflow water amount at a predetermined reference time And the exhaust ozone concentration measured by the exhaust ozone concentration measuring means, the exhaust ozone concentration calculated by the exhaust ozone concentration target value correction calculation unit. The ozone generation amount calculation unit for obtaining the ozone generation amount control calculation value so as to be equal to the concentration target value correction amount, and the ozone generation amount of the ozone generator by the ozone generation amount control calculation value obtained by the ozone generation amount calculation unit An ozone generation amount control device for a water treatment facility, comprising: an ozone generation amount control unit for controlling the amount.
【請求項3】オゾン接触池と、 該オゾン接触池に吹き込むオゾンを発生するオゾン発生
器と、を有するオゾン処理工程を含む浄水処理施設にお
いて、 前記オゾン接触池へ流入する流入水量を測定する流入水
量計測手段と、 前記オゾン接触池の水中の溶存オゾン濃度を測定する溶
存オゾン濃度計測手段と、 前記オゾン接触池の水中の溶存オゾン濃度目標値をあら
かじめ設定する溶存オゾン濃度目標値設定器と、 前記流入水量計測手段によって測定された流入水量とあ
らかじめ定めた基準時の流入水量との比を乗ずることに
よって、該溶存オゾン濃度目標値設定器の溶存オゾン濃
度目標値を補正する溶存オゾン濃度目標値補正演算部
と、 前記溶存オゾン濃度計測手段によって測定された溶存オ
ゾン濃度が、該溶存オゾン濃度目標値補正演算部によっ
て演算された溶存オゾン濃度目標値補正量と等しくなる
ようにオゾン発生量制御演算値を求めるオゾン発生量演
算部と、 該オゾン発生量演算部で求められたオゾン発生量制御演
算値によって、前記オゾン発生器のオゾン発生量を制御
するオゾン発生量制御部と、を備えたことを特徴とする
水処理施設のオゾン発生量制御装置。
3. A water purification treatment facility including an ozone treatment step, which comprises an ozone contact pond and an ozone generator for generating ozone to be blown into the ozone contact pond, and an inflow for measuring the amount of inflow water flowing into the ozone contact pond. A water amount measuring means, a dissolved ozone concentration measuring means for measuring a dissolved ozone concentration in the ozone contact pond water, and a dissolved ozone concentration target value setting device for presetting a dissolved ozone concentration target value in the ozone contact pond water, A dissolved ozone concentration target value for correcting the dissolved ozone concentration target value of the dissolved ozone concentration target value setting device by multiplying the ratio of the inflow water amount measured by the inflow water amount measuring means and the inflow water amount at a predetermined reference time A correction calculator, and the dissolved ozone concentration measured by the dissolved ozone concentration measuring means is calculated by the dissolved ozone concentration target value correction calculator. Therefore, the ozone generation amount calculation unit for obtaining the ozone generation amount control calculation value so as to be equal to the calculated dissolved ozone concentration target value correction amount, and the ozone generation amount control calculation value calculated by the ozone generation amount calculation unit, An ozone generation amount control device for a water treatment facility, comprising: an ozone generation amount control unit for controlling an ozone generation amount of an ozone generator.
JP21343094A 1994-09-07 1994-09-07 Controller for amount of ozone to be generated for water treating facility Pending JPH0873202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21343094A JPH0873202A (en) 1994-09-07 1994-09-07 Controller for amount of ozone to be generated for water treating facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21343094A JPH0873202A (en) 1994-09-07 1994-09-07 Controller for amount of ozone to be generated for water treating facility

Publications (1)

Publication Number Publication Date
JPH0873202A true JPH0873202A (en) 1996-03-19

Family

ID=16639104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21343094A Pending JPH0873202A (en) 1994-09-07 1994-09-07 Controller for amount of ozone to be generated for water treating facility

Country Status (1)

Country Link
JP (1) JPH0873202A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011132101A (en) * 2009-12-25 2011-07-07 Sumitomo Heavy Ind Ltd Ozone gas generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011132101A (en) * 2009-12-25 2011-07-07 Sumitomo Heavy Ind Ltd Ozone gas generator

Similar Documents

Publication Publication Date Title
JP3387597B2 (en) Optimized reactor for ozonation in domestic water
JP6877255B2 (en) Wastewater treatment system and wastewater treatment method
JP2007185610A (en) Device for controlling injection of flocculant
JP3184948B2 (en) Ozone injection control method and device
JPH0873202A (en) Controller for amount of ozone to be generated for water treating facility
JPH0938690A (en) Method for controlling injection of flocculating agent in water treatment
JP3321876B2 (en) Ozone treatment apparatus, ozone treatment method, and water purification treatment method
JP3697933B2 (en) Water treatment method and apparatus using ozone
JP3214489B2 (en) Sewage treatment method and sewage treatment device
JP3598022B2 (en) Water treatment method using ozone and hydrogen peroxide
JPH091167A (en) High-degree water purification system
JP3617334B2 (en) Water treatment method and apparatus
JPH0938683A (en) Biological water treating device
JP2013215680A (en) Wastewater treatment method and wastewater treatment apparatus
JPH08299972A (en) Ozone yield controller
JP5801506B1 (en) Operation method of biological denitrification equipment
JP2005324121A (en) Water treatment method and water treatment apparatus
JPH08318286A (en) Ozone treating method and apparatus in high-degree water purifying treatment
JP4489990B2 (en) Biological water treatment equipment
JPH07232158A (en) Device for controlling amount of ozone generation
JPH09299968A (en) Advanced water purifying plant
JP2000107778A (en) Method and apparatus for treating water
JP3223726B2 (en) Method and apparatus for measuring ultraviolet absorbance for process
JPH08215690A (en) Optimum ozone injection rate calculation apparatus and ozone injection control apparatus
JP4116931B2 (en) Ozone treatment method and ozone treatment system