JPH08215690A - Optimum ozone injection rate calculation apparatus and ozone injection control apparatus - Google Patents

Optimum ozone injection rate calculation apparatus and ozone injection control apparatus

Info

Publication number
JPH08215690A
JPH08215690A JP2495395A JP2495395A JPH08215690A JP H08215690 A JPH08215690 A JP H08215690A JP 2495395 A JP2495395 A JP 2495395A JP 2495395 A JP2495395 A JP 2495395A JP H08215690 A JPH08215690 A JP H08215690A
Authority
JP
Japan
Prior art keywords
ozone
amount
water
treated
injection rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2495395A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Yamakoshi
信義 山越
Mikio Yoda
幹雄 依田
Tetsuro Haga
鉄郎 芳賀
Naoki Hara
直樹 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2495395A priority Critical patent/JPH08215690A/en
Publication of JPH08215690A publication Critical patent/JPH08215690A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE: To simply calculate an ozone amt. necessary for the reaction with an ozone consuming component in water to be treated with high accuracy by injecting ozone into water to be treated and comparison water prepared by removing an ozone consuming component from the water to be treated and measuring the difference between the concns. of dissolved ozone per a unit water amt. of both of them. CONSTITUTION: Water W to be treated is introduced into an ozone consuming component removing reaction tank 20 and ozone gas with predetermined concn. is injected into the reaction tank 20 from an ozonizer 2. The water to be treated and ozone are brought into contact with each other in the reaction tank 20 and treated water containing no ozone consuming component is introduced into a dissolved ozone removing reaction tank 25 and subsequently introduced into an ozone self-decomposing reaction tank 30. The amt. of waste ozone discharged to the open air from water is measured by a waste ozone concentration meter 32. The amt. of dissolved ozone contained in the water within the ozone self-decomposing reaction tank 30 is measured by a dissolved ozone concentration meter 35. Further, an ozone demand amt. is calculated on the basis of the difference between the amts. of dissolved ozone of both tanks 1, 30 in an ozone demand calculation part 40.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、浄水場または下水処理
場等において被処理水をオゾン処理する際に使用される
最適オゾン注入率算出装置及びオゾン注入制御装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optimum ozone injection rate calculation device and an ozone injection control device used for ozone treatment of water to be treated at a water purification plant or a sewage treatment plant.

【0002】[0002]

【従来の技術】河川水及び湖沼水等の取水源の水質汚濁
に伴い、浄水場等では凝集沈殿後の沈殿水にオゾンを接
触させた後、生物活性炭処理を行う高度浄水処理法を採
用する傾向にある。
2. Description of the Related Art Along with water pollution of water sources such as river water and lake water, water purification plants adopt an advanced water purification treatment method in which ozone is brought into contact with the sedimented water after coagulation and then biological activated carbon is treated. There is a tendency.

【0003】オゾン処理では、被処理水をオゾン接触槽
に導入して、水中の有機物等を脱色,脱臭,酸化または
変性させる。
In the ozone treatment, water to be treated is introduced into an ozone contact tank to decolorize, deodorize, oxidize or denature organic substances in the water.

【0004】オゾン処理においては、必要最小限のオゾ
ン注入量で被処理水を効率的に処理することが要求され
る。このために水量に比例した一定の注入率でオゾンを
注入する水量比例制御が行われている。しかし、水量比
例制御は、浄水場或いは下水処理場に導入される被処理
水中の有機物濃度及び組成が常に一定であれば問題ない
が、有機物濃度及び組成は季節的要因,気象条件さらに
はダム水の放流等の外的要因の影響を受けて大きく変化
し、常に一定状態にはない。従って、水量比例制御は、
被処理水の水質が変化した場合に、オゾンが過少または
過剰に注入され、オゾン注入処理後の水質が安定しなく
なるという問題がある。
In the ozone treatment, it is required to efficiently treat the water to be treated with a minimum required ozone injection amount. For this reason, water amount proportional control in which ozone is injected at a constant injection rate proportional to the water amount is performed. However, water proportion control does not pose a problem if the concentration and composition of organic matter in the treated water introduced to the water treatment plant or sewage treatment plant is always constant. However, the concentration and composition of organic matter are seasonal factors, meteorological conditions, and even dam water. It changes greatly under the influence of external factors such as the release of fish, and is not always in a constant state. Therefore, the water volume proportional control is
When the water quality of the water to be treated changes, ozone is injected too little or too much, and there is a problem that the water quality after ozone injection processing becomes unstable.

【0005】このようなことから、オゾン注入後にオゾ
ン接触槽から気相に排出される排オゾンの濃度を検出し
て、このオゾン濃度が一定値になるようにオゾン注入量
を制御する排オゾン濃度一定制御が開発された。また、
オゾン接触槽内の液相中に残留する溶存オゾン濃度を検
出して、この溶存オゾン濃度が一定値になるようにオゾ
ン注入量を制御する残留オゾン濃度一定制御が開発され
た。そして、これらの方法を改善したオゾン注入量制御
方法も開発された。特開平4−197491 号公報及び特開平
6−79290号公報には、オゾン注入率制御の一例が記載さ
れている。
From the above, the concentration of exhaust ozone discharged from the ozone contact tank to the gas phase after ozone injection is detected, and the ozone injection amount is controlled so that the ozone concentration becomes a constant value. Constant control was developed. Also,
A constant residual ozone concentration control has been developed which detects the dissolved ozone concentration remaining in the liquid phase in the ozone contact tank and controls the ozone injection amount so that the dissolved ozone concentration becomes a constant value. And the ozone injection amount control method which improved these methods was also developed. JP-A-4-197491 and JP-A-4-197491
Japanese Patent Publication No. 6-79290 describes an example of ozone injection rate control.

【0006】[0006]

【発明が解決しようとする課題】オゾン接触槽に注入さ
れたオゾンは、有機物等のオゾン消費成分と反応して消
費されるほかに、自己分解したり、被処理水中に溶解し
たり、オゾン接触槽の外部に排出したりする。オゾンの
水への溶解度及び液中での自己分解は、被処理水の水
温,pH及び接触時間等の影響を受けて変化する。例え
ば、オゾン含有ガスを水と接触させたとき、液中オゾン
濃度は一般に知られた実験式である(1)式で表せる
が、水温が変化すると液中オゾン濃度も変化し、被処理
水の水温の影響によってオゾンの溶解度が変わる。な
お、(1)式の定数Kは大気圧のもとでの水温との関係
による一般に知られた実験式による。
Ozone injected into an ozone contact tank is consumed by reacting with ozone consuming components such as organic substances, and also self-decomposing, dissolving in water to be treated, or contacting ozone. It is discharged to the outside of the tank. The solubility of ozone in water and the self-decomposition in water change depending on the water temperature, pH, contact time, etc. of the water to be treated. For example, when the ozone-containing gas is brought into contact with water, the ozone concentration in the liquid can be expressed by the generally known empirical formula (1), but when the water temperature changes, the ozone concentration in the liquid also changes, and The solubility of ozone changes depending on the water temperature. The constant K in the equation (1) is based on a generally known empirical equation based on the relationship with the water temperature under atmospheric pressure.

【0007】 C=K・Y …(1) K={0.604×(1+t/273)}/1+0.063
t ここで、C:液中オゾン濃度(g/m),K:定数,
t:水温(℃),Y:気中オゾン濃度(g/m) 一方、液中でのオゾンの自己分解はpHに依存し、低p
Hではオゾンの自己分解が遅いが、高pH(アルカリ
側)では分解速度が速くなる。被処理水のpHが変化す
ると、同一の注入率でオゾンを注入しても液中の溶存オ
ゾン濃度が異なってくる。このため、被処理水中の有機
物濃度及び組成に変動がなく、かつオゾン注入率が一定
であっても、排オゾン濃度または溶存オゾン濃度が異な
り、恰も有機物濃度の変化のようにとらえられる。
C = K · Y (1) K = {0.604 × (1 + t / 273)} / 1 + 0.063
t where C: ozone concentration in liquid (g / m), K: constant,
t: Water temperature (° C), Y: Ozone concentration in air (g / m) On the other hand, the self-decomposition of ozone in liquid depends on pH and low p
With H, ozone self-decomposes slowly, but at high pH (alkaline side), the decomposition rate becomes faster. If the pH of the water to be treated changes, the concentration of dissolved ozone in the liquid will differ even if ozone is injected at the same injection rate. Therefore, even if the concentration and composition of organic substances in the water to be treated do not change and the ozone injection rate is constant, the concentration of exhausted ozone or the concentration of dissolved ozone is different, and it can be seen as a change in the concentration of organic substances.

【0008】したがって、排オゾン濃度または溶存オゾ
ン濃度の検出値に基づくフィードバック制御では、最適
なオゾン注入率を設定できない。
Therefore, the feedback control based on the detected value of the exhaust ozone concentration or the dissolved ozone concentration cannot set the optimum ozone injection rate.

【0009】本来、オゾン注入制御は、対象となる被処
理水中の有機物濃度などから求まるオゾン要求量に基づ
いて被処理水が必要とする量のオゾンを注入すればよ
い。しかし、現状では、被処理水が必要とするオゾン注
入量を短時間で直接的にオンラインで検出できる計測器
がない。この結果、被処理水の水質とその変化に対応し
た制御精度の高いオゾン注入制御は困難であり、運用上
安全性を配慮して過剰にオゾンが注入されるため、ラン
ニングコストの低減も困難である。
Originally, the ozone injection control may be performed by injecting an amount of ozone required by the water to be treated based on the required ozone amount obtained from the concentration of organic substances in the water to be treated. However, at present, there is no measuring instrument that can directly detect the amount of ozone injection required by the water to be treated online in a short time. As a result, it is difficult to control ozone injection with high control accuracy that corresponds to the water quality of the water to be treated and its change, and it is difficult to reduce running costs because ozone is injected excessively in consideration of operational safety. is there.

【0010】したがって、本発明の第1の目的は、被処
理水中のオゾン消費成分と反応するに必要なオゾン量
(以下、必要に応じて被処理水のオゾン要求量と称す
る)を簡易に高精度で算出できる最適オゾン注入率算出
装置を提供することにある。
Therefore, the first object of the present invention is to easily increase the amount of ozone required to react with the ozone consuming component in the water to be treated (hereinafter referred to as the required ozone amount of the water to be treated). An object is to provide an optimum ozone injection rate calculation device that can be calculated with accuracy.

【0011】本発明の第2の目的は、上記最適オゾン注
入率算出装置によって算出したオゾン注入率に基づいて
オゾン処理におけるオゾン注入量を制御するオゾン注入
制御装置を提供することにある。
A second object of the present invention is to provide an ozone injection control device for controlling the ozone injection amount in ozone processing based on the ozone injection ratio calculated by the optimum ozone injection ratio calculation device.

【0012】本発明の第3の目的は、上記最適オゾン注
入率算出装置を備えた被処理水のオゾン処理装置を提供
することにある。
A third object of the present invention is to provide an ozone treatment apparatus for water to be treated which is equipped with the above-mentioned optimum ozone injection rate calculation apparatus.

【0013】本発明の第4の目的は、算出された最適オ
ゾン注入率に基づいてオゾン処理を行うオゾン処理方法
を提供することにある。
A fourth object of the present invention is to provide an ozone treatment method for performing ozone treatment based on the calculated optimum ozone injection rate.

【0014】[0014]

【課題を解決するための手段】本発明の第1の目的は、
オゾン処理を行う被処理水と該被処理水からオゾン消費
成分を除去した比較水とに単位水量当りのオゾン注入率
が同一となるようにオゾンを注入する手段と、両者の単
位水量当りの溶存オゾン濃度の差を計測しその差をもっ
て被処理水の単位水量当りのオゾン要求量とするオゾン
量算出手段とを備えたことを特徴とする最適オゾン注入
率算出装置によって達成される。
SUMMARY OF THE INVENTION A first object of the present invention is to:
Means for injecting ozone into treated water to be subjected to ozone treatment and comparative water obtained by removing ozone consuming components from the treated water so that the ozone injection rate per unit water amount is the same, and both of them are dissolved per unit water amount This is achieved by an optimum ozone injection rate calculation device, which comprises an ozone amount calculation means for measuring a difference in ozone concentration and using the difference as an ozone demand amount per unit amount of water to be treated.

【0015】この最適オゾン注入率算出装置の一態様と
して、同量の被処理水と比較水とを準備して両者に同量
のオゾンを注入し、両者の溶存オゾン濃度の差を計測し
その差をもって被処理水の単位水量当りのオゾン要求量
とするオゾン量算出手段とを備えることは望ましい。
As one mode of this optimum ozone injection rate calculation device, the same amount of treated water and comparative water are prepared, the same amount of ozone is injected into both, and the difference in the dissolved ozone concentration between the two is measured. It is desirable to provide an ozone amount calculation means for calculating the ozone demand amount per unit amount of water to be treated with a difference.

【0016】本発明の第2の目的は、被処理水を導入し
たオゾン接触槽にオゾンを注入するに当ってそのオゾン
注入量を制御する装置において、前述の最適オゾン注入
率算出装置を備え、該最適オゾン注入率算出装置によっ
て算出された単位水量当りのオゾン注入率に基づいてオ
ゾン注入量を決定するオゾン注入量決定手段及び該オゾ
ン注入量決定手段で決定されたオゾン注入量になるよう
に前記オゾン接触槽に注入するオゾン量を制御するオゾ
ン注入量制御手段とを備えたことを特徴とするオゾン注
入制御装置によって達成される。
A second object of the present invention is an apparatus for controlling an ozone injection amount when injecting ozone into an ozone contact tank into which water to be treated has been introduced, which is equipped with the optimum ozone injection rate calculating apparatus, The ozone injection amount determining means for determining the ozone injection amount based on the ozone injection rate per unit amount of water calculated by the optimum ozone injection rate calculating device, and the ozone injection amount determined by the ozone injection amount determining means. And an ozone injection amount control means for controlling the amount of ozone injected into the ozone contact tank.

【0017】本発明の第3の目的は、被処理水にオゾン
を接触させるオゾン接触槽と,該オゾン接触槽にオゾン
を注入する手段とを備えたオゾン処理装置において、前
述の最適オゾン注入率算出装置を備え、該最適オゾン注
入率算出装置によって算出された単位水量当りのオゾン
注入率に基づいてオゾン注入量を決定するオゾン注入量
決定手段及び該オゾン注入量決定手段で決定されたオゾ
ン注入量になるように前記オゾン注入手段で注入するオ
ゾン量を制御するオゾン注入量制御手段とを備えたこと
を特徴とするオゾン処理装置によって達成される。
A third object of the present invention is to provide an ozone treatment apparatus comprising an ozone contact tank for bringing ozone into contact with water to be treated, and a means for injecting ozone into the ozone contact tank. An ozone injection amount determining means for determining an ozone injection amount based on the ozone injection rate per unit amount of water calculated by the optimum ozone injection rate calculating device, and an ozone injection determined by the ozone injection amount determining means. And an ozone injection amount control means for controlling the amount of ozone injected by the ozone injection means so that the amount of ozone becomes equal to the amount.

【0018】本発明の第4の目的は、被処理水をオゾン
接触槽内に導入し該接触槽内にオゾンを注入してオゾン
処理を行う方法において、前記オゾン接触槽内に注入す
るオゾン量を前述のオゾン注入制御装置に記載の如くし
て求め、このようにして求めたオゾン量を前記オゾン接
触槽内に注入してオゾン処理するようにしたことを特徴
とするオゾン処理方法によって達成される。
A fourth object of the present invention is to introduce ozone into the ozone contact tank by introducing the water to be treated into the contact tank, and perform ozone treatment in the ozone contact tank. Is obtained as described in the ozone injection control device, and the ozone amount thus obtained is injected into the ozone contact tank for ozone treatment. It

【0019】本発明は、オゾン消費成分を含む被処理水
とこの被処理水からオゾン消費成分を除去した比較水と
にオゾンを注入した場合、オゾン注入量がオゾン消費成
分との反応に必要なオゾン要求量よりも過剰であれば、
オゾン消費量(オゾン自己分解量及びオゾン要求量)は
変化せずに排オゾン量及び溶存オゾン量のみが変化する
こと、また、オゾン注入量がオゾン消費成分との反応に
必要な量よりも少なければ、オゾン消費量(オゾン自己
分解量及びオゾン要求量)が変化することを究明した。
According to the present invention, when ozone is injected into the water to be treated containing the ozone consuming component and the comparative water obtained by removing the ozone consuming component from the water to be treated, the ozone injection amount is necessary for the reaction with the ozone consuming component. If it exceeds the ozone requirement,
Ozone consumption (self-decomposition amount of ozone and ozone demand amount) does not change, only the amount of discharged ozone and the amount of dissolved ozone change, and the amount of injected ozone is less than the amount required for reaction with ozone consuming components. For example, it was determined that the amount of ozone consumption (ozone self-decomposition amount and ozone demand amount) changes.

【0020】被処理水のオゾン消費量Dgは次式(2)
で示すように、被処理水へのオゾン注入量と気相への排
出オゾン量との差分から被処理水中の溶存オゾン濃度を
除くことによって求めることができる。ここで、オゾン
消費量Dgは、前記オゾン要求量にオゾン自己分解量加
えた量となる。
The ozone consumption amount Dg of the water to be treated is expressed by the following equation (2).
As shown in, the difference can be obtained by subtracting the dissolved ozone concentration in the water to be treated from the difference between the amount of ozone injected into the water to be treated and the amount of ozone discharged to the gas phase. Here, the ozone consumption amount Dg is an amount obtained by adding the ozone self-decomposition amount to the ozone required amount.

【0021】 Dg=〔{Qg(Cg1−Cg2)}/Qw〕−Cw …(2) ここで、水量:Qw(m3/h),注入オゾンガス量:Q
g(L/h),注入オゾンガス濃度:Cg1(mg/
L),オゾン含有排気ガス濃度:Cg2(mg/L),溶
存オゾン濃度:Cw(mg/L),オゾン消費量:Dg
(mg/L) これらの知見から、本発明者らは、被処理水からオゾン
消費成分を除去したものを比較水として、この比較水に
オゾンを注入するようにすれば、被処理水側の水温また
はpH等と整合させるための調整が不必要になることを
見出した。すなわち、被処理水からオゾン消費成分を除
去したものをオゾンの自己分解による消費量を求める比
較水として用いれば、この比較水の水温またはpH等
は、実質的に被処理水側に整合する。この結果、水温ま
たはpHの調整手段が不必要となると共にpH調整に伴
うオゾン消費の外乱的要素もなく、簡易にして精度よく
被処理水中の被酸化性成分によるオゾン要求量を測定す
ることができる。
Dg = [{Qg (Cg1-Cg2)} / Qw] -Cw (2) Here, water amount: Qw (m 3 / h), injected ozone gas amount: Q
g (L / h), injected ozone gas concentration: Cg1 (mg /
L), ozone-containing exhaust gas concentration: Cg2 (mg / L), dissolved ozone concentration: Cw (mg / L), ozone consumption: Dg
(Mg / L) From these findings, the inventors of the present invention can treat the water to be treated by removing ozone consuming components from the water to be treated as the reference water and injecting ozone into the reference water. It has been found that no adjustment is necessary to match the water temperature or pH. That is, if the water to be treated from which ozone consuming components have been removed is used as the comparative water for determining the consumption amount due to the self-decomposition of ozone, the water temperature or pH of this comparative water substantially matches the treated water side. As a result, no means for adjusting the water temperature or pH is required, and there is no disturbing factor of ozone consumption associated with the pH adjustment, and it is possible to simply and accurately measure the ozone demand amount due to the oxidizable components in the water to be treated. it can.

【0022】したがって、オゾンと反応するオゾン消費
成分を含む被処理水について、オゾン消費成分と反応す
るオゾン量とオゾンの自己分解によるオゾン消費量とを
求め、さらに被処理水からオゾン消費成分を除去した比
較水と被処理水とにそれぞれオゾンを注入して、比較水
と被処理水との溶存オゾン濃度差から被処理水のオゾン
要求量を求めることが可能となる。
Therefore, for the water to be treated containing the ozone consuming component that reacts with ozone, the amount of ozone that reacts with the ozone consuming component and the amount of ozone consumption due to self-decomposition of ozone are determined, and the ozone consuming component is further removed from the water to be treated. It is possible to inject ozone into the comparative water and the treated water, respectively, and obtain the ozone demand amount of the treated water from the difference in the dissolved ozone concentration between the comparative water and the treated water.

【0023】オゾンを被処理水に注入して被酸化性成分
を除去する方法においては、オゾンの有する強い酸化力
により効率的にオゾン消費成分である被酸化性成分を酸
化除去することができるが、オゾンの自己分解によるオ
ゾン消費量を求める比較水側は単に被酸化性成分を含有
しないだけでは正確なオゾン要求量を求めることができ
ない。
In the method of injecting ozone into the water to be treated to remove the oxidizable component, the strong oxidative power of ozone can efficiently oxidize and remove the oxidizable component which is an ozone consuming component. , The ozone consumption amount due to the self-decomposition of ozone cannot be determined accurately on the comparative water side only by not containing the oxidizable component.

【0024】すなわち、被処理水にオゾンを注入してオ
ゾン消費成分を除去し、その後これを比較水とする場
合、自己分解を求めるオゾンを注入する前の段階では、
比較水中には前段階で注入した一部のオゾンが溶存オゾ
ンとして残留する。この場合、この溶存オゾン濃度は被
処理水中のオゾン消費成分の濃度の影響を受けて変化
し、オゾン消費成分濃度が高ければその分、注入オゾン
が消費されるため低い値となる。一方、被処理水中のオ
ゾン消費成分濃度が低ければ溶存オゾン濃度は高くなる
と共に自己分解を求めるオゾンを注入する前段階まで自
己分解で減少するため常時一定濃度にない。このため、
次にオゾンの自己分解を求めるために溶存オゾンを含有
する比較水にオゾンを注入した場合、オゾン注入後の溶
存オゾン濃度は前述の残留溶存オゾン濃度の影響を受け
て変化する。
That is, in the case where ozone is injected into the water to be treated to remove the ozone consuming component, and then this is used as comparison water, at the stage before the injection of ozone for self-decomposition,
Some ozone injected in the previous stage remains as dissolved ozone in the comparative water. In this case, this dissolved ozone concentration changes under the influence of the concentration of the ozone consuming component in the water to be treated, and if the concentration of the ozone consuming component is high, the injected ozone will be consumed by that amount, and therefore it will be a low value. On the other hand, if the concentration of the ozone consuming component in the water to be treated is low, the concentration of dissolved ozone will be high, and the concentration will not be constantly constant because it will decrease due to self-decomposition until the stage before the injection of ozone for self-decomposition. For this reason,
Next, when ozone is injected into comparative water containing dissolved ozone in order to determine the self-decomposition of ozone, the dissolved ozone concentration after the ozone injection changes under the influence of the above-mentioned residual dissolved ozone concentration.

【0025】そこで、被処理水にオゾンを注入した後の
処理水中の溶存オゾンをエアレーション等の除去手段に
よって気相に放出し、その後比較水として再度オゾンの
自己分解量を求めるためのオゾンを注入する。
Therefore, the dissolved ozone in the treated water after injecting ozone into the water to be treated is released to the gas phase by a removal means such as aeration, and then ozone is again injected as comparative water for obtaining the amount of self-decomposition of ozone. To do.

【0026】前述した方法を用いることにより、オゾン
消費成分を含む被処理水におけるオゾン消費成分に対す
るオゾン要求量及びオゾン自己分解量を測定することが
可能となり、一方、既存のセンサにより排オゾン量及び
溶存オゾン量が算出可能なことでオゾン注入量の消費配
分を精度良く測定することが可能となる。
By using the above-mentioned method, it becomes possible to measure the ozone demand amount and the ozone self-decomposition amount for the ozone consuming component in the water to be treated containing the ozone consuming component, while the existing sensor measures the exhaust ozone amount and the ozone self decomposing amount. Since the dissolved ozone amount can be calculated, the consumption distribution of the ozone injection amount can be accurately measured.

【0027】前述したように、消費成分を含む被処理水
中でのオゾン自己分解量は、水温及びpHに依存する
が、同一の被処理水(同一水温,pH)では、オゾン注
入率が変化(過剰なオゾン量の範囲で)してもオゾンの
自己分解に使用されるオゾン量は変化しない。
As described above, the amount of ozone self-decomposition in the water to be treated containing consumable components depends on the water temperature and pH, but the ozone injection rate changes with the same water to be treated (same water temperature, pH). Even in the range of excess ozone) the amount of ozone used for self-decomposition of ozone does not change.

【0028】また、消費成分を含む被処理水中に含まれ
る単位水量当りの消費成分の絶対量は、同一の前記被処
理水の場合、同一量となる。したがって同一の前記被処
理水におけるオゾン消費成分に対するオゾン要求量は、
オゾン注入率が変化(過剰なオゾン量の範囲で)しても
変化しない。
Further, the absolute amount of the consuming component per unit amount of water contained in the treated water containing the consuming component is the same in the case of the same treated water. Therefore, the ozone demand amount for the ozone consuming component in the same treated water is
It does not change even if the ozone injection rate changes (in the range of excessive ozone amount).

【0029】そこで本発明者らは、前記被処理水に対し
て充分に反応が行われる(過剰)範囲でオゾンが注入さ
れる場合、前記オゾン要求量は、注入されるオゾン量に
係わらず一定であることを見いだした。
Accordingly, the present inventors have found that when ozone is injected in a range (excessive) in which sufficient reaction is performed with respect to the water to be treated, the ozone required amount is constant regardless of the injected ozone amount. I found that.

【0030】つまり、前記オゾン注入量範囲では、注入
されるオゾン量の変化は、排オゾン量及び溶存オゾン量
が増減し、前記オゾン要求量には影響しない。
That is, in the ozone injection amount range, changes in the injected ozone amount increase or decrease the exhaust ozone amount and the dissolved ozone amount, and do not affect the ozone demand amount.

【0031】一方、前記被処理水に対して注入されるオ
ゾン量がオゾン消費成分との反応に不十分な場合(不
足)なおかつ、オゾンに対する消費成分の反応速度がオ
ゾンの自己分解速度よりも遅い場合、オゾンの多くは前
記自己分解に消費され、オゾン消費成分は充分なオゾン
との反応が困難となり、見かけ上前記オゾン要求量は少
なくなって算出される、あるいは、オゾンに対する消費
成分の反応速度がオゾンの自己分解速度よりも速い場
合、オゾンの多くは消費成分との反応に使用され、見か
け上オゾンの自己分解量が少なく算出されることを見い
だした。
On the other hand, when the amount of ozone injected into the water to be treated is insufficient for the reaction with the ozone consuming component (insufficient), the reaction rate of the consuming component with respect to ozone is slower than the self-decomposition rate of ozone. In this case, most of the ozone is consumed for the self-decomposition, the ozone consuming component becomes difficult to react with sufficient ozone, and the ozone demand is apparently reduced, or the reaction rate of the consuming component to ozone is calculated. It was found that when ozone is faster than the self-decomposition rate of ozone, most of the ozone is used for the reaction with the consumption component, and the apparent self-decomposition amount of ozone is calculated to be small.

【0032】したがって、本発明の特徴とするところ
は、同一の被処理水において異なるオゾン量を注入して
前述の手法により前記オゾン要求量を算出した際のオゾ
ン要求量が減少せず、かつ、少ないオゾン注入率を算出
することにより被処理水に対する最適オゾン注入率が算
出可能となるようにしたところにある。
Therefore, the feature of the present invention is that the ozone demand amount when the ozone demand amount is calculated by the above-mentioned method by injecting different ozone amounts into the same water to be treated, and The optimum ozone injection rate for the water to be treated can be calculated by calculating a small ozone injection rate.

【0033】また、本発明における好ましい実施態様と
して、浄水場における高度浄水処理のオゾン注入制御時
のオゾン注入量を前述のようにして求められた被処理水
中のオゾン消費成分との反応に要するオゾン量、すなわ
ち、オゾン要求量に注目することによって最適なオゾン
注入量を算出し制御するようにしている。この結果、被
処理水の水質が変動しても、予め被処理水のオゾン要求
量を把握してオゾンを被処理水に注入することができる
ので、水質変動に対応したオゾン注入処理が可能とな
る。
As a preferred embodiment of the present invention, the ozone injection amount at the time of ozone injection control in the advanced water purification treatment in the water purification plant is the ozone required for the reaction with the ozone consuming component in the water to be treated, which is obtained as described above. The optimum amount of ozone injection is calculated and controlled by paying attention to the amount, that is, the required ozone amount. As a result, even if the water quality of the water to be treated fluctuates, ozone can be injected into the water to be treated by grasping the required ozone amount of the water to be treated in advance. Become.

【0034】[0034]

【作用】被処理水のオゾン要求量を測定する場合、被処
理水とこの被処理水中のオゾン消費成分を除去した後の
比較水とにオゾンを注入して、オゾン注入後の前記被処
理水と比較水との溶存オゾン濃度差から被処理水のオゾ
ン要求量を求めているので、簡易にして高精度で被処理
水のオゾン要求量を測定することが可能となった。
When measuring the ozone demand of the water to be treated, ozone is injected into the water to be treated and the comparative water after removing the ozone consuming components in the water to be treated, and the water to be treated after the ozone is injected. Since the ozone required amount of the treated water is obtained from the difference in the dissolved ozone concentration between the treated water and the comparative water, it is possible to easily measure the ozone required amount of the treated water with high accuracy.

【0035】また、被処理水のオゾン要求量を求めるに
際し、被処理水が実際にオゾン注入処理される結果に基
づいて被処理水のオゾン要求量を求めるようにしている
ので、オゾン注入処理装置のプランと特性を反映したオ
ゾン要求量を算出することが可能となっている。
Further, when the ozone demand amount of the water to be treated is calculated, the ozone demand amount of the water to be treated is calculated based on the result of the ozone injection treatment of the water to be treated. It is possible to calculate the ozone demand amount that reflects the plan and characteristics of.

【0036】また、浄水場における高度浄水処理のオゾ
ン注入制御時、処理対象となる被処理水のオゾン要求量
に基づいてオゾン注入量を制御しているので、被処理水
の水質変動に対応してオゾンを注入することができる。
この結果、被処理水の水質が変動しても安定したオゾン
注入処理が可能となり、オゾン注入後の水質の安定化が
図れる。
Further, during the ozone injection control of the advanced water treatment at the water purification plant, the ozone injection amount is controlled on the basis of the required ozone amount of the treated water to be treated, so that it is possible to cope with the water quality fluctuation of the treated water. Ozone can be injected.
As a result, even if the water quality of the water to be treated changes, stable ozone injection processing becomes possible, and the water quality after ozone injection can be stabilized.

【0037】[0037]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。図1に被処理水のオゾン要求量測定装置のシス
テムフローを示す。本実施例のオゾン要求量測定装置
は、オゾンの自己分解量算出のための比較水を精製する
部分と実際の被処理水に対してオゾン反応を行う部分と
に大きく分類される。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows the system flow of the ozone demand measuring device for the water to be treated. The ozone demand measuring device of this embodiment is roughly classified into a part for purifying comparative water for calculating the amount of self-decomposition of ozone and a part for performing an ozone reaction with respect to actual water to be treated.

【0038】まず、比較水の精製手順について説明す
る。最初に被処理水Wをオゾン消費成分除去用反応槽2
0に導入する。このオゾン消費成分除去用反応槽20に
は、オゾナイザ2から所定濃度(オゾン消費成分を除去
するのに充分なオゾン濃度)に設定されたオゾンガスを
注入する。
First, the procedure for purifying comparative water will be described. First, treated water W is a reaction tank 2 for removing ozone consuming components
Introduce to 0. Ozone gas having a predetermined concentration (ozone concentration sufficient to remove the ozone consuming component) is injected from the ozonizer 2 into the ozone consuming component removing reaction tank 20.

【0039】オゾナイザ2の入口側に配設された除湿器
3で、オゾナイザ2に供給する原料ガスG(空気または
酸素)中の湿分を除去し、露点が低くなった乾燥原料ガ
スをオゾナイザ2に供給する。本発明の一実施例では、
フィルター4を介してエアーポンプ5で原料ガスGとし
ての空気をオゾナイザ2に供給している。
A dehumidifier 3 arranged on the inlet side of the ozonizer 2 removes moisture in the raw material gas G (air or oxygen) supplied to the ozonizer 2, and the dry raw material gas having a low dew point is used as the ozonizer 2. Supply to. In one embodiment of the invention,
Air as a raw material gas G is supplied to the ozonizer 2 by the air pump 5 via the filter 4.

【0040】オゾナイザ2からのオゾンはオゾナイザ制
御器6発生オゾン濃度が制御される。この実施例ではオ
ゾナイザ2を構成する放電部への印加電圧を調整するこ
とによって発生オゾン濃度を制御している。
Ozone from the ozonizer 2 is controlled in the ozone concentration generated by the ozonizer controller 6. In this embodiment, the generated ozone concentration is controlled by adjusting the voltage applied to the discharge part of the ozonizer 2.

【0041】前記オゾン消費成分除去用反応槽20内に
注入されるオゾンの流量は流量調整弁21で調整され、
所定の流量に設定されたオゾンがオゾン消費成分除去用
反応槽(以下、単に反応槽という)20に注入される。
The flow rate of ozone injected into the ozone consuming component removing reaction tank 20 is adjusted by a flow rate adjusting valve 21,
Ozone set to a predetermined flow rate is injected into the ozone consuming component removing reaction tank (hereinafter, simply referred to as reaction tank) 20.

【0042】被処理水Wは、サンプリングポンプ10で
サンプリングされ、流量調整弁22を介して前記反応槽
20に導入される。
The water W to be treated is sampled by the sampling pump 10 and introduced into the reaction tank 20 through the flow rate adjusting valve 22.

【0043】反応槽20内で前記被処理水と注入された
オゾンとが接触し、被処理水のオゾン消費成分はオゾン
接触反応により除去され、オゾン消費成分を含まない処
理水が溶存オゾン除去用反応槽25に導入される。
The treated water and the injected ozone come into contact with each other in the reaction tank 20, the ozone consuming component of the treated water is removed by the ozone contact reaction, and the treated water containing no ozone consuming component is used for removing dissolved ozone. It is introduced into the reaction tank 25.

【0044】反応槽25に導入される処理水には過剰な
溶存オゾンが含まれているため、溶存オゾンの除去を目
的としてエアーポンプ5からの空気を流量調整弁26を
介して反応槽25に導入しバブリング(エアレーショ
ン)する。この結果、反応槽25へ導入された処理水中
の溶存オゾンは液相から気相に放出され、溶存オゾンが
除去される。
Since the treated water introduced into the reaction tank 25 contains an excessive amount of dissolved ozone, the air from the air pump 5 is introduced into the reaction tank 25 via the flow rate adjusting valve 26 for the purpose of removing the dissolved ozone. Introduce and bubbling (aeration). As a result, the dissolved ozone in the treated water introduced into the reaction tank 25 is released from the liquid phase to the gas phase, and the dissolved ozone is removed.

【0045】このようにしてオゾン消費成分及び過剰な
溶存オゾンが除去された処理水TWは、下流側に配置さ
れるオゾン自己分解反応槽30に流量調整弁31を介し
て導入される。
The treated water TW from which the ozone consuming component and the excess dissolved ozone are removed in this way is introduced into the ozone self-decomposition reaction tank 30 arranged on the downstream side through the flow rate adjusting valve 31.

【0046】一方、被処理水Wはサンプリングポンプ1
0でサンプリングされたのち、流量調整弁8を介して前
記反応槽1に導入される。
On the other hand, the water W to be treated is collected by the sampling pump 1
After being sampled at 0, it is introduced into the reaction tank 1 via the flow rate adjusting valve 8.

【0047】前記処理水TWが自己分解反応槽30に導
入され、被処理水Wがオゾン反応槽1に導入された時点
で、夫々の反応槽に同量のオゾンを注入し、一定時間後
(実プラントのオゾン接触時間経過後等)に夫々の反応
槽内の溶存オゾン濃度を測定し、その溶存オゾン濃度の
差からオゾン消費成分量に対するオゾン要求量及びオゾ
ンの自己分解量を算出する。オゾン反応槽1に注入する
オゾンの量は、流量調整弁7で制御する。
When the treated water TW is introduced into the self-decomposition reaction tank 30 and the water to be treated W is introduced into the ozone reaction tank 1, the same amount of ozone is injected into each reaction tank, and after a certain time ( After the ozone contact time of the actual plant has elapsed), the dissolved ozone concentration in each reaction tank is measured, and the ozone demand amount and the amount of self-decomposition of ozone relative to the ozone consumption component amount are calculated from the difference in the dissolved ozone concentration. The amount of ozone injected into the ozone reaction tank 1 is controlled by the flow rate adjusting valve 7.

【0048】前記オゾン要求量及びオゾン自己分解量の
算出について、図2を用いて説明する。
Calculation of the required ozone amount and the self-decomposition amount of ozone will be described with reference to FIG.

【0049】まず、前記処理水TWを導入したオゾン自
己分解反応槽にオゾンを注入し、一定時間オゾン接触さ
せた時点での全オゾン注入量に対するオゾン消費配分
は、図2のオゾン自己分解反応槽30に示すようにな
る。
First, ozone is injected into the ozone self-decomposition reaction tank into which the treated water TW is introduced, and the ozone consumption distribution with respect to the total amount of injected ozone when ozone is contacted for a certain time is shown in FIG. As shown in 30.

【0050】注入されたオゾンの一部は、排オゾンとし
て液中から気中へ放出される。この排オゾン量は図1の
排オゾン濃度計32にて測定される。また、オゾン自己
分解反応槽30内の液中に含まれる溶存オゾン量は、溶
存オゾン濃度計35にて測定される。そして、オゾン自
己分解反応槽30内に注入された全オゾン量から前述し
た排オゾン量と溶存オゾン量を差し引いたオゾン量が処
理水TW内でのオゾン自己分解量となる。
Part of the injected ozone is discharged from the liquid into the air as exhaust ozone. The amount of exhaust ozone is measured by the exhaust ozone concentration meter 32 shown in FIG. The amount of dissolved ozone contained in the liquid in the ozone self-decomposition reaction tank 30 is measured by the dissolved ozone concentration meter 35. Then, the ozone amount obtained by subtracting the above-mentioned exhausted ozone amount and dissolved ozone amount from the total ozone amount injected into the ozone self-decomposition reaction tank 30 becomes the ozone self-decomposition amount in the treated water TW.

【0051】一方、前記被処理水Wを導入したオゾン反
応槽にオゾンを注入し、一定時間オゾン接触させた時点
での全オゾン注入量に対するオゾン消費配分は、図2の
オゾン反応槽1に示すようになる。オゾン反応槽1内に
導入される被処理水Wは、オゾン自己分解反応槽30内
に導入される処理水TWと水温,pH及びオゾン注入
量,オゾン接触時間が同様であることから、オゾン反応
槽1とオゾン自己分解反応槽30の排オゾン量及びオゾ
ンの自己分解量は同一となる。しかし、オゾン反応槽1
に導入される被処理水Wには、オゾン消費成分が含まれ
ているため、オゾン自己分解反応槽30内で測定された
溶存オゾンは、オゾン反応槽1内で一部がオゾン消費成
分に消費され、残りの部分が溶存オゾン量として溶存オ
ゾン濃度計9にて測定される。なお、符号11は排オゾ
ン濃度計を示している。
On the other hand, the ozone consumption distribution to the total ozone injection amount at the time when ozone is injected into the ozone reaction tank into which the water to be treated W is introduced and the ozone contact is made for a certain time is shown in the ozone reaction tank 1 of FIG. Like The water to be treated W introduced into the ozone reaction tank 1 has the same water temperature, pH, ozone injection amount, and ozone contact time as the treated water TW introduced into the ozone self-decomposition reaction tank 30. The amount of discharged ozone and the amount of self-decomposition of ozone in the tank 1 and the ozone self-decomposition reaction tank 30 are the same. However, ozone reaction tank 1
Since the water W to be treated, which is introduced into, contains ozone consuming components, part of the dissolved ozone measured in the ozone self-decomposition reaction tank 30 is consumed as ozone consuming components in the ozone reaction tank 1. The remaining portion is measured as the amount of dissolved ozone by the dissolved ozone concentration meter 9. Reference numeral 11 indicates an exhaust ozone concentration meter.

【0052】このように、オゾン反応槽1とオゾン自己
分解反応槽30での溶存オゾン量の差がオゾン消費成分
によって消費されるオゾン量であることから、前述した
図1のオゾン要求量測定装置を用いることによってオゾ
ン要求量算出部40でオゾン要求量を算出することが可
能となる。
As described above, since the difference in the amount of dissolved ozone in the ozone reaction tank 1 and the ozone self-decomposition reaction tank 30 is the amount of ozone consumed by the ozone consuming component, the ozone demand measuring device of FIG. By using, it becomes possible for the ozone demand amount calculation unit 40 to calculate the ozone demand amount.

【0053】本発明に基づいてオゾン要求量を算出し、
最適オゾン注入率を算出した一実施例を以下に説明す
る。
Calculate the ozone demand based on the present invention,
An example of calculating the optimum ozone injection rate will be described below.

【0054】前述したように、消費成分を含む被処理水
中に含まれる単位水量当りの消費成分の絶対量は、同一
の被処理水の場合、同一量となる。したがって同一の被
処理水におけるオゾン消費成分に対するオゾン要求量
は、オゾン注入量が過剰な範囲ではオゾン注入率が変化
しても変化しない。
As described above, the absolute amount of the consuming component per unit amount of water contained in the treated water containing the consuming component is the same for the same treated water. Therefore, the ozone demand amount for the ozone consuming component in the same water to be treated does not change even if the ozone injection rate changes in a range where the ozone injection amount is excessive.

【0055】そこで本発明者らは、被処理水に対して充
分に反応が行われる(過剰)範囲でオゾンが注入される
場合、オゾン要求量は、注入されるオゾン量に係わらず
一定であることを見いだした。すなわち、全オゾン量が
図3のTO1〜TO4に示す範囲であればオゾン要求量
は注入されるオゾン量に係わらず一定である。つまり、
前記オゾン注入量範囲では、注入されるオゾン量の変化
は、排オゾン量及び溶存オゾン量が増減に表れ、オゾン
要求量には影響しない。
Accordingly, the present inventors have found that when ozone is injected in a range (excessive) in which the water to be treated is sufficiently reacted, the required ozone amount is constant regardless of the injected ozone amount. I found a thing. That is, if the total ozone amount is in the range shown by TO1 to TO4 in FIG. 3, the ozone demand amount is constant regardless of the injected ozone amount. That is,
In the ozone injection amount range, the change of the injected ozone amount shows the increase and decrease of the exhaust ozone amount and the dissolved ozone amount, and does not affect the ozone demand amount.

【0056】一方、被処理水に対して注入されるオゾン
量がオゾン消費成分との反応に不十分な場合(不足)に
は、被処理水に対して充分に反応が行われる(過剰)範
囲でオゾンが注入される場合に対してオゾン自己分解量
あるいはオゾン要求量のいずれかが見かけ上少なくなっ
て算出される。
On the other hand, when the amount of ozone injected into the water to be treated is insufficient (insufficient) for the reaction with the ozone consuming components, the reaction is sufficiently performed (excess) in the water to be treated. Either the self-decomposition amount of ozone or the required ozone amount is apparently less than that when ozone is injected in.

【0057】オゾンの自己分解及びオゾン消費成分に対
するオゾン反応速度に注目し、オゾン自己分解量あるい
はオゾン要求量のいずれかが見かけ上少なくなって算出
される現象について詳しく説明する。
Focusing on the self-decomposition of ozone and the ozone reaction rate with respect to ozone-consuming components, the phenomenon in which either the ozone self-decomposition amount or the ozone demand amount is apparently reduced will be described in detail.

【0058】まず、被処理水に対して注入されるオゾン
量がオゾン消費成分との反応に不十分(不足)、なおか
つ、オゾンに対する消費成分の反応速度がオゾンの自己
分解速度よりも遅い場合、オゾン要求量が見かけ上少な
くなって算出される現象について図4を用いて説明す
る。
First, when the amount of ozone injected into the water to be treated is insufficient (insufficient) for the reaction with the ozone consuming component, and the reaction rate of the consuming component with respect to ozone is slower than the self decomposition rate of ozone, A phenomenon in which the ozone demand amount is apparently reduced to be calculated will be described with reference to FIG.

【0059】オゾンに対する消費成分の反応速度がオゾ
ンの自己分解速度よりも遅い場合には、オゾンの多くは
自己分解に消費される。被処理水に対して注入されるオ
ゾン量がオゾン消費成分との反応において不十分な場合
には、オゾン消費成分は充分なオゾンとの反応が困難と
なり、見かけ上のオゾン要求量は、図4のTO5に見ら
れるようにTO1〜TO4に比較して少なくなって算出
される。つまり、図4に示す例ではオゾン注入量TO4
が、オゾン消費成分とオゾンが充分に反応し、かつ、も
っとも経済的(少ない)な注入量であり、最適なオゾン
注入率として算出される。
When the reaction rate of the consumption component with respect to ozone is slower than the self-decomposition rate of ozone, most of the ozone is consumed for self-decomposition. When the amount of ozone injected into the water to be treated is insufficient in the reaction with the ozone consuming component, it becomes difficult for the ozone consuming component to react with sufficient ozone, and the apparent ozone demand is as shown in FIG. As can be seen in TO5, it is calculated to be smaller than TO1 to TO4. That is, in the example shown in FIG. 4, the ozone injection amount TO4
Is the most economical (smallest) injection amount in which the ozone consuming component and ozone sufficiently react, and is calculated as the optimum ozone injection rate.

【0060】次に被処理水に対して注入されるオゾン量
がオゾン消費成分との反応に不十分(不足)、なおか
つ、オゾンに対する消費成分の反応速度がオゾンの自己
分解速度よりも速い場合、オゾンの自己分解量が見かけ
上少なくなって算出される現象について図5を用いて説
明する。
Next, when the amount of ozone injected into the water to be treated is insufficient (insufficient) for the reaction with the ozone consuming component, and the reaction rate of the consuming component with respect to ozone is faster than the self-decomposition rate of ozone, A phenomenon in which the amount of self-decomposition of ozone is apparently reduced will be described with reference to FIG.

【0061】オゾンに対する消費成分の反応速度がオゾ
ンの自己分解速度よりも速い場合には、オゾンの多くは
消費成分との反応に使用され、見かけ上オゾンの自己分
解量は、図5のTO5及びTO6の例のように、TO1
〜TO4に比較して少なくなって算出される。TO5の
例ではまだオゾン消費成分と反応するのに充分な全オゾ
ン注入量が存在する。しかし、全オゾン注入量がTO5
より少ないTO6では、注入されるオゾン量がオゾン消
費成分との反応において不十分となり、見かけ上のオゾ
ン要求量は、TO1〜TO5に比較して少なくなって算
出される。つまり、図5におけるオゾン注入量TO5
が、オゾン消費成分とオゾンが充分に反応し、かつ、も
っとも経済的(少ない)な注入量であり、最適なオゾン
注入率として算出される。
When the reaction rate of the consuming component with respect to ozone is faster than the self-decomposing rate of ozone, most of the ozone is used for the reaction with the consuming component, and the apparent self-decomposing amount of ozone is TO5 and TO5 in FIG. As in the case of TO6, TO1
It is calculated to be smaller than to TO4. In the TO5 example, there is still sufficient total ozone injection to react with the ozone consuming components. However, the total ozone injection amount is TO5
With a smaller TO6, the injected ozone amount becomes insufficient in the reaction with the ozone consuming component, and the apparent ozone demand amount is calculated to be smaller than that of TO1 to TO5. That is, the ozone injection amount TO5 in FIG.
Is the most economical (smallest) injection amount in which the ozone consuming component and ozone sufficiently react, and is calculated as the optimum ozone injection rate.

【0062】したがって、本発明の特徴とするところ
は、同一の被処理水において異なるオゾン量を注入して
前述の手法によりオゾン要求量を算出した際のオゾン要
求量が減少せず、かつ、できるだけ少ないオゾン注入率
を算出することにより、被処理水に対する最適オゾン注
入率を算出可能にしたことにある。
Therefore, the feature of the present invention is that the ozone demand amount when the ozone demand amount is calculated by the above-mentioned method by injecting different ozone amounts into the same water to be treated does not decrease and is as much as possible. The optimum ozone injection rate for the water to be treated can be calculated by calculating the small ozone injection rate.

【0063】最適オゾン注入率の算出を行う際のオゾン
注入率算出装置の一実施例を図6のシステムフローを用
いて説明する。
An embodiment of the ozone injection rate calculation device for calculating the optimum ozone injection rate will be described with reference to the system flow of FIG.

【0064】図6の反応槽50,60,70,80,9
0は、それぞれ同一形態のオゾン要求量を算出する装置
であり、それぞれ先に図1で示した反応槽1,20,2
5,30などを含み、被処理水Wと所定濃度のオゾンを
注入することによりオゾン要求量DKを算出可能にした
装置である。
The reaction tanks 50, 60, 70, 80, 9 shown in FIG.
Reference numeral 0 is a device for calculating the required ozone amount in the same form, and each of them is the reaction tank 1, 20, 2 previously shown in FIG.
It is an apparatus including 5, 30 and the like and capable of calculating the required ozone amount DK by injecting the water W to be treated and ozone of a predetermined concentration.

【0065】反応槽50,60,70,80,90内に
注入されるオゾンの流量は、それぞれ流量弁52,6
2,72,82,92で調整され、各反応槽毎に異なる
流量のオゾンが注入される。反応槽50への全オゾン注
入量はTO1に設定され、以下同様に反応槽60への全
オゾン注入量はTO2、反応槽70への全オゾン注入量
はTO3、反応槽80への全オゾン注入量はTO4、反
応槽90への全オゾン注入量はTO5に設定される。
The flow rates of ozone injected into the reaction tanks 50, 60, 70, 80 and 90 are the flow valves 52 and 6, respectively.
2, 72, 82, and 92, and ozone of different flow rate is injected into each reaction tank. The total ozone injection amount into the reaction tank 50 is set to TO1, and similarly, the total ozone injection amount into the reaction tank 60 is TO2, the total ozone injection amount into the reaction tank 70 is TO3, and the total ozone injection amount into the reaction tank 80 is the same. The amount is set to TO4, and the total amount of ozone injected into the reaction tank 90 is set to TO5.

【0066】前記各反応槽内の演算部にてそれぞれのオ
ゾン注入量に対するオゾン要求量DK1,DK2,DK
3,DK4,DK5が算出される。
Ozone demand amounts DK1, DK2, DK for the respective ozone injection amounts in the calculation units in the respective reaction tanks.
3, DK4, DK5 are calculated.

【0067】図6の最適オゾン要求量算出装置の全オゾ
ン注入量TOとオゾン要求量DKとの関係を図7に示
す。
FIG. 7 shows the relationship between the total ozone injection amount TO and the ozone demand amount DK of the optimum ozone demand amount calculating apparatus of FIG.

【0068】図3の例で説明したように、オゾン消費成
分との反応に対して充分なオゾン量が注入される場合
(TO1〜TO4の例)には、図7のオゾン要求量DK
1〜DK4に示されるようにオゾン要求量には変化がな
く、オゾン消費成分との反応に対してオゾン注入量が不
足すると、オゾン要求量は見かけ上、少なくなって算出
される。これは、オゾン消費成分が少ないのではなく、
オゾン消費成分が充分に反応するだけのオゾン量が注入
されていないことによる。
As described in the example of FIG. 3, when a sufficient amount of ozone is injected for the reaction with the ozone consuming component (examples of TO1 to TO4), the required ozone amount DK of FIG.
1 to DK4, there is no change in the ozone demand amount, and if the ozone injection amount is insufficient for the reaction with the ozone consuming component, the ozone demand amount is apparently reduced and calculated. This does not mean that the ozone consuming component is low,
This is because the amount of ozone that is sufficient for the ozone consuming components to react is not injected.

【0069】つまり、オゾン消費成分を充分に反応させ
るための最適オゾン注入率を算出するためには、図6に
示すように同一形態のオゾン反応槽を複数有する装置に
同一の被処理水Wを導水し、夫々の反応槽に異なるオゾ
ン注入量のオゾンを注入することにより、オゾン消費成
分と反応するに必要なオゾン量が減少せずにオゾン消費
成分と有効に反応するオゾン注入量(TO1〜TO4)
で尚かつ最も全オゾン注入量が少ない限界点(TO4)の
オゾン注入量を最適オゾン注入率算出部120にて算出
することができる。
That is, in order to calculate the optimum ozone injection rate for sufficiently reacting ozone consuming components, the same treated water W is supplied to an apparatus having a plurality of ozone reaction tanks of the same form as shown in FIG. By introducing water and injecting ozone with different ozone injection amounts into the respective reaction tanks, the ozone injection amount (TO1 to TO1 that effectively reacts with the ozone consuming component without decreasing the amount of ozone necessary to react with the ozone consuming component). (TO4)
In addition, the optimum ozone injection rate calculation unit 120 can calculate the ozone injection amount at the limit point (TO4) where the total ozone injection amount is the smallest.

【0070】図1に示すオゾン要求量測定装置を用いて
図6に示した最適オゾン注入率算出装置と同様の効果を
得るための最適オゾン要求量算出方法の一実施例を示
す。
An embodiment of the optimum ozone required amount calculating method for obtaining the same effect as the optimum ozone injection rate calculating device shown in FIG. 6 by using the ozone required amount measuring device shown in FIG. 1 will be described.

【0071】図1のオゾン要求量測定装置において、処
理水TWと被処理水Wが夫々の反応槽(オゾン自己分解
反応槽30と反応槽1)に導入された時点で、夫々の反
応槽に同量のオゾン量を注入し、一定時間後(実プラン
トのオゾン接触時間等)夫々の反応槽内の溶存オゾン濃
度を測定し、その溶存オゾン濃度の差からオゾン消費成
分量に対するオゾン要求量を算出する。
In the ozone demand measuring device of FIG. 1, when the treated water TW and the water to be treated W are introduced into the respective reaction tanks (the ozone self-decomposition reaction tank 30 and the reaction tank 1), the reaction water is supplied to the respective reaction tanks. After injecting the same amount of ozone, measure the dissolved ozone concentration in each reaction tank after a certain time (such as the ozone contact time of the actual plant), and calculate the required ozone amount for the ozone consumption component amount from the difference in the dissolved ozone concentration. calculate.

【0072】ここで、それぞれの反応槽に注入するオゾ
ン量を段階的に変化させることにより、図6に示した最
適オゾン注入率算出装置と同様の効果を得ることが可能
となる。
Here, it is possible to obtain the same effect as that of the optimum ozone injection rate calculation device shown in FIG. 6 by changing the amount of ozone injected into each reaction tank stepwise.

【0073】図1のオゾン要求量測定装置を用いた最適
オゾン注入率算出方法について、図8に示す全オゾン注
入量とオゾン要求量の一実施例を用いて具体的に説明す
る。第一段階として、図1のオゾン要求量測定装置にお
けるオゾン反応槽1及びオゾン自己分解反応槽30へ全
オゾン注入量TO1を注入する。この時算出されるオゾ
ン要求量DKは、DK1として算出される。
A method for calculating the optimum ozone injection rate using the ozone demand amount measuring apparatus of FIG. 1 will be specifically described with reference to an embodiment of total ozone injection amount and ozone demand amount shown in FIG. As a first step, the total ozone injection amount TO1 is injected into the ozone reaction tank 1 and the ozone self-decomposition reaction tank 30 in the ozone demand measuring device of FIG. The ozone demand amount DK calculated at this time is calculated as DK1.

【0074】第二段階として、図1のオゾン要求量測定
装置におけるオゾン反応槽1及びオゾン自己分解反応槽
30へ全オゾン注入量TO2を注入した時に算出される
オゾン要求量DKは、DK2として算出される。
As the second step, the ozone demand amount DK calculated when the total ozone injection amount TO2 is injected into the ozone reaction tank 1 and the ozone self-decomposition reaction tank 30 in the ozone demand amount measuring device of FIG. 1 is calculated as DK2. To be done.

【0075】以下同様にして、全オゾン注入量TO3,
TO4,TO5を注入した時に算出されるオゾン要求量
DKは、それぞれDK3,DK4,DK5として算出さ
れる。
In the same manner, the total ozone injection amount TO3,
The ozone demand amount DK calculated when TO4 and TO5 are injected is calculated as DK3, DK4, and DK5, respectively.

【0076】上述のように、オゾン反応槽1及びオゾン
自己分解反応槽30への全オゾン注入量TOを段階的に
変化させ、反応槽への全オゾン注入量に対するオゾン要
求量DKを随時算出することにより、図8に示すような
関係を算出することが可能となる。
As described above, the total ozone injection amount TO into the ozone reaction tank 1 and the ozone self-decomposition reaction tank 30 is changed stepwise, and the ozone demand amount DK with respect to the total ozone injection amount into the reaction tank is calculated at any time. This makes it possible to calculate the relationship as shown in FIG.

【0077】オゾン消費成分をオゾンと充分に反応させ
るための最適オゾン注入率を算出するためには、図1に
示すオゾン要求量測定装置に同一の被処理水Wを導水
し、夫々の反応槽に異なるオゾン注入量を段階的に注入
することによりオゾン消費成分と反応する必要オゾン量
が減少せずにオゾン消費成分と有効に反応するオゾン注
入量(TO1〜TO4)で尚かつ最も全オゾン注入量が
少ない限界点(TO4)のオゾン注入量を算出すること
ができる。
In order to calculate the optimum ozone injection rate for sufficiently reacting the ozone consuming component with ozone, the same treated water W is introduced into the ozone demand measuring device shown in FIG. By gradually injecting different ozone injection amounts into the ozone, the required ozone amount that reacts with the ozone consuming component does not decrease, and the ozone injection amount that effectively reacts with the ozone consuming component (TO1 to TO4) is the most total ozone injection. The ozone injection amount at the limit point (TO4) where the amount is small can be calculated.

【0078】この方法では、最適なオゾン注入率を算出
するための時間が図6に示した装置に比べ長時間にはな
るが、ハード的には図1に示したオゾン要求量測定装置
にて最適オゾン注入率を算出可能となり、装置が簡単で
安価になる長所を有する。
According to this method, the time for calculating the optimum ozone injection rate is longer than that of the apparatus shown in FIG. 6, but in terms of hardware, the ozone demand measuring apparatus shown in FIG. 1 is used. The optimum ozone injection rate can be calculated, which has the advantage that the device is simple and inexpensive.

【0079】[0079]

【発明の効果】本発明によればオゾン注入処理の対象と
なる被処理水中のオゾン消費成分と反応するに充分な必
要オゾン量で尚かつ最小のオゾン注入率を算出すること
ができる。このため、被処理水のオゾン注入に際し、オ
ゾン消費成分と反応するのに必要なオゾン量に基づいた
最適なオゾン注入制御を行うことができる。
According to the present invention, it is possible to calculate the minimum ozone injection rate with a necessary ozone amount sufficient to react with the ozone consuming component in the water to be treated which is the object of ozone injection treatment. Therefore, when injecting ozone into the water to be treated, optimal ozone injection control can be performed based on the amount of ozone required to react with the ozone consuming component.

【図面の簡単な説明】[Brief description of drawings]

【図1】オゾン要求量測定装置の概略図。FIG. 1 is a schematic diagram of an ozone demand measuring device.

【図2】全オゾン注入量の消費配分を示す図。FIG. 2 is a diagram showing consumption distribution of total ozone injection amount.

【図3】本発明のオゾン注入率によるオゾン要求量の変
化を示す説明図。
FIG. 3 is an explanatory diagram showing changes in the required ozone amount according to the ozone injection rate of the present invention.

【図4】オゾン自己分解反応速度がオゾン消費成分との
反応速度より速い場合のオゾン注入率によるオゾン要求
量の変化を示す説明図。
FIG. 4 is an explanatory diagram showing a change in an ozone required amount depending on an ozone injection rate when an ozone self-decomposition reaction rate is faster than a reaction rate with an ozone consuming component.

【図5】オゾン自己分解反応速度がオゾン消費成分との
反応速度より遅い場合のオゾン注入率によるオゾン要求
量の変化を示す説明図。
FIG. 5 is an explanatory diagram showing a change in an ozone required amount depending on an ozone injection rate when an ozone self-decomposition reaction rate is slower than a reaction rate with an ozone consuming component.

【図6】最適オゾン注入率算出装置の概略図。FIG. 6 is a schematic diagram of an optimum ozone injection rate calculation device.

【図7】全オゾン注入率とオゾン要求量との関係を示す
説明図。
FIG. 7 is an explanatory diagram showing the relationship between the total ozone injection rate and the required ozone amount.

【図8】全オゾン注入率とオゾン要求量との関係を示す
説明図。
FIG. 8 is an explanatory diagram showing the relationship between the total ozone injection rate and the required ozone amount.

【符号の説明】[Explanation of symbols]

1…オゾン反応槽、2…オゾナイザ、5…エアーポン
プ、6…オゾナイザ制御器、9,35…溶存オゾン濃度
計、11,32…排オゾン濃度計、20…オゾン消費成
分除去用反応槽、25…溶存オゾン除去用反応槽、30
…オゾン自己分解反応槽、40…オゾン要求量算出部、
120…最適オゾン注入率算出部。
DESCRIPTION OF SYMBOLS 1 ... Ozone reaction tank, 2 ... Ozonizer, 5 ... Air pump, 6 ... Ozonizer controller, 9,35 ... Dissolved ozone concentration meter, 11, 32 ... Exhaust ozone concentration meter, 20 ... Reaction tank for removing ozone consuming components, 25 ... Reaction tank for removing dissolved ozone, 30
… Ozone self-decomposition reaction tank, 40… Ozone demand calculation unit,
120 ... Optimal ozone injection rate calculation unit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 原 直樹 茨城県日立市大みか町五丁目2番1号 株 式会社日立製作所大みか工場内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Naoki Hara 5-2-1 Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Omika factory

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】オゾン処理を行う被処理水と該被処理水か
らオゾン消費成分を除去した比較水とに単位水量当りの
オゾン注入率が同一となるようにオゾンを注入する手段
と、両者の単位水量当りの溶存オゾン濃度の差を計測し
その差をもって被処理水の単位水量当りのオゾン要求量
とするオゾン量算出手段とを備えたことを特徴とする最
適オゾン注入率算出装置。
1. A means for injecting ozone so that the treated water to be subjected to ozone treatment and the comparative water obtained by removing ozone consuming components from the treated water have the same ozone injection rate per unit amount of water, and both. An optimum ozone injection rate calculation device comprising: an ozone amount calculation means for measuring a difference in dissolved ozone concentration per unit amount of water, and using the difference as an ozone required amount per unit water amount of water to be treated.
【請求項2】請求項1において、前記被処理水と前記比
較水とを同量準備してそれぞれに同量のオゾンを注入す
る前記オゾン注入手段と、両者の溶存オゾン濃度の差を
計測しその差をもって被処理水の単位水量当りのオゾン
要求量とするオゾン量算出手段とを備えたことを特徴と
する最適オゾン注入率算出装置。
2. The ozone injection means for preparing the same amount of the treated water and the comparative water, and injecting the same amount of ozone into each of the treated water and the difference between the dissolved ozone concentrations thereof according to claim 1. An optimal ozone injection rate calculation device, comprising: an ozone amount calculation means for determining the ozone demand amount per unit amount of water to be treated by the difference.
【請求項3】被処理水を導入したオゾン接触槽にオゾン
を注入するに当ってそのオゾン注入量を制御する装置に
おいて、該被処理水と該被処理水からオゾン消費成分を
除去した比較水とに単位水量当りのオゾン注入率が同一
となるようにオゾンを注入する手段と両者の単位水量当
りの溶存オゾン濃度の差を計測しその差をもって被処理
水の単位水量当りのオゾン要求量とするオゾン量算出手
段とを有する最適オゾン注入率算出装置を備え、更に該
最適オゾン注入率算出装置によって算出された単位水量
当りのオゾン注入率に基づいてオゾン注入量を決定する
オゾン注入量決定手段と、該オゾン注入量決定手段で決
定されたオゾン注入量になるように前記オゾン接触槽に
注入するオゾン量を制御するオゾン注入量制御手段を備
えたことを特徴とするオゾン注入制御装置。
3. An apparatus for controlling an ozone injection amount when injecting ozone into an ozone contact tank into which treated water is introduced, the treated water, and comparative water obtained by removing ozone consuming components from the treated water. And the means for injecting ozone so that the ozone injection rate per unit amount of water is the same, and the difference in the dissolved ozone concentration per unit amount of water between the two is measured, and the difference is used as the required ozone amount per unit amount of treated water. An ozone injection amount determining means for determining the ozone injection amount based on the ozone injection rate per unit water amount calculated by the optimum ozone injection rate calculating device. And an ozone injection amount control means for controlling the amount of ozone injected into the ozone contact tank so that the ozone injection amount is determined by the ozone injection amount determining means. Ozone injection control device that.
【請求項4】被処理水とオゾンとの接触反応を行わせる
オゾン接触槽と、該オゾン接触槽にオゾンを注入する手
段とを備えたオゾン処理装置において、該被処理水と該
被処理水からオゾン消費成分を除去した比較水とに単位
水量当りのオゾン注入率が同一となるようにオゾンを注
入する手段と両者の単位水量当りの溶存オゾン濃度の差
を計測しその差をもって被処理水の単位水量当りのオゾ
ン要求量とするオゾン量算出手段とを有する最適オゾン
注入率算出装置を備え、更に該最適オゾン注入率算出装
置によって算出された単位水量当りのオゾン注入率に基
づいてオゾン注入量を決定するオゾン注入量決定手段
と,該オゾン注入量決定手段で決定されたオゾン注入量
になるように前記オゾン注入手段により注入するオゾン
量を制御するオゾン注入量制御手段を備えたことを特徴
とするオゾン処理装置。
4. An ozone treatment apparatus comprising an ozone contact tank for causing a contact reaction between water to be treated and ozone, and a means for injecting ozone into the ozone contact tank, the water to be treated and the water to be treated. A method of injecting ozone so that the ozone injection rate per unit amount of water is the same as that of the comparative water from which ozone consuming components have been removed, and the difference in the dissolved ozone concentration per unit amount of water between the two is measured, and the difference is measured An optimum ozone injection rate calculating device having an ozone amount calculating means for determining an ozone demand amount per unit water amount, and further ozone injection based on the ozone injection rate per unit water amount calculated by the optimum ozone injection rate calculating device. Ozone injection amount determining means for determining the amount, and ozone for controlling the amount of ozone injected by the ozone injecting means so that the ozone injection amount is determined by the ozone injection amount determining means. Ozone treatment apparatus, comprising the Iriryou control means.
【請求項5】被処理水をオゾン接触槽内に導入し該接触
槽内にオゾンを注入してオゾン処理を行う方法におい
て、該被処理水と該被処理水からオゾン消費成分を除去
した比較水とを準備して単位水量当りのオゾン注入率が
同一となるようにオゾンを注入する工程,両者の単位水
量当りの溶存オゾン濃度の差を計測しその差をもって被
処理水の単位水量当りのオゾン要求量とする工程,前記
工程で算出された単位水量当りのオゾン注入率に基づい
てオゾン注入量を決定する工程、及び前記工程で決定さ
れたオゾン注入量になるように前記オゾン接触槽に注入
するオゾン量を制御する工程を含むことを特徴とするオ
ゾン処理方法。
5. A method in which treated water is introduced into an ozone contact tank, ozone is injected into the contact tank to perform ozone treatment, and a comparison is made between the treated water and an ozone consuming component from the treated water. The process of preparing water and injecting ozone so that the ozone injection rate per unit amount of water is the same, measuring the difference in the dissolved ozone concentration per unit amount of both water, and measuring the difference between A step of determining an ozone required amount, a step of determining an ozone injection amount based on the ozone injection rate per unit water amount calculated in the step, and the ozone contact tank having the ozone injection amount determined in the step An ozone treatment method comprising the step of controlling the amount of injected ozone.
【請求項6】オゾン処理を行う被処理水と該被処理水か
らオゾン消費成分を除去した比較水とに単位水量当りの
オゾン注入率が同一となるようにオゾンを注入する手段
と、両者の単位水量当りの溶存オゾン濃度の差を計測し
その差をもって被処理水の単位水量当りのオゾン要求量
とするオゾン量算出手段とを具備するオゾン要求量算出
装置を複数台並列に設置し、該オゾン要求量算出装置の
それぞれに同一の被処理水を導入し且つ異なるオゾン注
入率のオゾンを注入し、該オゾン要求量算出装置で算出
されるオゾン要求量の中で、オゾン要求量が最大で且つ
オゾン注入率が最小となる該オゾン要求量算出装置のオ
ゾン注入率をもって最適オゾン注入率とすることを特徴
とする最適オゾン注入率算出方法。
6. A means for injecting ozone so that the treated water to be treated with ozone and the comparative water obtained by removing ozone consuming components from the treated water have the same ozone injection rate per unit amount of water, and a means for injecting ozone. A plurality of ozone demand amount calculation devices having an ozone amount calculation means for measuring the difference in the dissolved ozone concentration per unit amount of water and setting the difference as the ozone demand amount per unit amount of water to be treated are installed in parallel, and The same water to be treated is introduced into each of the ozone demand calculation devices, and ozone with different ozone injection rates is injected, and the ozone demand is the maximum among the ozone demands calculated by the ozone demand calculation device. An optimum ozone injection rate calculation method is characterized in that the ozone injection rate of the ozone required amount calculating device that minimizes the ozone injection rate is set as the optimum ozone injection rate.
【請求項7】請求項6において、前記複数台のオゾン要
求量算出装置に注入するオゾンの注入率をそれぞれ一定
時間ごとに段階的に変化させ、随時オゾン要求量を算出
し、そのオゾン要求量が最大で且つオゾン注入率が最小
となる該オゾン要求量算出装置のオゾン注入率をもって
その時の最適オゾン注入率とすることを特徴とする最適
オゾン注入率算出方法。
7. The ozone demand amount according to claim 6, wherein the injection rate of ozone to be injected into the plurality of ozone demand amount calculation devices is changed stepwise at fixed time intervals, and the ozone demand amount is calculated at any time. The optimum ozone injection rate calculation method is characterized in that the ozone injection rate of the ozone demand amount calculating device having the maximum value and the minimum ozone injection rate is set as the optimum ozone injection rate at that time.
JP2495395A 1995-02-14 1995-02-14 Optimum ozone injection rate calculation apparatus and ozone injection control apparatus Pending JPH08215690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2495395A JPH08215690A (en) 1995-02-14 1995-02-14 Optimum ozone injection rate calculation apparatus and ozone injection control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2495395A JPH08215690A (en) 1995-02-14 1995-02-14 Optimum ozone injection rate calculation apparatus and ozone injection control apparatus

Publications (1)

Publication Number Publication Date
JPH08215690A true JPH08215690A (en) 1996-08-27

Family

ID=12152365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2495395A Pending JPH08215690A (en) 1995-02-14 1995-02-14 Optimum ozone injection rate calculation apparatus and ozone injection control apparatus

Country Status (1)

Country Link
JP (1) JPH08215690A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002017975A1 (en) * 2000-08-30 2002-03-07 Sudhir Chowdhury Method and device for detecting ozone consuming agents
EP1221318A2 (en) * 1998-03-09 2002-07-10 Otre AB Method and apparatus for preparation and use of ozone water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1221318A2 (en) * 1998-03-09 2002-07-10 Otre AB Method and apparatus for preparation and use of ozone water
EP1221318A3 (en) * 1998-03-09 2002-12-18 Otre AB Method and apparatus for preparation and use of ozone water
WO2002017975A1 (en) * 2000-08-30 2002-03-07 Sudhir Chowdhury Method and device for detecting ozone consuming agents

Similar Documents

Publication Publication Date Title
JP3184948B2 (en) Ozone injection control method and device
JPH08215690A (en) Optimum ozone injection rate calculation apparatus and ozone injection control apparatus
JP3452162B2 (en) Water quality control device
JP2002219480A (en) Equipment for controlling concentration of dissolved oxygen in aerating tank
JP3321876B2 (en) Ozone treatment apparatus, ozone treatment method, and water purification treatment method
JP3870445B2 (en) Biological treatment equipment
JP4542815B2 (en) Water treatment equipment
JPH0663570A (en) Method for determining and controlling ozone injection quantity and purified water treatment device
JP2005313078A (en) Water treatment method and water treatment system
JPH091167A (en) High-degree water purification system
JPH06269786A (en) Method for controlling ozone injection in water treating process
JP4248043B2 (en) Biological phosphorus removal equipment
JP2005313022A (en) Raw water quality estimating device
JPH02149397A (en) Water treatment apparatus
JP2001000984A (en) Treatment method using ozone and hydrogen peroxide
JPH09192680A (en) Treatment of water with ozone and device therefor
JPH07284782A (en) Method for computing required amount of ozone and controlling ozone injection
JPH04225896A (en) Ozone injection controller
JP2000237773A (en) Ozone generating quantity controller and its control method
JPH0824515A (en) Flocculating and settling method and equipment therefor
JP4358037B2 (en) Water treatment equipment
JPH11138183A (en) Ozone inject control method in water treatment
JPH08299972A (en) Ozone yield controller
JPH08318286A (en) Ozone treating method and apparatus in high-degree water purifying treatment
JPH04281893A (en) System for controlling ozone treatment