JPH0663570A - Method for determining and controlling ozone injection quantity and purified water treatment device - Google Patents

Method for determining and controlling ozone injection quantity and purified water treatment device

Info

Publication number
JPH0663570A
JPH0663570A JP22183992A JP22183992A JPH0663570A JP H0663570 A JPH0663570 A JP H0663570A JP 22183992 A JP22183992 A JP 22183992A JP 22183992 A JP22183992 A JP 22183992A JP H0663570 A JPH0663570 A JP H0663570A
Authority
JP
Japan
Prior art keywords
ozone
water
amount
meter
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22183992A
Other languages
Japanese (ja)
Inventor
Takayuki Morioka
崇行 森岡
Nobuyuki Motoyama
本山  信行
Hideyuki Oohanamori
英幸 大花森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP22183992A priority Critical patent/JPH0663570A/en
Publication of JPH0663570A publication Critical patent/JPH0663570A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To always inject a proper quantity by calculating the injection quantity of ozone by setting an ultraviolet ray absorbance quantity of water to be treated having high correlation to a decrease quantity of a very small quantity of organic matter, as an index, in a device which eliminates a very small quantity of organic matter contained in water to be treated by using ozone. CONSTITUTION:In an ozone contact pond 1 into which water 2 to be treated flows, ozonized air 4 generated by an ozone generating device 13 is injected from its bottom part through a duct line in which flowmeters 14, 15 are provided, and exhaust gas is exhausted from duct line in which a flow rate system 16 and an ozone meter 17 are equipped. In a supply duct line of the sater 2 to be treated, a flowmeter 6, a UV meter 7 and a thermometer 8 for detecting ultraviolet ray absorbance are provided, and also, in a discharge duct line of treatment water 3 discharged from the ozone contact pond 1, a UV meter 11 and a dissolved ozone meter 12 are provided. Also, in a computer 9 for inputting output signals of each above detecting means, inflow concentration of a very small quantity of organic matter is predicted, and the injection quantity of ozone is calculated by setting the ultraviolet absorbance decrease quantity having high correlation to its decrease quantity, as an index.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、オゾンを用いた浄水処
理システムにおいて原水に含まれる微量有機物を除去す
るオゾンの注入方法とその制御方法および浄水処理装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ozone injection method for removing trace organic substances contained in raw water in a water purification system using ozone, a method for controlling the same, and a water purification apparatus.

【0002】[0002]

【従来の技術】現在の水処理は、急速濾過を中心とする
システムになっている。即ち、原水→凝集(薬品添加)
→沈殿→濾過→殺菌(塩素添加)→水道水というプロセ
スである。しかし、周知の如く、最近は水道原水の汚濁
の進行に伴い水質が悪化し、原水中に、においを発生す
る臭気物質や農薬などの毒性物質が含まれるようにな
り、上記のプロセスではこれに対応することができない
状況になっている。その結果、これら微量な有機物のな
い所謂「おいしい水」造りが困難である。
2. Description of the Related Art Current water treatments are systems centered on rapid filtration. That is, raw water → coagulation (chemical addition)
→ Precipitation → Filtration → Sterilization (chlorination) → Tap water. However, as is well known, the water quality has recently deteriorated with the progress of pollution of tap water, and raw water contains odorous substances that generate odors and toxic substances such as pesticides. We are in a situation where we cannot respond. As a result, it is difficult to make so-called "delicious water" without these trace amounts of organic substances.

【0003】そこで、水道原水に含まれる臭気物質や毒
性物質を分解または吸着除去するために、オゾン→活性
炭という処理工程を、水処理システムの沈殿もしくは濾
過工程の後段に設置した高度浄水処理システムが急速に
採用されつつある。オゾンによる浄水処理は、多くの研
究によりオゾンの極めて強力な酸化力を利用して、臭気
物質や毒性物質を分解することが明らかにされている。
このオゾン処理を行なうためには、オゾン発生機を用い
て電気的に発生させたオゾンガスを、接触池というオゾ
ンガスの溶解およびその後の反応を行なわせる反応装置
の底部から、微細な気泡として注入する。
Therefore, in order to decompose or adsorb and remove odorous substances and toxic substances contained in raw water for tap water, an advanced water purification system in which a treatment process of ozone → activated carbon is installed in the latter stage of the precipitation or filtration process of the water treatment system is proposed. It is being adopted rapidly. Many studies have demonstrated that ozone water purification uses the extremely strong oxidizing power of ozone to decompose odorous substances and toxic substances.
In order to carry out this ozone treatment, ozone gas electrically generated using an ozone generator is injected as fine bubbles from the bottom of a contact tank, which is a reaction device for dissolving ozone gas and for subsequent reaction.

【0004】[0004]

【発明が解決しようとする課題】オゾンガスは電気的に
発生させることができるので、その注入量の調整と制御
が容易であるという利点があるが、その反面、次のよう
な問題がある。オゾンを用いた浄水処理を実施するに当
たって、経済的な効率や処理水質などを考慮すれば、オ
ゾンガス濃度やオゾン注入率など、幾つもの操作因子を
持つことになる。しかしながら、臭気物質や毒性物質を
除去する目的では、水中のこれら微量有機物の濃度をオ
ンラインでモニタする方法と装置がないために、現状で
は、自動制御を行なうことができず、オゾンの注入率を
一定にするか、もしくはその濃度の高くなる時期のみ、
手動によってオゾンの注入率を高くするという経験的な
方法が主流である。したがって、現状では、より緻密な
オゾン注入率の調整が可能な手段、即ち、制御を可能と
するサポートシステムが望まれている。
Since ozone gas can be generated electrically, it has the advantage that the injection amount can be easily adjusted and controlled, but on the other hand, it has the following problems. In carrying out water purification treatment using ozone, if economic efficiency and treated water quality are taken into consideration, there are many operating factors such as ozone gas concentration and ozone injection rate. However, for the purpose of removing odorous substances and toxic substances, because there is no method and device for monitoring the concentration of these trace organic substances in water online, at present, automatic control cannot be performed and the ozone injection rate cannot be controlled. Only when it is constant or the concentration becomes high,
The empirical method of manually increasing the injection rate of ozone is the mainstream. Therefore, under the present circumstances, a means capable of adjusting the ozone injection rate more precisely, that is, a support system capable of controlling is desired.

【0005】本発明は上述の点に鑑みてなされたもので
あり、その目的は、微量有機物のオゾン除去特性と高い
相関を持つ代替特性を用いて、オゾン注入量の決定をオ
ンラインで可能とする方法とその制御方法、およびこれ
が適用される浄水処理装置を提供することにある。
The present invention has been made in view of the above points, and an object thereof is to make it possible to determine the amount of injected ozone online by using an alternative characteristic that has a high correlation with the ozone removal characteristic of trace organic substances. A method, a control method thereof, and a water purification apparatus to which the method is applied.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明のオゾン注入量を決定方法は、臭気物質や
毒性物質の濃度を予測し、これの代替指標として、紫外
部吸光度減少量を算出して行なうものであり、その制御
に当たっては、まず代替指標の目標値を算出し、さらに
処理水補正および原水補正を行ない、これを実施する水
処理装置は、オゾン接触池,オゾン発生装置,被処理水
の流量計,UV計,温度計の他に、処理水のUV計,溶
存オゾンメータ,オゾン化空気の流量計,オゾン化空気
量を測定するオゾンメータ,オゾン排ガスの流量計,オ
ゾン排ガス中のオゾン濃度を測定するオゾンメータ,お
よび上記の各計測器の測定値を入力し、その演算結果を
オゾン発生装置にフィードバックしてオゾン化空気発生
量を調整する制御用コンピューターと演算結果を記憶す
る記憶装置を備える。
In order to solve the above problems, the method for determining the ozone injection amount of the present invention predicts the concentrations of odorous substances and toxic substances, and as an alternative index thereof, decreases the ultraviolet absorbance. The amount of water is calculated and the control is performed by first calculating the target value of the alternative index, and then correcting the treated water and the raw water. In addition to the equipment, flow meter for treated water, UV meter, thermometer, UV meter for treated water, dissolved ozone meter, flow meter for ozonized air, ozone meter for measuring the amount of ozonized air, flow meter for ozone exhaust gas Control that inputs the measured values of the ozone meter that measures the ozone concentration in the ozone exhaust gas and the measuring instruments described above, and feeds back the calculation results to the ozone generator to adjust the amount of ozonized air generated. A storage device for storing computer as calculation results.

【0007】[0007]

【作用】水中に含まれる微量有機物質の減少量と、紫外
部吸光度減少量との間に、高い相関関係があるので、微
量有機物質濃度を設定しておき、水質の状況を反映し直
接計測が可能な紫外部吸光度減少量を代替指標として用
い、上記の装置により各測定値と補正量を算出し、オン
ラインでオゾン注入量の決定とその制御が可能になる。
[Function] Since there is a high correlation between the decrease amount of trace organic substances contained in water and the decrease amount of ultraviolet absorbance, the concentration of trace organic substances should be set and directly measured by reflecting the condition of water quality. It is possible to determine the ozone injection amount and control it online by calculating each measured value and the correction amount by using the above-mentioned device as an alternative index, which is the decrease amount of the ultraviolet absorbance.

【0008】[0008]

【実施例】以下本発明を実施例に基づき説明する。水道
水源の臭気物質としては、ジメチルイソボルネオール
(以下、2−MIBと記す)とジオスミンが同定されて
おり、各水源の臭気はそのいずれか、またはこれらの複
合が原因となっている場合が多い。また毒性物質として
は、ゴルフ場の各種農薬、テトラクロロエチレンなどの
有機溶剤が知られている。しかし、これらの臭気物質や
毒性物質をオンラインで測定する技術はない。したがっ
て、現状では臭気物質や毒性物質に関する制御は不可能
であるが、本発明者らは、これを他の指標を用いて可能
とすることに着眼し、本発明を達成したものである。以
下、説明の便宜上、ここでは臭気物質について、これを
代替指標を用いて測定する場合を述べる。
EXAMPLES The present invention will be described below based on examples. Dimethylisoborneol (hereinafter referred to as 2-MIB) and diosmin have been identified as odor substances of tap water sources, and the odor of each water source is often caused by any one of them or a combination thereof. . As the toxic substance, various agricultural chemicals for golf courses and organic solvents such as tetrachloroethylene are known. However, there is no technology to measure these odorous substances and toxic substances online. Therefore, at present, it is impossible to control odorous substances and toxic substances, but the present inventors have achieved the present invention by focusing on making it possible by using other indicators. Hereinafter, for convenience of description, a case of measuring an odor substance using an alternative index will be described.

【0009】浄水処理装置の接触池における物質収支
は、(1)式で表わすことができる。 M0 =M1 +M2 +M3 (1) 但し、M0 :発生オゾン量 M1 :排出オゾン量 M2 :残留オゾン量 M3 :反応によるオゾン消費量 (1)式の各項は以下のようになる。
The material balance in the contact pond of the water purification device can be expressed by equation (1). M 0 = M 1 + M 2 + M 3 (1) However, M 0 : Generated ozone amount M 1 : Emitted ozone amount M 2 : Residual ozone amount M 3 : Ozone consumption due to reaction (1) Like

【0010】 発生オゾン量 M0 [g/h]=AIN×ZIN (2) ここで、 AIN:注入オゾン化空気量[m3 /h] ZIN:オゾン化空気濃度[g/m3 (gas) ] 排出オゾン量 M2 [g/h]=AOUT ×ZOUT (3) ここで、 AOUT :排ガス量[m3 /h] ZOUT :排オゾン濃度[g/m3 (gas) ] 残留オゾン量 M3 [g/h]=QW ×OZ (4) ここで、 QW :被処理水流量[m3 /h] OZ :溶存オゾン濃度[g/m3 (water) ] 反応によるオゾン消費量M3 :オゾンは、反応以外にも
オゾン自身の分解(自己分解)によって消費されるが、
これも反応による消費量M3 に含まれるものとする。
Amount of generated ozone M 0 [g / h] = A IN × Z IN (2) where A IN : injected ozonized air amount [m 3 / h] Z IN : ozonized air concentration [g / m 3 (gas)] Emission ozone amount M 2 [g / h] = A OUT × Z OUT (3) where A OUT : Exhaust gas amount [m 3 / h] Z OUT : Exhaust ozone concentration [g / m 3 ( gas)] Residual ozone amount M 3 [g / h] = Q W × O Z (4) where Q W : treated water flow rate [m 3 / h] O Z : dissolved ozone concentration [g / m 3 ( water)] ozone by reaction consumption M 3: ozone is consumed by the decomposition of ozone itself in addition to the reaction (autolysis),
This is also included in the amount M 3 consumed by the reaction.

【0011】一般的に、運転の指標とされるオゾン注入
率ODOSE[g/m3 (water) ]は(5)式のように表わ
される。 ODOSE=(AIN×ZIN)/QW (5) (5)式を用いて、(1)式を書き改めると、 (AIN×ZIN)/QW =[(AOUT ×ZOUT )/QW ]+OZ +M3 /QW (6) となる。以下、M3 /QW [g/m3 (water) ]をデル
タオゾン量と呼び、ΔO 3 と記すことにする。これは、
反応で消費されたオゾン量を表わす。
Ozone injection, which is generally used as an index of operation
Rate ODOSE[G / m3(water)] is expressed as in equation (5).
To be done. ODOSE= (AIN× ZIN) / QW (5) When formula (1) is rewritten using formula (5), (A)IN× ZIN) / QW = [(AOUT× ZOUT) / QW] + OZ+ M3/ QW (6) Below, M3/ QW[G / m3(water)]
The amount of ozone is called ΔO 3I will write. this is,
It represents the amount of ozone consumed in the reaction.

【0012】反応を考慮した制御を考えるとき、ΔO3
が最も重要であり、これを演算で求めるには、AIN,Z
IN,AOUT ,ZOUT ,OZ の各データが必要である。ま
た、反応速度は、温度に直接関係しているので、水温の
モニタリングも勿論重要である。ある河川水を用いて、
長期間に亘る本発明者らのオゾンによる水処理実験か
ら、2−MIB減少量と紫外部吸光度(以下、E260
と記す)減少量との間に、図1の線図に示す相関関係の
あることが明らかになった。
When considering the control considering the reaction, ΔO 3
Is the most important, and to calculate this, A IN , Z
IN , A OUT , Z OUT , and O Z data are required. Further, since the reaction rate is directly related to the temperature, it is of course important to monitor the water temperature. Using a certain river water,
From the water treatment experiment by ozone of the present inventors over a long period of time, 2-MIB decrease amount and ultraviolet absorbance (hereinafter, E260
It is clear that there is a correlation shown in the diagram of FIG.

【0013】減少量を式で表わすと次のようになる。 ある水質項目の減少量=被処理水の測定値−処理水の測定値 (7) 本発明者らが実験に用い、図1の関係が得られた水で
は、(8)式のように2−MIB減少量とE260減少
量との相関関係を近似することができる。 2−MIB減少量(μg/l)=1.125×E260減少量 (8) 一方、ΔO3 とE260減少量は、一般に強い相関があ
る。例えば、この水では図2の線図に示す関係が得られ
た。即ち、 E260減少量=0.05×ΔO3 (9) という関数関係で近似することができる。
The reduction amount is expressed by the following equation. Reduction amount of a certain water quality item = measured value of treated water−measured value of treated water (7) In the water used by the present inventors for the experiment and having the relationship shown in FIG. -It is possible to approximate the correlation between the MIB reduction amount and the E260 reduction amount. 2-MIB decrease (μg / l) = 1.125 × E260 decrease (8) On the other hand, ΔO 3 and E260 decrease generally have a strong correlation. For example, with this water, the relationship shown in the diagram of FIG. 2 was obtained. That is, it can be approximated by the functional relationship of E260 decrease amount = 0.05 × ΔO 3 (9).

【0014】このように、反応に使用されたオゾンΔO
3 がE260減少量と相関が高いということは、分解さ
れる側の被反応物の指標として、E260を用いるのが
適切であることを示すものである。また、図1の線図に
おけるE260減少量が2−MIB減少量と相関が高い
という本発明者らの実験から得られた知見は、絶対量は
異なると考えられるが、反応で消費するオゾン量ΔO3
がそれぞれ分解量に対して一定であることを示してい
る。これらの結果から明らかなように、ΔO3 と2−M
IB減少量も勿論相関があるが、オゾン注入量を制御す
るには、直接計測が可能であり、そのときの水質の状況
を反映しているE260を用いるようにするのがよいと
の結論を得た。
Thus, the ozone ΔO used in the reaction
The fact that 3 has a high correlation with the amount of decrease in E260 indicates that it is appropriate to use E260 as an index of the reactant to be decomposed. Further, the finding obtained from the experiments by the present inventors that the E260 decrease amount in the diagram of FIG. 1 has a high correlation with the 2-MIB decrease amount, although the absolute amount is considered to be different, the amount of ozone consumed in the reaction ΔO 3
Indicates that each is constant with respect to the amount of decomposition. As is clear from these results, ΔO 3 and 2-M
Of course, the amount of IB reduction is also correlated, but to control the amount of ozone injection, it is possible to directly measure it and conclude that it is better to use E260, which reflects the water quality situation at that time. Obtained.

【0015】一方、2−MIBが臭気源である河川水の
臭気濃度TO(人の感ずる程度で決定する:感応試験方
法による)と2−MIB濃度は、例えば次のような関数
関係近似することができる。 TO=79.8×2−MIB濃度 (10) したがって、水道水の臭気を減ずるためには、ある臭気
物質の流入濃度を想定し、E260減少量を基に除去量
を考えればよいことになる。想定する流入臭気物質濃度
は、過去のデータから決めることができる。
On the other hand, the odor concentration TO (determined by the degree of human perception: according to the sensitivity test method) and the 2-MIB concentration of the odor concentration of the river water in which 2-MIB is the odor source should be approximated by the following functional relationship. You can TO = 79.8 × 2-MIB concentration (10) Therefore, in order to reduce the odor of tap water, it is sufficient to assume the inflow concentration of a certain odorous substance and consider the removal amount based on the E260 reduction amount. . The assumed inflow odor substance concentration can be determined from past data.

【0016】以下に、本発明の方法を具体的な事例によ
って示す。図3は本発明の方法が適用される装置につい
て、オゾンと水の流れを実線の矢印で、電気信号を点線
の矢印で示した模式系統図である。図3において、オゾ
ン接触池1に被処理水2が流入し、処理水3となって流
出する。オゾン接触池1にはオゾン化空気4が底部から
供給され、排ガス5となって放出される。 被処理水2
の流量は流量計6で測定し、また、被処理水2の水質項
目としてここでは紫外部吸光度をUV計7、水温を温度
計8で測定する。これらの測定値は全てオンラインでコ
ンピュータ9にインプットする。コンピュータ9には、
データや演算結果を記憶する記憶装置10が付属してい
る。処理水3の紫外部吸光度は、被処理水2と同様UV
計11で測定し、また、溶存オゾンを溶存オゾンメータ
12で測定する。これらの測定値も全てオンラインでコ
ンピュータ9にインプットする。
The method of the present invention will be described below by way of specific examples. FIG. 3 is a schematic system diagram in which ozone and water flows are indicated by solid arrows and electric signals are indicated by dotted arrows in an apparatus to which the method of the present invention is applied. In FIG. 3, the water 2 to be treated flows into the ozone contact pond 1 and becomes treated water 3 and flows out. The ozone contact pond 1 is supplied with ozonized air 4 from the bottom and discharged as exhaust gas 5. Treated water 2
The flow rate is measured by the flow meter 6, and the UV absorbance is measured by the UV meter 7 and the water temperature is measured by the thermometer 8 as the water quality items of the water 2 to be treated. All of these measured values are input to the computer 9 online. The computer 9
A storage device 10 for storing data and calculation results is attached. The ultraviolet absorbance of the treated water 3 is UV as in the case of the treated water 2.
The dissolved ozone is measured by a total of 11, and the dissolved ozone is measured by a dissolved ozone meter 12. All these measured values are also input to the computer 9 online.

【0017】このように、オゾン接触池1には計測装置
として、 水温を測定する温度計8 E260を測定するUV計7とUV計11 溶存オゾンを測定する溶存オゾンメータ12 を取り付けてある。
As described above, the ozone contact basin 1 is provided with the UV meter 7 and the UV meter 11 for measuring the water temperature and the dissolved ozone meter 12 for measuring the dissolved ozone as a measuring device.

【0018】同様にして測定値は、全てコンピュータ9
にインプットする。処理する測定値の信号や、コンピュ
ータ9からのオゾン発生装置13への制御信号は、ケー
ブルにより伝達する。オゾン発生装置13からのオゾン
化空気4の流量は、流量計14で測定し、そのオゾン濃
度はオゾンメータ15により測定する。排ガス5の流量
は流量計16で測定し、排ガス5中のオゾン濃度はオゾ
ンメータ17により測定する。 これらの計測値は、制
御用コンピュータ9に入力され、この制御用コンピュー
タ9は、以下に示す演算方法に基づいて作動し、オゾン
発生量を変化させるようにオゾン発生装置13を調整す
ることにより、オゾン注入量の制御を行なうことができ
る。その演算方法は、「代替目標値の算出」,「処理水
補正」,「原水補正」により行なうが、その要点は下記
の通りである。
Similarly, all measured values are calculated by the computer 9.
Input to. The signal of the measured value to be processed and the control signal from the computer 9 to the ozone generator 13 are transmitted by a cable. The flow rate of the ozonized air 4 from the ozone generator 13 is measured by the flow meter 14, and the ozone concentration thereof is measured by the ozone meter 15. The flow rate of the exhaust gas 5 is measured by the flow meter 16, and the ozone concentration in the exhaust gas 5 is measured by the ozone meter 17. These measured values are input to the control computer 9, and the control computer 9 operates based on the following calculation method and adjusts the ozone generator 13 so as to change the ozone generation amount. The ozone injection amount can be controlled. The calculation method is performed by "calculation of alternative target value", "correction of treated water", and "correction of raw water". The main points are as follows.

【0019】まず最初に「代替目標値」を算出する。臭
気物質は、富栄養化した湖沼などに棲息する藻類の代謝
生成物に起因していることから、その発生時期には明ら
かに季節依存性があり、夏季の発生が圧倒的に多い。ま
た、発生量も年度によって異なりかなり変動が大きい。
そこで、臭気物質の発生の基本パターンを表1に示す4
通りとする。
First, an "alternative target value" is calculated. Odorants are caused by the metabolic products of algae that live in eutrophic lakes and marshes. Therefore, the timing of occurrence is clearly seasonally dependent, and the occurrence in summer is overwhelmingly large. In addition, the amount generated varies from year to year and varies considerably.
Therefore, Table 1 shows the basic pattern of the generation of odorous substances.
On the street.

【0020】[0020]

【表1】 このパターン1〜3は、原水に臭気物質または何らかの
有機物が多量に含まれている場合であり、このときの流
入臭気物濃度の設定値(三つの場合で異なる)と、紫外
部吸光度(E260)減少量の相関式から、E260減
少量の目標値を決定する。
[Table 1] Patterns 1 to 3 are cases where the raw water contains a large amount of odorous substances or some organic matter. At this time, the set value of the inflowing odorant concentration (differs in the three cases) and the ultraviolet absorbance (E260) The target value of the E260 reduction amount is determined from the correlation formula of the reduction amount.

【0021】この3パターンに関しては、例えば累積確
率の考え方などによって、流入臭気物濃度の想定値MB
を決定する。図4は夏季における60日間の2−MIB
発生相対度数と低濃度側からの累積確率(累積相対度
数)との関係図であり、1サンプル/日の頻度で取得し
たときの測定値である。相対度数とは、図4の横軸に示
した各区間(例えば2−MIB濃度0.02〜0.04
μg/l)のデータの個数を全データ数で割ったもので
あり、累積確率とはこれの積算値である。
With respect to these three patterns, the estimated value MB of the inflowing odorous substance concentration is determined by, for example, the concept of cumulative probability.
To decide. Figure 4 shows 60-day 2-MIB in summer
FIG. 6 is a diagram showing the relationship between the relative frequency of occurrence and the cumulative probability (cumulative relative frequency) from the low concentration side, which is the measured value when acquired at a frequency of 1 sample / day. The relative frequency means each section shown on the horizontal axis of FIG. 4 (for example, 2-MIB concentration 0.02 to 0.04).
μg / l) is the number of data divided by the total number of data, and the cumulative probability is an integrated value of these.

【0022】例えば、確率として、全体の80%を所望
の臭気物濃度にしたい場合は、累積確率80%の点、即
ち図4の区間0.12〜0.14μg/lであるから、
平均値の0.13μg/lを流入水値と設定する。処理
水の2−MIB濃度を0.04μg/lとすると、
(7)式から、E260除去の目標値は、(0.13−
0.04)/1.125=0.08であり、この値とす
るために、本発明によりオゾン注入量を調節することに
なる。この累積確率を用いる方法は、その浄水場で独自
のデータを蓄積して、これを活用することができるの
で、極めて有用な手法である。
For example, when it is desired to set the desired odorous substance concentration to 80% of the total probability, the cumulative probability is 80%, that is, the interval 0.12 to 0.14 μg / l in FIG.
The average value of 0.13 μg / l is set as the inflow water value. When the 2-MIB concentration of treated water is 0.04 μg / l,
From equation (7), the target value for E260 removal is (0.13-
0.04) /1.125=0.08, and in order to obtain this value, the ozone injection amount is adjusted according to the present invention. The method using this cumulative probability is an extremely useful method because it is possible to accumulate unique data at the water treatment plant and utilize it.

【0023】一方、水質はかなり変動することがあり、
きれいな水の中に臭気物質が含まれているという状況も
あり得る。この場合、以上の相関式を作成した水質とは
かなり異なるので、紫外部吸光度除去量を達成しようと
すると、オゾンを過剰に注入してしまう。即ち、水質が
良いときは、ΔO3 量が容易に増加しないので、オゾン
注入率を必要以上に上げることになる。これを避けるた
めに、制御のストッパとして、最大オゾン注入率MO
DOSEまたは最大溶存オゾン濃度MOZ を設定し、これを
初めに入力する。
On the other hand, the water quality may vary considerably,
There may be situations where odorous substances are contained in clean water. In this case, the water quality is considerably different from the water quality for which the above correlation formula was created, and therefore ozone is excessively injected to achieve the ultraviolet absorbance removal amount. That is, when the water quality is good, the amount of ΔO 3 does not easily increase, so the ozone injection rate is increased more than necessary. To avoid this, as a control stopper, the maximum ozone injection rate MO
Set DOSE or maximum dissolved ozone concentration MO Z and enter it first.

【0024】パターン4では、流入水の水質がきれい
で、しかも臭気物質濃度が明らかに低いと予想される。
この場合は、低濃度のオゾンを一定量注入するか、ある
E260除去率を決定し、これに基づきオゾン注入量を
制御することができる。コンピュータが季節を認識する
のは、水温の測定値およびその傾向である。これによっ
て、大別して夏と冬の二通りの認識が可能となる。
In Pattern 4, it is expected that the quality of the inflowing water is clean and the odorous substance concentration is obviously low.
In this case, it is possible to inject a constant amount of low-concentration ozone or determine a certain E260 removal rate, and control the ozone injection amount based on this. It is the measurements of water temperature and their trends that the computer recognizes the seasons. This makes it possible to roughly distinguish between two types of recognition, summer and winter.

【0025】入力する関数関係は(8)式である。本実
施例では、図1に示したように直線関係であるが、例え
ば指数関数であってもよく、要するに2−MIB減少量
と、E260減少量との対応関係が明らかなものであれ
ばよい。次に「処理水補正」は、代替目標値に関して補
正を行なうものである。これは、以下の四つの条件と判
断からなされる。
The input functional relationship is equation (8). Although the linear relationship is shown in FIG. 1 in the present embodiment, it may be an exponential function, for example, as long as the correspondence relationship between the 2-MIB decrease amount and the E260 decrease amount is clear. . Next, "treatment water correction" is to correct the substitute target value. This is done based on the following four conditions and judgments.

【0026】条件1)冬の水温が低いときは、原水が良
好でしかもオゾンが溶解しやすいので、溶存オゾンとし
て、0.05〜0.15mg/lの範囲で制御する。 条件2)溶存オゾン濃度は、常時活性炭吸着池の影響を
考慮し、0.15mg/l(NOZ)以下で制御する。 条件3)排オゾン濃度は、常時0.3〜1.0g/Nm
3 内で制御する。
Condition 1) When the water temperature in winter is low, raw water is good and ozone is easily dissolved. Therefore, dissolved ozone is controlled within a range of 0.05 to 0.15 mg / l. Condition 2) Dissolved ozone concentration is controlled at 0.15 mg / l ( NOZ ) or less in consideration of the influence of the activated carbon adsorption basin at all times. Condition 3) The exhaust ozone concentration is always 0.3 to 1.0 g / Nm.
Control within 3

【0027】条件4)上記の条件を満足していれば、E
260減少量が目標値となるようにセットする。但し、
最大注入率MODOSE以下である。 これらを用いた実際の運用法は、例えば表2に示す通り
である。
Condition 4) If the above conditions are satisfied, E
The 260 reduction amount is set so as to reach the target value. However,
Maximum injection rate MO DOSE or less. The actual operation method using these is as shown in Table 2, for example.

【0028】[0028]

【表2】 次に、「原水補正」は、各データの変化量から、以下の
条件で補正量を算出するものである。
[Table 2] Next, "raw water correction" is to calculate the correction amount from the change amount of each data under the following conditions.

【0029】 pHが酸性の場合 →反応が遅くなる。 pHがアルカリ性の場合→反応が速くなる。 残塩 →オゾンが分解される。 濁度 →オゾンが消費される。 但し、これらの補正は、各水質データの変動により、結
果的に排オゾン濃度に有意の変動が発生した場合とす
る。
When the pH is acidic → The reaction becomes slow. When the pH is alkaline → The reaction becomes faster. Residual salt → ozone is decomposed. Turbidity → Ozone is consumed. However, these corrections shall be made when there is a significant change in the exhaust ozone concentration due to the change in each water quality data.

【0030】これらを用いた実際の運用法は、例えば表
3に示す通りである。
An actual operation method using these is as shown in Table 3, for example.

【0031】[0031]

【表3】 各補正値の算出には、ファジイ推論などが用いられる。[Table 3] Fuzzy inference or the like is used to calculate each correction value.

【0032】以上、オゾンを用いた浄水処理法における
オゾン注入量の決定方法とその制御方法、および浄水処
理装置について述べてきた。とくに実施例では臭気物質
を除去する場合を説明したが、本発明は、はじめに述べ
たようなゴルフ場の各種農薬や、テトラクロロエチレン
などの有機溶剤である毒性物質に対しても、適用可能で
ある。
The method for determining the ozone injection amount in the water purification method using ozone, its control method, and the water purification apparatus have been described above. In particular, although the case where the odorous substance is removed has been described in the examples, the present invention is also applicable to the various agricultural chemicals on the golf course as described above and the toxic substance that is an organic solvent such as tetrachloroethylene.

【0033】[0033]

【発明の効果】オゾンの強い酸化力を利用した浄水処理
は、非常に有効であるが、これまで被処理水中に含まれ
る臭気物質や毒性物質の流入濃度の変動に応じて、オゾ
ンの注入量を経験的に決めていたので、オンラインでは
不可能であったが、本発明では実施例で述べた如く、臭
気物質や毒性物質の濃度を予測し、これの代替指標とし
て、紫外部吸光度減少量を算出してオゾン注入量を決定
する方法をとり、これを実現する装置として、オゾン接
触池,オゾン発生装置,被処理水の流量計,UV計,温
度計の他に、処理水のUV計,溶存オゾンメータ,オゾ
ン化空気の流量計,オゾン化空気量を測定するオゾンメ
ータ,オゾン排ガスの流量計,オゾン排ガス中のオゾン
濃度を測定するオゾンメータ,および上記の各計測器の
測定値を入力し、その演算結果をオゾン発生装置にフィ
ードバックしてオゾン化空気発生量を調整する制御用コ
ンピューターと演算結果を記憶する記憶装置を配置する
ことにより構成したために、従来困難とされていたオゾ
ン接触池における被処理水中の微量有機物の除去に関し
て、オンライン制御プロセスの実用化が可能となる。
EFFECTS OF THE INVENTION Water purification treatment utilizing the strong oxidizing power of ozone is very effective, but the injection amount of ozone is changed according to the fluctuation of the inflow concentration of odorous substances and toxic substances contained in the water to be treated. Since it was empirically determined, it was impossible online, but in the present invention, as described in the examples, the concentrations of odorants and toxic substances are predicted, and as an alternative index to this, the ultraviolet absorption decrease amount is calculated. Is used to determine the ozone injection amount, and as a device for realizing this, an ozone contact basin, an ozone generator, a flow meter for the water to be treated, a UV meter, a thermometer, and a UV meter for the treated water are used. , Dissolved ozone meter, flow meter of ozonized air, ozone meter for measuring the amount of ozonized air, flow meter of ozone exhaust gas, ozone meter for measuring ozone concentration in ozone exhaust gas, and the measurement values of the above measuring instruments Input, The result of the above calculation is fed back to the ozone generator to adjust the amount of ozonized air generated, and the storage device for storing the calculation result is arranged. An online control process can be put into practical use for the removal of trace organic substances in treated water.

【図面の簡単な説明】[Brief description of drawings]

【図1】2−MIB減少量と紫外部吸光度減少量との相
関関係を示す線図
FIG. 1 is a diagram showing a correlation between a 2-MIB decrease amount and an ultraviolet absorbance decrease amount.

【図2】ΔO3 と紫外部吸光度減少量との相関関係を示
す線図
FIG. 2 is a diagram showing the correlation between ΔO 3 and the amount of decrease in ultraviolet absorbance.

【図3】本発明の方法が適用される浄水装置の水の流れ
と電気信号系統を示す模式図
FIG. 3 is a schematic diagram showing a water flow and an electric signal system of a water purification apparatus to which the method of the present invention is applied.

【図4】2−MIB発生相対度数と累積確率との関係図FIG. 4 is a diagram showing the relationship between 2-MIB occurrence relative frequency and cumulative probability.

【符号の説明】[Explanation of symbols]

1 オゾン接触池 2 被処理水 3 処理水 4 オゾン化空気 5 排ガス 6 流量計 7 UV計 8 温度計 9 コンピュータ 10 記憶装置 11 UV計 12 溶存オゾンメータ 13 オゾン発生装置 14 流量計 15 流量計 16 流量計 17 オゾンメータ 1 Ozone Contact Pond 2 Treated Water 3 Treated Water 4 Ozoned Air 5 Exhaust Gas 6 Flowmeter 7 UV Meter 8 Thermometer 9 Computer 10 Storage Device 11 UV Meter 12 Dissolved Ozone Meter 13 Ozone Generator 14 Flowmeter 15 Flowmeter 16 Flowrate Total 17 Ozone meter

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】被処理水に含まれる微量有機物をオゾンを
用いて除去する浄水処理のオゾンの注入量を決定するに
当たり、微量有機物の流入濃度を予測し、その減少量の
代わりにこれと相関性の高い紫外部吸光度減少量を代替
指標としてオゾンの注入量を算出することを特徴とする
オゾン注入量の決定方法。
1. A method for predicting the inflow concentration of trace organic matter in determining the injection amount of ozone in water purification treatment for removing trace organic matter contained in water to be treated using ozone, and correlating with the decrease amount instead of the inflow concentration. A method for determining the amount of injected ozone, which comprises calculating the amount of injected ozone using the highly-reduced amount of decrease in ultraviolet absorbance as an alternative index.
【請求項2】請求項1記載の方法において、微量有機物
の流入濃度は、使用される浄水場の濃度発生確率から定
めることを特徴とするオゾン注入量の決定方法。
2. The method according to claim 1, wherein the inflow concentration of a trace amount of organic matter is determined from the concentration occurrence probability of the water treatment plant used.
【請求項3】請求項1または2記載の方法を用いてオゾ
ン注入量を制御するに当たり、はじめに代替指標の目標
値を算出し、さらに処理水補正および原水補正を行なう
ことを特徴とするオゾン注入量の制御方法。
3. When controlling the ozone injection amount using the method according to claim 1 or 2, the target value of the alternative index is first calculated, and the treated water correction and the raw water correction are further performed. How to control quantity.
【請求項4】請求項1ないし3記載の方法が適用され、
被処理水が流入し底部からオゾンを注入して処理水を流
出するオゾン接触池(1),この接触池に注入するオゾ
ン化空気を発生するオゾン発生装置(13),被処理水
の流量を測定する流量計(6),被処理水の紫外部吸光
度を測定するUV計(7),被処理水の水温を測定する
温度計(8),処理水の紫外部吸光度を測定するUV計
(11),溶存オゾン量を測定する溶存オゾンメータ
(12),オゾン発生装置(13)から送られるオゾン
化空気量を測定する流量計(14),同じくオゾン化空
気のオゾン濃度を測定するオゾンメータ(15),接触
池(1)から排出するオゾン排ガス量を測定する流量計
(16),同じくオゾン排ガス中のオゾン濃度を測定す
るオゾンメータ(17),上記の各計測器の測定値が入
力され演算結果をオゾン発生装置(13)にフィードバ
ックしてオゾン化空気発生量を調整する制御用コンピュ
ーター(9),このコンピューター(9)に接続され演
算結果を記憶する記憶装置(10)を有することを特徴
とする浄水処理装置。
4. The method according to claims 1 to 3 is applied,
The ozone contact pond (1) into which the water to be treated flows and injects ozone from the bottom to flow out the treated water, the ozone generator (13) to generate ozonized air to be injected into this contact pond, and the flow rate of the water to be treated A flow meter (6) for measuring, a UV meter (7) for measuring the ultraviolet absorbance of the treated water, a thermometer (8) for measuring the water temperature of the treated water, a UV meter (for measuring the ultraviolet absorbance of the treated water ( 11), a dissolved ozone meter (12) for measuring the amount of dissolved ozone, a flow meter (14) for measuring the amount of ozonized air sent from the ozone generator (13), and an ozone meter for measuring the ozone concentration of the ozonized air as well. (15), Flowmeter (16) that measures the amount of ozone exhaust gas discharged from the contact pond (1), Ozone meter (17) that also measures the ozone concentration in ozone exhaust gas, and the measurement values of the above-mentioned measuring instruments are input. The calculated result A control computer (9) for feeding back to the generator (13) to adjust the amount of ozonized air generated, and a storage device (10) connected to the computer (9) for storing the calculation result. Water purification equipment.
JP22183992A 1992-08-21 1992-08-21 Method for determining and controlling ozone injection quantity and purified water treatment device Pending JPH0663570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22183992A JPH0663570A (en) 1992-08-21 1992-08-21 Method for determining and controlling ozone injection quantity and purified water treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22183992A JPH0663570A (en) 1992-08-21 1992-08-21 Method for determining and controlling ozone injection quantity and purified water treatment device

Publications (1)

Publication Number Publication Date
JPH0663570A true JPH0663570A (en) 1994-03-08

Family

ID=16773005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22183992A Pending JPH0663570A (en) 1992-08-21 1992-08-21 Method for determining and controlling ozone injection quantity and purified water treatment device

Country Status (1)

Country Link
JP (1) JPH0663570A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1147771A (en) * 1997-07-31 1999-02-23 Meidensha Corp Continuous water passing type water treatment apparatus
JP2007152244A (en) * 2005-12-06 2007-06-21 Tokyo Metropolis Injection ozone control system and injection ozone control method
KR101125318B1 (en) * 2011-10-28 2012-03-27 한국수자원공사 Apparatus and method for deciding ozone injecting rate in water treatment process
KR101125353B1 (en) * 2011-10-28 2012-03-27 한국수자원공사 Apparatus and method for deciding optimal operation of ozone generator in water treatment process
WO2014186167A1 (en) * 2013-05-17 2014-11-20 Ecolab Usa Inc. Automatic control system for ozone dosing in the combination of ozone and biotreatment process
WO2020226094A1 (en) * 2019-05-08 2020-11-12 株式会社キッツ Washing water treatment device, disinfection and water treatment device, and washing water treatment method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1147771A (en) * 1997-07-31 1999-02-23 Meidensha Corp Continuous water passing type water treatment apparatus
JP2007152244A (en) * 2005-12-06 2007-06-21 Tokyo Metropolis Injection ozone control system and injection ozone control method
KR101125318B1 (en) * 2011-10-28 2012-03-27 한국수자원공사 Apparatus and method for deciding ozone injecting rate in water treatment process
KR101125353B1 (en) * 2011-10-28 2012-03-27 한국수자원공사 Apparatus and method for deciding optimal operation of ozone generator in water treatment process
WO2014186167A1 (en) * 2013-05-17 2014-11-20 Ecolab Usa Inc. Automatic control system for ozone dosing in the combination of ozone and biotreatment process
CN104163540A (en) * 2013-05-17 2014-11-26 埃科莱布美国股份有限公司 Ozone feeding automatic control system for ozone-biology combined technology
WO2020226094A1 (en) * 2019-05-08 2020-11-12 株式会社キッツ Washing water treatment device, disinfection and water treatment device, and washing water treatment method

Similar Documents

Publication Publication Date Title
US5246594A (en) Process for controlling the ph value of an acid scrubbing liquid
JP3274541B2 (en) Water purification plant management support method and support system
JP2005305328A (en) Water treatment controlling system
JPH0663570A (en) Method for determining and controlling ozone injection quantity and purified water treatment device
JP4660211B2 (en) Water treatment control system and water treatment control method
JP3321876B2 (en) Ozone treatment apparatus, ozone treatment method, and water purification treatment method
JP2004049953A (en) Ultraviolet disinfection apparatus and disinfection system using the same
JP2007117849A (en) Ozone treatment system
JPH1054829A (en) Apparatus for measuring concentration of liquid phase ozone of ozone-process water and detecting apparatus for permanganate ion
JP2005313022A (en) Raw water quality estimating device
ATE138280T1 (en) METHOD FOR OPERATING A WASTEWATER TREATMENT PLANT AND DEVICE FOR FEEDING A PHOSPHATE precipitant
JPH02149397A (en) Water treatment apparatus
JP2013215680A (en) Wastewater treatment method and wastewater treatment apparatus
JP4331048B2 (en) Ozone water treatment control system
JPH08308430A (en) Elimination of ammonia with ozone
JPH04225896A (en) Ozone injection controller
JP3223726B2 (en) Method and apparatus for measuring ultraviolet absorbance for process
JP2007218825A (en) Continuous measuring type total phosphorus meter, and operation method of continuous measuring type total phosphorus meter
JPH08136526A (en) Continuous measuring apparatus for concentration of dissolved ozone
KR20050063263A (en) A apparatus and method for controlling the value of concentration contact time(ct) automatically in the chlorine-disinfection process
JP2000237773A (en) Ozone generating quantity controller and its control method
JPH08215690A (en) Optimum ozone injection rate calculation apparatus and ozone injection control apparatus
JPH0679290A (en) Method and device for treating purified water
JP4358037B2 (en) Water treatment equipment
JP3277628B2 (en) Biological abnormality detection method for aeration tank