JP2005313078A - Water treatment method and water treatment system - Google Patents

Water treatment method and water treatment system Download PDF

Info

Publication number
JP2005313078A
JP2005313078A JP2004134052A JP2004134052A JP2005313078A JP 2005313078 A JP2005313078 A JP 2005313078A JP 2004134052 A JP2004134052 A JP 2004134052A JP 2004134052 A JP2004134052 A JP 2004134052A JP 2005313078 A JP2005313078 A JP 2005313078A
Authority
JP
Japan
Prior art keywords
ozone
water
treatment
fluorescence intensity
treatment pond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004134052A
Other languages
Japanese (ja)
Other versions
JP4334404B2 (en
JP2005313078A5 (en
Inventor
Norimitsu Abe
法光 阿部
Kenji Ide
健志 出
Yasuyuki Miyajima
康行 宮島
Futoshi Kurokawa
太 黒川
Chiyouko Kurihara
潮子 栗原
Taku Menju
卓 毛受
Ryoichi Arimura
良一 有村
Katsuya Yokogawa
勝也 横川
Kazuhiko Kimijima
和彦 君島
Seiichi Murayama
清一 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004134052A priority Critical patent/JP4334404B2/en
Publication of JP2005313078A publication Critical patent/JP2005313078A/en
Publication of JP2005313078A5 publication Critical patent/JP2005313078A5/ja
Application granted granted Critical
Publication of JP4334404B2 publication Critical patent/JP4334404B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water treatment method and a water treatment system which can most efficiently perform decomposition treatment of an organic matter in water to be treated, and treatment for reducing a trihalomethane generating capacity, reduce the injection of useless ozone gas without increasing running costs of the system, and suppress the generation of by-products, such as bromate ion, which cannot be removed even by activated carbon treatment and chlorine treatment at the subsequent stage. <P>SOLUTION: The concentration of dissolved organic carbon in raw water is measured by an organic carbon analyzer 10 before introduction of the raw water into an ozone treatment pond 4, an ozone injection controller 11 determines the amount of ozone injected into the ozone treatment pond 4 from an ozone absorption rate corresponding to the measured dissolved organic carbon concentration, from a predetermined relation between a dissolved organic carbon concentration and an ozone absorption rate. Thereby a minimum ozone injection rate conformable to water quality of the raw water and required for the decomposition treatment of the organic matter and the treatment for reducing the trihalomethane generating capacity can be obtained. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、浄水処理、下水処理、産業排水処理、食品排水処理など、被処理水へのオゾン注入に基づく水処理を行なう場合の水処理方法および水処理システムに関する。   The present invention relates to a water treatment method and a water treatment system for performing water treatment based on ozone injection into water to be treated, such as water purification treatment, sewage treatment, industrial wastewater treatment, and food wastewater treatment.

浄水場における水処理では、地下水や河川表流水などを原水として着水井に導入し、この原水に対し、先ず、凝集沈殿池で凝集剤を注入してフロックを形成し、凝集沈澱処理を実施する。その後、上澄み水を砂ろ過池に導いて懸濁物を除去し、最後に消毒用の塩素剤を注入して消毒処理を実施して需要化に供給している。   In water treatment at a water purification plant, groundwater or river surface water is introduced into a landing well as raw water, and flocculant is first injected into the raw water in a coagulating sedimentation basin to form a floc, and coagulation sedimentation processing is carried out. . After that, the supernatant water is guided to the sand filtration pond to remove the suspended matter, and finally, a disinfecting treatment is performed by injecting a disinfecting chlorine agent to supply it to demand.

ところが、近年、産業排水、生活排水などによる水の汚染が進んでおり、水源水質の汚染が社会問題となっている。具体的には、上流河川において、かび臭などの臭気物質、フミン質を中心とした有機化合物、農薬、ダイオキシン、環境ホルモンなどの難分解性の汚染物質が微量含まれていることが指摘されている。   However, in recent years, water pollution due to industrial wastewater, domestic wastewater, etc. has progressed, and pollution of water source water quality has become a social problem. Specifically, it has been pointed out that upstream rivers contain trace amounts of persistent substances such as musty odors, organic compounds such as humic substances, agricultural chemicals, dioxins, and environmental hormones. .

なお、フミン質は、植物などが微生物により分解される種々雑多な有機化合物によって構成される高分子化合物の一種である。すなわち、樹木などのセルロースやリグニン酸が酸化される過程で生じる有機物で、河川着色の原因となるとともに、塩素消毒の副生成物である発ガン性のトリハロメタンの原因物質となる。   Note that humic substances are a type of polymer compound composed of various organic compounds that are decomposed by microorganisms such as plants. In other words, it is an organic substance produced in the process of oxidizing cellulose and lignic acid such as trees, causing river coloring and a causative substance of carcinogenic trihalomethane, which is a by-product of chlorine disinfection.

また、河川の下流側ではさらに汚染が進んでおり、これらの汚染物質の他に、アンモニアや有機塩素系の洗剤、更には合成洗剤、染料など種々の化学物質による汚染が広がっている。   In addition, pollution is further progressing on the downstream side of the river, and in addition to these pollutants, pollution by various chemical substances such as ammonia, organochlorine detergents, synthetic detergents, and dyes is spreading.

上述したこれまでの浄水処理法では、こういった汚染物質の除去に対応できないだけでなく、トリハロメタンの前駆物質であるフミン質の増加により、塩素処理によるトリハロメタン生成量が増大する。また、アンモニアの増加によっても、塩素とアンモニアが反応にてクロラミンを生成し、必要以上に塩素を消費する。このため、塩素注入量の増大による結果としてトリハロメタンの生成量増大につながる。トリハロメタンは発ガン性が指摘されている物質であり、塩素注入前の水処理過程でフミン質などのトリハロメタン前駆物質を除去する必要がある。   The above-described conventional water purification treatment methods can not only cope with the removal of such pollutants, but also increase the amount of trihalomethane produced by chlorination due to the increase in humic substances that are precursors of trihalomethane. Also, with the increase in ammonia, chlorine and ammonia produce chloramine by reaction, consuming more chlorine than necessary. For this reason, as a result of the increase in the chlorine injection amount, the production amount of trihalomethane is increased. Trihalomethane is a substance that has been pointed out to be carcinogenic, and it is necessary to remove trihalomethane precursors such as humic substances in the water treatment process before chlorine injection.

そこで、従来の処理工程では除去できない種々の汚染物質を分解、除去可能な処理方法として、オゾン処理と粒状活性炭或いは生物活性炭処理とを組合せた高度浄水処理システムを組み込んだ浄水場が増えてきている。オゾン処理は、オゾン発生装置にて空気または酸素を原料として放電(無声放電)により酸素の一部をオゾン化させたオゾン化ガスを用い、このオゾン化ガスと被処理水とを接触させて、オゾンの強い酸化力で被処理水中の汚染物質を酸化分解する。   Therefore, water treatment plants incorporating an advanced water purification system combining ozone treatment and granular activated carbon treatment or biological activated carbon treatment are increasing as a treatment method capable of decomposing and removing various pollutants that cannot be removed by conventional treatment processes. . The ozone treatment uses an ozonized gas in which a part of oxygen is ozonized by discharge (silent discharge) using air or oxygen as a raw material in an ozone generator, and this ozonated gas is brought into contact with water to be treated. Oxidizing and decomposing pollutants in treated water with strong oxidizing power of ozone.

特に、オゾン処理と粒状活性炭または生物活性炭を組合せた高度浄水システムが広く普及しており、前段のオゾン処理により従来の浄水処理法では処理できない汚染物質の分解、除去を行う。特に、臭気物質、色度成分の分解、鉄、マンガンなどの酸化・不溶化、有機ハロゲン化合物を含む有機物が分解される。そして、後段が粒状活性炭の場合には吸着が行われ、生物活性炭の場合には、微生物によりさらに分解除去される。   In particular, advanced water purification systems combining ozone treatment and granular activated carbon or biological activated carbon are widely used, and the previous ozone treatment decomposes and removes pollutants that cannot be treated by conventional water purification methods. In particular, odorous substances, decomposition of chromaticity components, oxidation and insolubilization of iron and manganese, and organic substances including organic halogen compounds are decomposed. And adsorption is performed when the latter stage is granular activated carbon, and when it is biological activated carbon, it is further decomposed and removed by microorganisms.

高度浄水処理システムとしてオゾン処理システムを導入している浄水場では、被処理水にたいして除去目的物質の酸化分解反応を十分に行なうだけのオゾンガスの注入が必要である。しかし、過剰なオゾンガスの注入は、オゾンを発生させるための電力コストを増加させるだけでなく、オゾン処理水中の溶存オゾン濃度が増えることになる。   In water purification plants that have introduced an ozone treatment system as an advanced water treatment system, it is necessary to inject ozone gas enough to oxidatively decompose the target substance to be treated. However, excessive ozone gas injection not only increases the power cost for generating ozone, but also increases the concentration of dissolved ozone in the ozone-treated water.

溶存オゾン濃度が高い場合、後段の生物活性炭の寿命を縮めるという問題を生じる。また、原水に臭素イオンが含まれている場合には、オゾン処理の副生成物として発ガン性が指摘されている臭素酸イオンが生成するなどの問題が生じる。   When dissolved ozone concentration is high, the problem of shortening the lifetime of the biological activated carbon of the latter stage arises. Further, when bromine ions are contained in the raw water, problems such as the formation of bromate ions, which are pointed out as carcinogenic as a byproduct of ozone treatment, occur.

そこで、オゾン処理水中の溶存オゾン濃度と被処理物質の除去率との双方が、最適な値になるようにオゾン化ガスの注入量を制御する必要がある。オゾン化ガス注入量を制御する方法として、被処理水の導入量に対するオゾンの注入率を一定とするオゾン注入率一定制御、あるいはオゾン処理池出口での溶存オゾン濃度が一定の値になるように制御する溶存オゾン濃度一定制御、未反応オゾンとして排出されるオゾン濃度が一定の値になるように制御する排オゾン濃度一定制御などが知られている。   Therefore, it is necessary to control the injection amount of the ozonized gas so that both the dissolved ozone concentration in the ozone-treated water and the removal rate of the substance to be treated become optimum values. As a method of controlling the ozonized gas injection amount, the ozone injection rate is controlled constant so that the ozone injection rate is constant with respect to the amount of treated water introduced, or the dissolved ozone concentration at the ozone treatment pond outlet becomes a constant value. Known are dissolved ozone concentration constant control to be controlled, exhaust ozone concentration constant control to control the ozone concentration discharged as unreacted ozone to a constant value, and the like.

これら、いずれの制御方法においても一定制御する各設定値は、予め被処理水とオゾンとの反応特性を求める実験を行い、その実験結果と被処理水水質の天候による変動や季節変動などの過去のデータや他の浄水場のデータとに基づいて決められ、必要によりオペレーターが手動で変更する。なお、一般的には、過不足無くオゾンを注入するという観点から、溶存オゾン濃度一定制御が多く採用されている。この方法だと処理水中の溶存オゾン濃度が臭素酸イオンの生成量が増大しない濃度範囲になるように制御することができ、臭素酸イオンの生成を抑止しやすい(例えば、特許文献1参照)。   In each of these control methods, each set value for constant control is obtained by conducting an experiment in advance to obtain the reaction characteristics between the water to be treated and ozone. And other water purification plant data, and the operator changes it manually if necessary. In general, from the viewpoint of injecting ozone without excess or deficiency, constant dissolved ozone concentration control is often employed. With this method, the dissolved ozone concentration in the treated water can be controlled so as to be in a concentration range in which the amount of bromate ions generated does not increase, and the formation of bromate ions can be easily suppressed (see, for example, Patent Document 1).

従来のオゾン処理システムを導入した高度浄水処理システムでは、原水に対して凝集沈殿処理を行い、その後にオゾン処理、粒状活性炭(生物)で溶解性成分の除去を行い、ろ過池で仕上げ処理を行う中オゾン処理方式がある。この他に、原水に対して凝集沈殿、砂ろ過を行い、除濁した後、後段のオゾン、粒状活性炭(生物)で溶解性成分の除去を行う後オゾン処理方式がある。   In the advanced water purification system that introduced the conventional ozone treatment system, the raw water is coagulated and settled, then the ozone treatment, removal of soluble components with granular activated carbon (biological), and the finishing treatment in the filtration pond. There is a medium ozone treatment system. In addition to this, there is a post-ozone treatment system in which the raw water is subjected to coagulation sedimentation and sand filtration to remove turbidity, and then the soluble components are removed with ozone and granular activated carbon (biological) in the subsequent stage.

ここでは後オゾン処理方式の場合を説明する。原水は着水井に導入された後、凝集沈殿池の入口で凝集剤と必要によりpH調整剤が注入される。このため、凝集沈殿池で原水中の粘土質、細菌、藻類の懸濁物質は、あらかじめ凝集され、フロックとし分離される。その後、砂ろ過池で残った濁質を除去した後、オゾン処理池に導入される。オゾン処理池にてオゾン処理された処理水は活性炭処理池(粒状あるいは生物活性炭)に挿入され、ここで残留した処理対象物質が分解除去される。最後に浄水池の入口で消毒のための塩素剤が注入される。   Here, the case of the post-ozone treatment method will be described. After the raw water is introduced into the landing well, a flocculant and, if necessary, a pH adjuster are injected at the inlet of the coagulation sedimentation basin. For this reason, the suspended matter of clay, bacteria and algae in the raw water is aggregated in advance in the coagulation sedimentation basin and separated as floc. Then, after removing the turbidity remaining in the sand filtration pond, it is introduced into the ozone treatment pond. The treated water ozone-treated in the ozone treatment pond is inserted into the activated carbon treatment pond (granular or biological activated carbon), and the treatment target substance remaining here is decomposed and removed. Finally, a chlorine agent for disinfection is injected at the entrance of the water purification pond.

通常、オゾン処理池は、その内部に、被処理水にオゾン化ガスを注入し接触・混合するオゾン接触槽が、複数段直列に配置構成されている。また、これらオゾン接触槽の後段には、オゾンと被処理水の反応時間を確保するための滞留槽が設置されている。さらに、オゾン接触槽から未反応のまま排出される排オゾン化ガスを分解、除去する排オゾン処理装置が設けられている。   In general, an ozone treatment pond includes an ozone contact tank in which ozonized gas is injected into contact with water to be treated and contacted and mixed in a plurality of stages. Moreover, the residence tank for ensuring the reaction time of ozone and to-be-processed water is installed in the back | latter stage of these ozone contact tanks. Further, there is provided an exhaust ozone treatment device for decomposing and removing exhausted ozonized gas discharged from the ozone contact tank in an unreacted state.

各オゾン接触槽の下部にはそれぞれオゾン散気管が設置されており、オゾン発生器からオゾン化ガスが供給され、オゾン接触槽内に気泡として注入される。オゾン処理池の処理水出口には溶存オゾン濃度計が設置され、この溶存オゾン濃度計の出力は、オゾン注入制御装置に入力され、オゾン接触槽に注入されるオゾン化ガス注入量を制御する。   An ozone diffusing tube is installed in the lower part of each ozone contact tank, and ozonized gas is supplied from the ozone generator and injected as bubbles into the ozone contact tank. A dissolved ozone concentration meter is installed at the treated water outlet of the ozone treatment pond, and the output of the dissolved ozone concentration meter is input to the ozone injection control device to control the amount of ozonized gas injected into the ozone contact tank.

上記構成において、前段で懸濁物質が除去された原水は、オゾン処理池に被処理水として流入する。オゾン処理池内の各オゾン接触槽には、下部に設けられた散気管からオゾン化ガスが注入され、被処理水中に気泡となって注入される。このオゾン化ガスの気泡と被処理水との気液接触によりオゾンが被処理水に溶解し、溶質との酸化反応により、フミン質を中心としたトリハロメタン前駆物質である高分子有機化合物の低分子化、2−メチルイソボルネオール(2−MIB)、ジェオスミンなどの分解による脱臭などが達成される。   In the above configuration, the raw water from which suspended substances have been removed in the previous stage flows into the ozone treatment pond as treated water. Ozonized gas is injected into each ozone contact tank in the ozone treatment pond from an air diffuser provided in the lower part, and is injected into the water to be treated as bubbles. Ozone is dissolved in the water to be treated by gas-liquid contact between the ozonized gas bubbles and the water to be treated, and an oxidation reaction with the solute causes a low molecular weight organic polymer compound that is a trihalomethane precursor, mainly humic substances. , Deodorization by decomposition of 2-methylisoborneol (2-MIB), geosmin and the like is achieved.

オゾンにより処理された処理水は、オゾン処理池出口に設置された溶存オゾン濃度計により溶存オゾン濃度が測定され、測定値はオゾン注入制御装置に入力される。オゾン注入制御装置では、予め設定された溶存オゾン濃度設定値と溶存オゾン濃度計の測定値の差に基づいて、オゾン発生器からオゾン接触槽へ供給されるオゾン化ガス注入量(オゾン化ガス中のオゾン濃度または注入流量、或いはその両方)、すなわち、被処理水に対するオゾン注入率を制御する。   In the treated water treated with ozone, the dissolved ozone concentration is measured by a dissolved ozone concentration meter installed at the outlet of the ozone treatment pond, and the measured value is input to the ozone injection control device. In the ozone injection control device, the amount of ozonized gas injected from the ozone generator to the ozone contact tank based on the difference between the preset dissolved ozone concentration set value and the measured value of the dissolved ozone concentration meter (in the ozonized gas) The ozone concentration and / or the injection flow rate, or both), that is, the ozone injection rate for the water to be treated.

オゾン化ガスのうちオゾン接触槽で未溶解のまま排出されるオゾン化ガスは、オゾン処理池の上部気相部より排出され、排オゾン処理装置により無害化した上で大気中へ放出される。この未反応のオゾンが多いと、発生させたオゾンのロスとなる。オゾン処理水中の溶存オゾン濃度も、発生させたオゾンのロスになる。従って、被処理水の処理対象物質の性状変化に合わせて、必要最小限のオゾンの注入により、無駄なオゾン発生を低減する必要がある。   Of the ozonized gas, the ozonized gas discharged in an ozone contact tank without being dissolved is discharged from the upper vapor phase of the ozone treatment pond, detoxified by the exhaust ozone treatment device, and then released into the atmosphere. If there is a large amount of unreacted ozone, the generated ozone is lost. Dissolved ozone concentration in the ozone-treated water is also a loss of generated ozone. Therefore, it is necessary to reduce the generation of wasteful ozone by injecting the minimum amount of ozone in accordance with the change in the properties of the material to be treated.

しかし、実際には、被処理水中の処理対象物質の変化を確認しながらフィードバック制御するのは難しいため、常に少し多めのオゾンを注入するように、オゾン注入制御装置の溶存オゾン濃度設定値を決めている。   However, in practice, it is difficult to perform feedback control while confirming changes in the substance to be treated in the water to be treated. Therefore, the dissolved ozone concentration setting value of the ozone injection control device is determined so that a little more ozone is always injected. ing.

また、溶存オゾン濃度計に未溶解のオゾン化ガス気泡が入ると測定値が不安定になる。そこで、溶存オゾン濃度に代ってオゾン化ガス吸収量(注入オゾン量と排出されるオゾン量の差)を被処理水中の有機体炭素濃度(TOC)で除した数値が一定の範囲になるように制御する方法が提案されている(例えば、特許文献2参照)。   Moreover, if undissolved ozonized gas bubbles enter the dissolved ozone concentration meter, the measured value becomes unstable. Therefore, the numerical value obtained by dividing the ozonized gas absorption amount (difference between the injected ozone amount and the discharged ozone amount) by the organic carbon concentration (TOC) in the water to be treated instead of the dissolved ozone concentration is within a certain range. There has been proposed a control method (see, for example, Patent Document 2).

この場合、被処理水中のTOCを測定する方法として、一般的にサンプルの全炭素濃度(TC)と無機物炭素濃度(IC)を測定し、TCからICを差し引くことによりTOC求める方法が用いられている。この方法では、1サンプルに対する測定時間が15分から30分程度かかってしまう。特許文献2では、オゾン処理池の被処理水流入部のTOCを測定しているが、この場合、上記測定時間により制御に時間差が生じリアルタイム制御が難しいという問題点がある。   In this case, as a method of measuring the TOC in the water to be treated, a method is generally used in which the total carbon concentration (TC) and inorganic carbon concentration (IC) of the sample are measured, and the TOC is obtained by subtracting the IC from the TC. Yes. In this method, the measurement time for one sample takes about 15 to 30 minutes. In Patent Document 2, the TOC of the treated water inflow portion of the ozone treatment pond is measured, but in this case, there is a problem that a time difference occurs in the control due to the measurement time and real-time control is difficult.

一方、被処理水の水質を確認しながらフィードバック制御する方法として、オゾンにより酸化分解された処理水中の紫外線吸光度を測定してフィードバック制御する方法が提案されている(例えば、特許文献3、参照)。   On the other hand, as a method of performing feedback control while confirming the quality of the water to be treated, a method of performing feedback control by measuring ultraviolet absorbance in treated water oxidized and decomposed by ozone has been proposed (for example, see Patent Document 3). .

この場合、一般的に有機物濃度の指標として用いられる紫外線は、260nm程度の波長が用いられる。しかし、オゾン処理水中に溶存オゾンが存在する場合、オゾンの紫外線吸収波長が、254nm程度であり、有機物濃度の測定波長と非常に近いため、溶存オゾンの影響を受けて、正確な測定ができず、結果的にオゾン注入量の正確な制御ができないという問題がある。   In this case, a wavelength of about 260 nm is used for ultraviolet rays that are generally used as an indicator of the organic substance concentration. However, when dissolved ozone is present in the ozone-treated water, the ultraviolet absorption wavelength of ozone is about 254 nm, which is very close to the measurement wavelength of organic matter concentration, so it cannot be measured accurately due to the influence of dissolved ozone. As a result, there is a problem that the ozone injection amount cannot be accurately controlled.

また、被処理水中に臭化物イオンが存在する場合、オゾンによる反応で臭素酸イオンが副生成物として生成される。この臭素酸イオンは、発ガン性があることが指摘されており、世界的に規制されている。すなわち、世界保健機構(WHO)によるガイドライン値25μg/L、米国環境保護省による規制値10μg/Lであり、わが国においても規制の動きがある。   Further, when bromide ions are present in the water to be treated, bromate ions are generated as a by-product by the reaction with ozone. This bromate ion has been pointed out to be carcinogenic and is regulated worldwide. That is, the guideline value by the World Health Organization (WHO) is 25 μg / L, and the control value by the US Department of Environmental Protection is 10 μg / L.

生成した臭素酸イオンは、後段の活性炭処理(粒状あるいは生物)では除去困難であり、臭素酸イオンを低減するには、オゾン処理時での生成を抑制する必要がある。オゾン処理による臭素酸イオンの生成量は、被処理水中の臭化物イオン濃度と、溶存オゾン濃度、オゾン処理池における被処理水の滞留時間(反応時間)との積(CT値)に比例依存する。   The produced bromate ions are difficult to remove by the subsequent activated carbon treatment (granular or biological), and in order to reduce the bromate ions, it is necessary to suppress the production during the ozone treatment. The amount of bromate ions produced by ozone treatment is proportionally dependent on the product (CT value) of bromide ion concentration in the water to be treated, dissolved ozone concentration, and retention time (reaction time) of the water to be treated in the ozone treatment pond.

実際の浄水プラントでは、滞留時間は、オゾン処理池のサイズが変わらないので、同プラントの処理水量に依存する。しかし、処理水量はオゾン処理のために適宜変化させるのは困難である。そこで、処理水中の溶存オゾン濃度を調整することにより臭素酸イオンの生成を抑制する方法が効果的である。   In an actual water purification plant, the residence time depends on the amount of treated water in the plant because the size of the ozone treatment pond does not change. However, it is difficult to change the amount of treated water appropriately for ozone treatment. Therefore, a method of suppressing the formation of bromate ions by adjusting the dissolved ozone concentration in the treated water is effective.

ここで、従来の溶存オゾン濃度一定制御によるオゾン水処理制御システムでは、臭素酸イオンの生成を抑制するためには、溶存オゾン濃度の設定値を低い値にしなければならない。しかし、設定値があまり低すぎると、溶存オゾン濃度計の測定下限に近づくか、それ以下になる。この場合、溶存オゾン濃度計の測定値のバラツキ、誤差が大きく、オゾン化ガス注入量を的確に制御できなくなる。   Here, in the conventional ozone water treatment control system based on the constant control of the dissolved ozone concentration, the set value of the dissolved ozone concentration must be set to a low value in order to suppress the production of bromate ions. However, if the set value is too low, it approaches or falls below the lower limit of measurement of the dissolved ozone concentration meter. In this case, the measurement value of the dissolved ozone concentration meter varies greatly and the error is large, and the ozonized gas injection amount cannot be accurately controlled.

また、臭素酸イオンの生成を抑えるためには、溶存オゾン濃度の設定値を低くしてオゾン注入率を低くする必要があるが、オゾン注入率を低くすることは、本来のオゾンによる分解対象物である臭気物質、色度物質、トリハロメタン前駆物質などの分解能力を低下させることになり、必要以上にオゾン注入率を低くするわけにはいかない。こういった理由から、従来のシステムではオゾンガス注入量を制御するための各設定値を決めるのが困難であり、しかも、原水水質の変動に対して、リアルタイムに対応できない。   Moreover, in order to suppress the production of bromate ions, it is necessary to lower the ozone injection rate by lowering the set value of the dissolved ozone concentration, but lowering the ozone injection rate is the object of decomposition by the original ozone. As a result, the ability to decompose odorous substances, chromaticity substances, trihalomethane precursors, etc. will be reduced, and the ozone injection rate cannot be lowered more than necessary. For these reasons, it is difficult to determine each set value for controlling the ozone gas injection amount in the conventional system, and it is impossible to deal with the fluctuation of the raw water quality in real time.

さらに、浄水場が高度浄水処理のオゾン処理を採用する目的の1つは、トリハロメタン前駆物質を分解することであるが、主なトリハロメタン前駆物質であるフミン質は、オゾンによる分解反応速度が速いものと遅いものがある。その割合は、原水の種類、季節、天候などによって違ってくる。分解反応速度が速いフミン質の分解は、低溶存オゾン濃度でも優先的に分解が進行するが、分解反応速度が遅いフミン質まで分解するように溶存オゾン濃度を上げる、すなわち、オゾンガス注入量(オゾン注入率)を増やしていては、後段の活性炭処理や塩素処理でも除去できない臭素酸イオン等の副生成物が増加してしまう。   Furthermore, one of the purposes of water treatment plants adopting advanced water treatment ozone treatment is to decompose trihalomethane precursors, but the main trihalomethane precursor humic substances have a fast decomposition reaction rate by ozone. And there are slow ones. The ratio varies depending on the type of raw water, season, and weather. Decomposition of humic substances with a fast decomposition reaction rate proceeds preferentially even at low dissolved ozone concentrations, but the dissolved ozone concentration is increased so that it decomposes to humic substances with a slow decomposition reaction rate, that is, the amount of ozone gas injected (ozone If the injection rate is increased, by-products such as bromate ions that cannot be removed by the subsequent activated carbon treatment or chlorination increase.

また、分解反応速度が遅いフミン質を中途半端にオゾン分解すると、かえってトリハロメタン生成能が増加してしまう。すなわち、分解反応速度が遅いフミン質をオゾン分解することは、トリハロメタン生成能を低減するという観点からは、無駄なオゾンを注入していることになり、運転コストの上昇をもたらす。
特開2000−288661号公報 特開2000−288561号公報 特開平11−207368号公報
In addition, when humic substances having a slow decomposition reaction rate are subjected to ozonolysis halfway, the trihalomethane generating ability is increased. That is, ozonolysis of humic substances having a slow decomposition reaction rate means that unnecessary ozone is injected from the viewpoint of reducing trihalomethane production ability, resulting in an increase in operating cost.
JP 2000-288661 A JP 2000-288561 A JP-A-11-207368

このように、オゾン処理と生物活性炭処理を組合せた水処理設備において、被処理水中の有機物の分解処理、トリハロメタン生成能の低減処理を効率良く行わせることができ、しかも、無駄なオゾンガス注入を減らし、かつ、後段の活性炭処理や塩素処理でも除去できない臭素酸イオン等の副生成物の生成を低く抑えるために必要最小限のオゾンを注入制御することが難しかった。   In this way, in the water treatment facility that combines ozone treatment and biological activated carbon treatment, it is possible to efficiently perform the decomposition treatment of organic matter in the water to be treated and the reduction treatment of trihalomethane production ability, and reduce wasteful ozone gas injection. In addition, it is difficult to control the injection of the minimum ozone necessary to suppress the generation of by-products such as bromate ions that cannot be removed by the subsequent activated carbon treatment or chlorination treatment.

本発明の目的は、被処理水中の有機物の分解処理、トリハロメタン生成能の低減処理を最も効率良く行わせることができ、設備の運転コストを増加させる無駄なオゾンガス注入を減らし、かつ、後段の活性炭処理や塩素処理でも除去できない臭素酸イオン等の副生成物の生成を低く抑えることができる水処理方法及び水処理システムを提供することにある。   It is an object of the present invention to reduce the wasteful ozone gas injection that increases the operating cost of equipment and can reduce the wasteful ozone gas injection that can most efficiently perform the decomposition treatment of organic matter in the water to be treated and the reduction of trihalomethane production ability, and the activated carbon in the latter stage An object of the present invention is to provide a water treatment method and a water treatment system that can suppress the production of by-products such as bromate ions that cannot be removed even by treatment or chlorination.

本発明による水処理方法は、原水から懸濁物質を除去した後、オゾン処理池にてオゾン処理し、オゾン処理後活性炭処理池にて活性炭処理を行う水処理方法であって、前記原水の一部を懸濁物質除去後に有機体炭素濃度計に導入して、原水の溶存性有機体炭素濃度を測定し、予め求められている溶存性有機体炭素濃度とオゾン吸収率との関係から、前記測定された原水の溶存性有機体濃度に対応するオゾン吸収率に基づき、前記オゾン処理池へのオゾン注入量を決定することを特徴とする。   The water treatment method according to the present invention is a water treatment method in which suspended substances are removed from raw water, then ozone treatment is performed in an ozone treatment pond, and after the ozone treatment, activated carbon treatment is performed in the activated carbon treatment pond. Is introduced into an organic carbon concentration meter after removing suspended substances, and the dissolved organic carbon concentration of raw water is measured. From the relationship between the dissolved organic carbon concentration and ozone absorption rate obtained in advance, The amount of ozone injected into the ozone treatment pond is determined based on the ozone absorption rate corresponding to the measured concentration of dissolved organic matter in the raw water.

また、本発明方法では、原水の溶存性有機体炭素濃度とオゾン処理池の入り口部分における原水の蛍光強度との比を求め、この比の値に基づいてオゾン処理池へのオゾン注入量を制御する。   In the method of the present invention, the ratio between the dissolved organic carbon concentration of the raw water and the fluorescence intensity of the raw water at the entrance of the ozone treatment pond is obtained, and the amount of ozone injected into the ozone treatment pond is controlled based on the value of this ratio. To do.

また、本発明方法では、オゾン処理池の入り口部分における原水の蛍光強度と同オゾン処理池の出口部分における処理水の蛍光強度とをそれぞれ測定して、前記原水の蛍光強度に対する前記処理水の蛍光強度の割合を求め、オゾン吸収量の変化に対する前記割合の減少特性に基づきオゾン注入に対する反応の境目となる割合を予め求めておき、前記境目となる割合を、前記蛍光強度の測定によって得られる割合に対する目標値として、オゾン処理池へのオゾン注入量を制御してもよい。   In the method of the present invention, the fluorescence intensity of the raw water at the entrance portion of the ozone treatment pond and the fluorescence intensity of the treatment water at the exit portion of the ozone treatment pond are respectively measured, and the fluorescence of the treatment water with respect to the fluorescence intensity of the raw water A ratio of intensity is obtained, a ratio that becomes a boundary of reaction to ozone injection based on a decrease characteristic of the ratio with respect to a change in ozone absorption amount is obtained in advance, and a ratio that becomes the boundary is obtained by measuring the fluorescence intensity. As a target value for the above, the amount of ozone injected into the ozone treatment pond may be controlled.

また、本発明方法では、オゾン処理池は、順次連通するように区切られ、かつ個別にオゾンが供給される複数段のオゾン接触槽を有し、これら各オゾン接触槽の入り口と出口との蛍光強度の差により各オゾン接触槽における蛍光強度減少率をそれぞれ求め、これら蛍光強度減少率に応じて、各オゾン接触槽毎のオゾン注入率をそれぞれ求め、この求められた注入率を目標値として各オゾン接触槽へのオゾン注入量を制御するようにしてもよい。   Further, in the method of the present invention, the ozone treatment pond has a plurality of ozone contact tanks which are separated so as to communicate with each other and are supplied with ozone individually, and fluorescence at the inlet and outlet of each ozone contact tank is provided. The fluorescence intensity decrease rate in each ozone contact tank is determined from the difference in intensity, and the ozone injection rate for each ozone contact tank is determined according to the fluorescence intensity decrease rate, and the determined injection rate is set as a target value. The amount of ozone injected into the ozone contact tank may be controlled.

さらに、本発明方法では、オゾン処理池出口における処理水の溶存酸素濃度を測定し、この溶存酸素濃度が設定値以上とならないようにオゾン処理池へのオゾン注入量を制限する。   Furthermore, in the method of the present invention, the dissolved oxygen concentration of the treated water at the ozone treatment pond outlet is measured, and the amount of ozone injected into the ozone treatment pond is limited so that the dissolved oxygen concentration does not exceed the set value.

本発明による水処理システムでは、原水の一部を懸濁物質除去用のフィルターを介して導入し、原水の溶存性有機体炭素濃度を測定する有機体炭素濃度計と、予め求められている溶存性有機体炭素濃度とオゾン吸収率との関係から、前記測定された原水の溶存性有機体濃度に対応するオゾン吸収率に基づき、前記オゾン処理池へのオゾン注入量を決定するオゾン注入制御装置とを備えたことを特徴とする。   In the water treatment system according to the present invention, a part of raw water is introduced through a filter for removing suspended solids, and an organic carbon concentration meter for measuring the dissolved organic carbon concentration of the raw water, Ozone injection control device for determining the amount of ozone injected into the ozone treatment basin based on the ozone absorption rate corresponding to the measured concentration of dissolved organic matter in the raw water based on the relationship between the organic carbon concentration and the ozone absorption rate It is characterized by comprising.

また、本発明の水処理システムでは、オゾン処理池の入り口部分に、原水の蛍光強度を測定する蛍光分析計を設け、オゾン注入制御装置は、原水の溶存性有機体炭素濃度とオゾン処理池の入り口部分における原水の蛍光強度との比を求め、この比の値に基づいてオゾン処理池へのオゾン注入量を制御する機能を有する。   Further, in the water treatment system of the present invention, a fluorescence analyzer for measuring the fluorescence intensity of the raw water is provided at the entrance of the ozone treatment pond, and the ozone injection control device is used for the dissolved organic carbon concentration of the raw water and the ozone treatment pond. It has the function of obtaining the ratio of the raw water fluorescence intensity at the entrance and controlling the amount of ozone injected into the ozone treatment pond based on the value of this ratio.

また、本発明の水処理システムでは、オゾン処理池の入り口部分における原水の蛍光強度を測定する蛍光分析計及び同オゾン処理池の出口部分における処理水の蛍光強度をする蛍光分析計を設け、オゾン注入制御装置は、前記各蛍光分析計で測定された原水の蛍光強度と処理水蛍光強度とから、原水の蛍光強度に対する処理水の蛍光強度の割合を求める機能と、予め求められた、オゾン吸収量の変化に対する前記割合の減少特性に基づきオゾン注入に対する反応の境目となる割合を用い、この境目となる割合を、前記蛍光強度の測定によって得られる割合に対する目標値として、オゾン処理池へのオゾン注入量を制御する機能とを有する。   In the water treatment system of the present invention, a fluorescence analyzer that measures the fluorescence intensity of raw water at the entrance of the ozone treatment pond and a fluorescence analyzer that measures the fluorescence intensity of the treated water at the exit of the ozone treatment pond are provided. The injection control device has a function for obtaining the ratio of the fluorescence intensity of the treated water to the fluorescence intensity of the raw water from the fluorescence intensity of the raw water and the fluorescence intensity of the treated water measured by the respective fluorescence analyzers, and the ozone absorption obtained in advance. Using the ratio that becomes the boundary of the reaction to ozone injection based on the decreasing characteristic of the ratio with respect to the change in quantity, the ratio that becomes the boundary is set as the target value for the ratio obtained by the measurement of the fluorescence intensity, and the ozone to the ozone treatment pond And a function of controlling the injection amount.

また、本発明の水処理システムでは、オゾン処理池は、順次連通するように区切られ、かつ個別にオゾンが供給される複数段のオゾン接触槽を有し、これら各オゾン接触槽の入り口と出口とに蛍光分析計を設け、オゾン注入制御装置は、前記各オゾン接触槽の入り口と出口との蛍光強度の差により各オゾン接触槽における蛍光強度減少率をそれぞれ求める機能と、これら蛍光強度減少率に応じて、前記各オゾン接触槽毎のオゾン注入率をそれぞれ求め、この求められた注入率を目標値として各オゾン接触槽へのオゾン注入量を制御する機能とを有する構成でもよい。   In the water treatment system of the present invention, the ozone treatment pond has a plurality of stages of ozone contact tanks that are separated so as to communicate with each other and are individually supplied with ozone. The ozone injection control device has a function for obtaining the fluorescence intensity reduction rate in each ozone contact tank based on the difference in fluorescence intensity between the inlet and outlet of each ozone contact tank, and these fluorescence intensity reduction rates. The ozone injection rate for each ozone contact tank may be obtained according to the above, and the ozone injection rate to each ozone contact tank may be controlled using the obtained injection rate as a target value.

さらに、本発明の水処理システムでは、オゾン処理池の出口に、処理水の溶存酸素濃度を測定する溶存オゾン濃度計を設け、オゾン注入制御装置は、この溶存酸素濃度が設定値以上とならないようにオゾン処理池へのオゾン注入量を制限する機能を有する構成でもよい。   Furthermore, in the water treatment system of the present invention, a dissolved ozone concentration meter that measures the dissolved oxygen concentration of the treated water is provided at the outlet of the ozone treatment pond, and the ozone injection control device prevents the dissolved oxygen concentration from exceeding a set value. The structure which has a function which restrict | limits the ozone injection amount to an ozone treatment pond may be sufficient.

本発明によれば、原水の溶存性有機体炭素濃度を測定し、予め求められている溶存性有機体炭素濃度とオゾン吸収濃度との関係から、測定された原水の溶存性有機体濃度に対応するオゾン吸収率に基づき、前記オゾン処理液へのオゾン注入量を決定するので、原水の水質に適合し、被処理水中の有機物の分解処理、トリハロメタン生成能の低減処理を最も効率良く行わせることができる最低限のオゾン注入率を得ることができる。   According to the present invention, the dissolved organic carbon concentration of raw water is measured, and from the relationship between the dissolved organic carbon concentration obtained in advance and the ozone absorption concentration, it corresponds to the measured dissolved organic carbon concentration of the raw water. Because the amount of ozone injected into the ozone treatment liquid is determined based on the ozone absorption rate, the most effective is the degradation of organic matter in the water to be treated and the reduction of trihalomethane production capacity, which suits the quality of the raw water. The minimum ozone injection rate that can be obtained can be obtained.

また、原水の溶存性有機体炭素濃度とオゾン処理池の入り口部分における原水の蛍光強度との比に基づいてオゾン処理池へのオゾン注入量を制御する場合は、原水水質の突発的な変化に対して速やかにオゾン注入量を制御できる。   In addition, when the amount of ozone injected into the ozone treatment pond is controlled based on the ratio of the dissolved organic carbon concentration of the raw water and the fluorescence intensity of the raw water at the entrance of the ozone treatment pond, sudden changes in the quality of the raw water On the other hand, the ozone injection amount can be quickly controlled.

また、原水の蛍光強度に対する前記処理水の蛍光強度の割合を求め、オゾン注入に対する反応の境目となる割合を予め求めておき、境目となる割合を目標値として、オゾン注入量を制御すれば、反応速度の速い物質を確実に分解し、反応速度の遅い物質に対する無駄なオゾンガスの注入を防止できる。   Further, the ratio of the fluorescence intensity of the treated water relative to the fluorescence intensity of the raw water is obtained in advance, the ratio that becomes the boundary of the reaction with respect to the ozone injection is obtained in advance, and the ozone injection amount is controlled with the ratio that becomes the boundary as the target value. A substance with a fast reaction rate can be reliably decomposed, and useless injection of ozone gas into a substance with a slow reaction rate can be prevented.

また、オゾン処理池内の複数段のオゾン接触槽に対し、これら各オゾン接触槽における蛍光強度減少率をそれぞれ求め、これら蛍光強度減少率に応じてオゾン注入率を決めるようにすれば、各オゾン接触槽に最適なオゾン注入量制御を行うことができる。   In addition, for each ozone contact tank in the ozone treatment pond, if the fluorescence intensity reduction rate in each ozone contact tank is determined and the ozone injection rate is determined according to the fluorescence intensity reduction rate, each ozone contact tank The optimal ozone injection amount control for the tank can be performed.

さらに、オゾン処理池の出口に溶存オゾン濃度計を設け、処理水の溶存酸素濃度が設定値以上とならないようにオゾン注入量を制限することにより、過剰なオゾン化ガスの注入を確実に防止することができる。   Furthermore, a dissolved ozone concentration meter is installed at the outlet of the ozone treatment pond, and the ozone injection amount is limited so that the dissolved oxygen concentration of the treated water does not exceed the set value, thereby reliably preventing excessive ozonated gas injection. be able to.

以下、本発明による水処理方法および水処理システムの一実施の形態について図面を用いて詳細に説明する。   Hereinafter, an embodiment of a water treatment method and a water treatment system according to the present invention will be described in detail with reference to the drawings.

図1は、オゾン処理システムを導入した高度浄水処理システムの処理フローを示すブロック図である。図1において、1は着水井で、図示しない河川などの水源から原水が導入される。2は凝集沈殿池で、着水井1から原水が導入されるが、その入口部分にて薬剤注入装置7により凝集剤と必要によりpH調整剤が注入される。凝集沈殿池2では、原水中の粘土質、細菌、藻類などの懸濁物質を予め凝集し、フロックとして分離し、後続する砂ろ過池3で残った濁質を除去する。すなわち、凝集沈殿池2と砂ろ過池3とで原水中の懸濁物質を除去している。   FIG. 1 is a block diagram showing a processing flow of an advanced water purification system introduced with an ozone treatment system. In FIG. 1, reference numeral 1 denotes a landing well, from which raw water is introduced from a water source such as a river (not shown). Reference numeral 2 denotes a coagulation sedimentation basin, and raw water is introduced from the landing well 1, and a coagulant and, if necessary, a pH adjusting agent are injected by a drug injection device 7 at the inlet portion. In the coagulation sedimentation basin 2, suspended substances such as clay, bacteria, and algae in the raw water are aggregated in advance and separated as flocs, and the turbidity remaining in the subsequent sand filtration pond 3 is removed. That is, suspended substances in the raw water are removed by the coagulation sedimentation basin 2 and the sand filtration basin 3.

4はオゾン処理池で、砂ろ過池3の後段に接続され、懸濁物質を除去された原水が被処理水として導入され、オゾン発生器12から注入されるオゾン化ガスによりオゾン処理を行う。5は活性炭処理池(粒状あるいは生物活性炭)で、オゾン処理池4の後段に接続され、オゾン処理された処理水に残留した処理対象物質を吸着及び分解除去する。この活性炭処理池5の出口側には浄水池6が設けられ、その入口で消毒のために塩素剤8が注入される。   Reference numeral 4 denotes an ozone treatment pond, which is connected to the subsequent stage of the sand filtration pond 3, and raw water from which suspended substances have been removed is introduced as water to be treated, and ozone treatment is performed with an ozonized gas injected from the ozone generator 12. An activated carbon treatment pond (granular or biological activated carbon) 5 is connected to the subsequent stage of the ozone treatment pond 4 and adsorbs and decomposes and removes the substance to be treated remaining in the treated water treated with ozone. A purified water pond 6 is provided on the outlet side of the activated carbon treatment pond 5, and a chlorine agent 8 is injected at the entrance for disinfection.

10は有機体炭素濃度計で、着水井1に取り付けられた水質検査用サンプルの取水管および懸濁物質除去用のろ過フィルター9を介して着水井1に通じており、着水井1から原水の一部をサンプル水として採水し、その有機体炭素濃度を測定する。13は溶存オゾン濃度計で、オゾン処理池4の出口に取り付けられた水質検査用サンプル取水管を介してオゾン処理水を採水し、その溶存オゾン濃度を測定する。11はオゾン注入制御装置で、上記有機体炭素濃度計10および溶存オゾン濃度計13の各測定値が入力され、夫々の測定値に基づいて最適なオゾン注入量になるようにオゾン発生器12を制御する。   Reference numeral 10 denotes an organic carbon concentration meter, which is connected to the landing well 1 through a water quality test sample intake pipe attached to the landing well 1 and a filtration filter 9 for removing suspended solids. A part of the sample water is sampled and the organic carbon concentration is measured. Reference numeral 13 denotes a dissolved ozone concentration meter, which samples ozone-treated water through a sample intake pipe for water quality inspection attached to the outlet of the ozone treatment pond 4 and measures the dissolved ozone concentration. Reference numeral 11 denotes an ozone injection control device, to which the measured values of the organic carbon concentration meter 10 and the dissolved ozone concentration meter 13 are input, and the ozone generator 12 is controlled so as to obtain an optimal ozone injection amount based on the respective measured values. Control.

上記構成において、原水は、凝集沈殿池2、砂ろ過池3によって、原水中の懸濁物質が除去され、オゾン処理池4に流入する。このためオゾン処理池4でのオゾン処理対象物質である有機物質は、溶存性の有機物質のみとなる。この溶存性有機物質濃度の指標としては、溶存性有機体炭素濃度(DOC)がある。   In the above configuration, the raw water is suspended in the raw water by the coagulation sedimentation basin 2 and the sand filtration pond 3 and flows into the ozone treatment pond 4. For this reason, the organic substance which is the object of ozone treatment in the ozone treatment pond 4 is only a dissolved organic substance. As an index of the dissolved organic substance concentration, there is a dissolved organic carbon concentration (DOC).

図2は、溶存性有機体炭素濃度(DOC)とオゾン処理池で吸収されるオゾン吸収量の関係を表す特性図であり、この関係を利用すれば必要最小限のオゾン注入量を推定することができる。ここで、オゾン吸収量は(1)式で定義される。   Fig. 2 is a characteristic diagram showing the relationship between the dissolved organic carbon concentration (DOC) and the amount of ozone absorbed by the ozone treatment pond. By using this relationship, the minimum ozone injection amount can be estimated. Can do. Here, the amount of ozone absorption is defined by equation (1).

オゾン吸収量=注入オゾン化ガス濃度−(溶存オゾン濃度−排オゾンガス濃度)
・・・・・・・・・・・・・・・・・・・・(1)
ここで、有機体炭素濃度の測定は、前述のようにサンプルの全炭素濃度と無機体炭素濃度を測定し、全炭素濃度から無機体炭素濃度を差し引くことにより求める必要があるため、1サンプルに対する測定時間が15分から30分程度要する。この実施の形態では、着水井1から採水した原水を、ろ過フィルター9を通して有機体炭素濃度計10に供給しているため、有機体炭素濃度計10では、原水中の懸濁物質がろ過された溶存性の有機体炭素濃度(DOC)のみを計測することになる。オゾン処理池4に流入する被処理水は、前述のように凝集沈殿池2及び砂ろ過池3を通過するため、この時間差を利用することにより、被処理水がオゾン処理池4に流入する以前に、そのDOCを測定することができる。
Ozone absorption amount = injection ozone gas concentration-(dissolved ozone concentration-exhaust ozone gas concentration)
(1)
Here, the measurement of the organic carbon concentration needs to be obtained by measuring the total carbon concentration and the inorganic carbon concentration of the sample as described above, and subtracting the inorganic carbon concentration from the total carbon concentration. The measurement time is about 15 to 30 minutes. In this embodiment, since the raw water collected from the landing well 1 is supplied to the organic carbon concentration meter 10 through the filtration filter 9, the organic carbon concentration meter 10 filters suspended substances in the raw water. Only the dissolved organic carbon concentration (DOC) will be measured. Since the treated water flowing into the ozone treatment pond 4 passes through the coagulation sedimentation basin 2 and the sand filtration pond 3 as described above, by using this time difference, before the treated water flows into the ozone treatment pond 4. In addition, the DOC can be measured.

オゾン注入制御装置11は、オゾン処理池4への流入前に測定されたDOCの値により、オゾン処理池4に流入する被処理水が必要とするオゾン注入量を図2の関係から求め、被処理水に最適なオゾン注入量を得るべくオゾン発生器12を制御する。   The ozone injection control device 11 obtains the ozone injection amount required for the water to be treated flowing into the ozone treatment pond 4 from the relationship shown in FIG. 2 based on the DOC value measured before flowing into the ozone treatment pond 4. The ozone generator 12 is controlled to obtain an optimal ozone injection amount for the treated water.

また、オゾン処理池4の出口には溶存オゾン濃度計13が接続されており、この測定値出力がオゾン注入制御装置11に入力されている。オゾン注入制御装置11では、オゾン処理水の溶存オゾン濃度上限値が設定されており、溶存オゾン濃度計13の測定値が設定値を超えた場合には、オゾン注入量を減少させるようにオゾン発生器12を制御する。   A dissolved ozone concentration meter 13 is connected to the outlet of the ozone treatment pond 4, and this measured value output is input to the ozone injection control device 11. In the ozone injection control device 11, the upper limit value of the dissolved ozone concentration of the ozone treated water is set, and when the measured value of the dissolved ozone concentration meter 13 exceeds the set value, the ozone generation is performed so as to decrease the ozone injection amount. The device 12 is controlled.

本実施の形態によれば、被処理水がオゾン処理池に流入する前に、溶存性有機体炭素濃度(DOC)を測定することができるため、時間遅れ無くオゾン注入量を適切に制御することができる。その結果、原水の水質に適合した量のオゾンを注入でき、被処理水中の有機物の分解処理、トリハロメタン生成能の低減処理を最も効率良く行わせることができる。また、無駄なオゾン化ガス注入を防止でき、過剰なオゾン化ガス注入により処理水中に残留する溶存オゾン濃度が高くなることはない。このため、オゾンと被処理水の反応により生じる臭素酸イオン等の、毒性が高く後段の活性炭処理池で処理できない副生成物の生成を抑止できる。さらに、被処理水水質の季節変化、天候による変動、想定外の理由による突発的な変動に対してもリアルタイムにオゾン処理池へのオゾン化ガス注入量を最適化できる。   According to this embodiment, since the dissolved organic carbon concentration (DOC) can be measured before the water to be treated flows into the ozone treatment pond, the ozone injection amount can be appropriately controlled without a time delay. Can do. As a result, an amount of ozone suitable for the quality of the raw water can be injected, and the organic substance in the treated water can be decomposed and the trihalomethane generating ability can be reduced most efficiently. Moreover, useless ozonization gas injection | pouring can be prevented and the dissolved ozone concentration which remains in process water by excessive ozonization gas injection | pouring does not become high. For this reason, generation | occurrence | production of the by-products which cannot be processed in the activated carbon treatment pond of a latter stage, such as bromate ion produced by reaction of ozone and to-be-processed water, can be suppressed. Furthermore, the amount of ozonized gas injected into the ozone treatment pond can be optimized in real time against seasonal changes in the quality of treated water, fluctuations due to weather, and sudden fluctuations due to unexpected reasons.

また、上記の構成では、溶存性有機体炭素濃度計10による測定値だけでなく、オゾン処理池4から流出するオゾン処理水の溶存オゾン濃度を測定し、その測定値が設定値を超えないように、オゾン処理池4へのオゾン化ガス注入量を制御するようになっている。その結果、万一、溶存性有機体炭素濃度測定値に基づいて推定されるオゾン化ガス注入量と、オゾン処理池4におけるオゾンと被処理水の反応特性が異なっても、オゾン化ガスのオゾン処理池4への過剰注入を防止できる。すなわち、過剰にオゾン化ガスが注入され、オゾン処理水中に残留する溶存オゾン濃度が高くなり、オゾンと被処理水との反応により生じる毒性の高い副生成物の生成を抑止できる。   Further, in the above configuration, not only the measured value by the dissolved organic carbon concentration meter 10 but also the dissolved ozone concentration of the ozone treated water flowing out from the ozone treatment pond 4 is measured so that the measured value does not exceed the set value. In addition, the amount of ozonized gas injected into the ozone treatment pond 4 is controlled. As a result, even if the ozonized gas injection amount estimated based on the dissolved organic carbon concentration measurement value and the reaction characteristics of ozone and treated water in the ozone treatment pond 4 differ, Excessive injection into the treatment pond 4 can be prevented. That is, the ozonized gas is excessively injected, the concentration of dissolved ozone remaining in the ozone-treated water increases, and the production of highly toxic by-products caused by the reaction between ozone and the water to be treated can be suppressed.

次に、図3で示す実施の形態を説明する。図3において着水井1から浄水池6までの処理フロー及びオゾン注入制御装置11に対して有機体炭素濃度計10、オゾン処理池4の出口の溶存オゾン濃度計13を設けることは、基本的に図1と同じである。   Next, the embodiment shown in FIG. 3 will be described. In FIG. 3, the organic carbon concentration meter 10 and the dissolved ozone concentration meter 13 at the outlet of the ozone treatment pond 4 are basically provided for the treatment flow from the landing well 1 to the water purification pond 6 and the ozone injection control device 11. The same as FIG.

図3では、上記構成に加え、オゾン処理池4の入口と出口とに、夫々水質検査用サンプル水取水管を介して蛍光分析計14,15が取り付けられており、オゾン処理池4の入り口と出口とから採水したサンプル水の蛍光強度を測定している。この蛍光分析計14,15の出力は、有機体炭素濃度計10および溶存オゾン濃度計13の測定値と共に、オゾン注入制御装置11に入力され、夫々の測定値に基づいて最適なオゾン注入量になるようにオゾン発生器12を制御する。   In FIG. 3, in addition to the above-described configuration, fluorescence analyzers 14 and 15 are attached to the inlet and outlet of the ozone treatment pond 4 via sample water intake pipes for water quality inspection, respectively. The fluorescence intensity of sample water sampled from the outlet is measured. The outputs of the fluorescence analyzers 14 and 15 are input to the ozone injection control device 11 together with the measured values of the organic carbon concentration meter 10 and the dissolved ozone concentration meter 13, and the optimum ozone injection amount is obtained based on the measured values. Thus, the ozone generator 12 is controlled.

次に、この実施の形態の作用を図4、図5を参照しながら説明する。図4は、オゾン処理池4の入口側の蛍光分析計14により、励起波長345nmの条件で、サンプル水から発せられる蛍光のうち、425nmの蛍光波長を選択して計測した蛍光強度と、溶存性有機体炭素濃度(DOC)との関係を示す図である。図から解るとおり、被処理水の蛍光強度とDOCは良好な相関関係が成り立つ。   Next, the operation of this embodiment will be described with reference to FIGS. FIG. 4 shows the fluorescence intensity measured by selecting the fluorescence wavelength of 425 nm from the fluorescence emitted from the sample water by the fluorescence analyzer 14 on the inlet side of the ozone treatment pond 4 under the condition of the excitation wavelength of 345 nm, and the solubility. It is a figure which shows the relationship with organic substance carbon concentration (DOC). As can be seen from the figure, there is a good correlation between the fluorescence intensity of the water to be treated and the DOC.

ここで、前記のように、溶存性有機物質には、オゾンによる分解反応速度が速いものと遅いものがある。その割合は、原水の種類、季節、天候などによって違ってくる。分解反応速度が速い有機物質の分解は、低溶存オゾン濃度でも優先的に分解が進行する。しかし、分解反応速度が遅い有機物質まで分解するように溶存オゾン濃度を上げる、すなわち、オゾンガス注入量を増やすと、後段の活性炭処理や塩素処理でも除去できない臭素酸イオン等の副生成物が増加してしまう。このため、オゾン処理池4では、主に分解速度の速い物質を処理し、残留した処理対象物質は後段に設けられた活性炭処理池5により除去することとする。このようにしても、被処理水中の溶存性有機物質は十分に除去することができる。   Here, as described above, dissolved organic substances include those having a fast decomposition reaction rate by ozone and those having a slow rate. The ratio varies depending on the type of raw water, season, and weather. The decomposition of an organic substance having a high decomposition reaction rate proceeds preferentially even at a low dissolved ozone concentration. However, increasing the dissolved ozone concentration so that it decomposes to organic substances with a slow decomposition reaction rate, that is, increasing the amount of ozone gas injection increases the amount of by-products such as bromate ions that cannot be removed by subsequent activated carbon treatment or chlorination treatment. End up. For this reason, in the ozone treatment pond 4, the substance having a high decomposition rate is mainly treated, and the remaining substance to be treated is removed by the activated carbon treatment pond 5 provided in the subsequent stage. Even if it does in this way, the soluble organic substance in to-be-processed water can fully be removed.

すなわち、オゾンと被処理水の反応状況を監視する手段があれば、無駄なオゾン注入を防止することができる。この実施の形態では、オゾンと被処理水の反応状況を監視する手段として蛍光強度を用いる。   That is, if there is a means for monitoring the reaction state of ozone and water to be treated, wasteful ozone injection can be prevented. In this embodiment, fluorescence intensity is used as means for monitoring the reaction state of ozone and water to be treated.

図5は、処理水蛍光強度の原水(被処理水)強度に対する割合とオゾン処理池4で吸収されるオゾン吸収量の関係を表す図である。図より解るように、オゾン吸収量がゼロから増加するに従って、最初は反応速度が速い物質の分解が優先的に行なわれ、蛍光強度減少率の変化が大きい。やがて反応速度の速い物質が減少し、反応速度の遅い物質の分解だけになると、蛍光強度減少率の変化が小さくなる。そこで、反応速度の速い物質の反応と、遅い物質の反応の境目を実験的に求め、この境目を処理目標値として、オゾン注入量をフィードバック制御することができる。   FIG. 5 is a diagram showing the relationship between the ratio of the treated water fluorescence intensity to the raw water (treated water) intensity and the amount of ozone absorbed absorbed by the ozone treatment pond 4. As can be seen from the figure, as the amount of ozone absorption increases from zero, the substance having a fast reaction rate is first decomposed preferentially and the change in the fluorescence intensity decrease rate is large. When the substance with a fast reaction rate is reduced and only the substance with a slow reaction rate is decomposed, the change in the fluorescence intensity reduction rate becomes small. Therefore, the boundary between the reaction of a substance having a fast reaction rate and the reaction of a slow substance can be experimentally obtained, and the ozone injection amount can be feedback controlled using this boundary as a processing target value.

すなわち、オゾン注入制御装置11は、オゾン処理池4の入り口部分及び出口部分で測定された蛍光強度から、原水(被処理水)の蛍光強度に対する処理水の蛍光強度の割合を求め、オゾン吸収量の変化に対する前記割合の減少特性に基づきオゾン注入に対する反応の境目となる割合を予め求めておき、この境目となる割合を、前記蛍光強度の測定によって得られる割合に対する目標値として、オゾン処理池へのオゾン注入量を制御している。この結果、オゾン処理に対する反応速度の速い物質に対しては的確に分解処理するが、反応速度の遅い物質までを分解しようとするためのオゾン注入量の増加を防止できる。   That is, the ozone injection control device 11 obtains the ratio of the fluorescence intensity of the treated water to the fluorescence intensity of the raw water (treated water) from the fluorescence intensity measured at the entrance portion and the exit portion of the ozone treatment pond 4, and the ozone absorption amount Based on a decrease characteristic of the ratio with respect to the change in the ratio, a ratio that becomes a boundary of the reaction to ozone injection is obtained in advance, and the ratio that becomes the boundary is set as a target value for the ratio obtained by the measurement of the fluorescence intensity to the ozone treatment pond. The amount of ozone injection is controlled. As a result, a substance having a high reaction rate with respect to the ozone treatment is accurately decomposed, but an increase in the amount of ozone injected for attempting to decompose a substance having a low reaction rate can be prevented.

また、オゾン処理池4の出口に設けられた溶存オゾン濃度計13の測定値により、オゾン注入制御装置11は、オゾン処理水の溶存オゾン濃度が上限値を超えた場合には、オゾン注入量を減少させるようにオゾン発生器12を制御するので、このことからもオゾンの過剰注入を防止できる。   Further, according to the measured value of the dissolved ozone concentration meter 13 provided at the outlet of the ozone treatment pond 4, the ozone injection control device 11 determines the ozone injection amount when the dissolved ozone concentration of the ozone treated water exceeds the upper limit value. Since the ozone generator 12 is controlled so as to decrease, excessive ozone injection can be prevented from this.

本実施の形態によれば、被処理水がオゾン処理池4に流入する前に、溶存性有機体炭素濃度(DOC)を測定することができるため、時間遅れ無くオゾン注入量を制御することができる。さらに、被処理水の蛍光強度とオゾン処理後の蛍光強度を測定することにより、反応速度の速い物質の分解進捗度を蛍光強度減少率により監視し、蛍光強度減少率を制御目標値としてオゾン注入量のフィードバック制御を行なうことができる。その結果、無駄なオゾン化ガス注入を防止するだけでなく、過剰なオゾン化ガス注入によるオゾンと被処理水の反応により生じる臭素酸イオン等の、毒性が高く後段の活性炭処理池で処理できない副生成物の生成を抑止できる。さらに、被処理水水質の季節変化、天候による変動、想定外の理由による突発的な変動に対してもリアルタイムにオゾン処理池へのオゾン化ガス注入量を最適化できる。   According to this embodiment, since the dissolved organic carbon concentration (DOC) can be measured before the water to be treated flows into the ozone treatment pond 4, the ozone injection amount can be controlled without time delay. it can. Furthermore, by measuring the fluorescence intensity of the water to be treated and the fluorescence intensity after the ozone treatment, the progress of decomposition of the substance with a fast reaction rate is monitored by the fluorescence intensity decrease rate, and ozone injection is performed with the fluorescence intensity decrease rate as the control target value. Quantity feedback control can be performed. As a result, not only wasteful ozonized gas injection is prevented, but there is a high toxicity such as bromate ions generated by the reaction between ozone and the water to be treated due to excessive ozonized gas injection, and the secondary activated carbon treatment pond cannot be treated. Product generation can be suppressed. Furthermore, the amount of ozonized gas injected into the ozone treatment pond can be optimized in real time against seasonal changes in the quality of treated water, fluctuations due to weather, and sudden fluctuations due to unexpected reasons.

また、上記の構成では、溶存性有機体炭素濃度計による測定値だけでなく、オゾン処理池4から流出するオゾン処理水の溶存オゾン濃度を測定し、その測定値が設定値を超えないように、オゾン処理池へのオゾン化ガス注入量を制御するようになっている。その結果、万一、溶存性有機体炭素濃度測定値に基づいて推定されるオゾン化ガス注入量と、オゾン処理池におけるオゾンと被処理水の反応特性とが異なっても、過剰にオゾン化ガスをオゾン処理池に注入することを防止する。すなわち、過剰なオゾン化ガス注入による毒性の高い副生成物の生成を抑止できる。   In the above configuration, not only the measured value by the dissolved organic carbon concentration meter but also the dissolved ozone concentration of the ozone treated water flowing out from the ozone treatment pond 4 is measured so that the measured value does not exceed the set value. The ozonized gas injection amount into the ozone treatment pond is controlled. As a result, even if the ozonized gas injection amount estimated based on the dissolved organic carbon concentration measurement value and the reaction characteristics of ozone and treated water in the ozone treatment pond are different, excessive ozonized gas Is prevented from being injected into the ozone treatment pond. That is, the production | generation of the highly toxic by-product by excess ozonization gas injection | pouring can be suppressed.

次に、図6で示す実施の形態を説明する。この実施の形態は、オゾン処理池4内の構成に付いて着目したものである。図6において、オゾン処理池4は、被処理水にオゾン化ガスを注入し接触・混合する複数段のオゾン接触槽16、オゾンと被処理水の反応時間を確保するための滞留槽17、オゾン接触槽16から未反応のまま排出される排オゾン化ガスを分解、除去する排オゾン処理装置18から構成されている。   Next, the embodiment shown in FIG. 6 will be described. This embodiment pays attention to the configuration in the ozone treatment pond 4. In FIG. 6, the ozone treatment pond 4 includes a plurality of ozone contact tanks 16 for injecting ozonized gas into the water to be treated, contacting and mixing, a residence tank 17 for ensuring a reaction time of ozone and the water to be treated, ozone The exhaust ozone treatment device 18 decomposes and removes the exhausted ozonized gas discharged from the contact tank 16 in an unreacted state.

各オゾン接触槽16の下部にはそれぞれオゾン散気管19が設置されており、オゾン発生器12からのオゾン化ガスが流量調整弁20を介して供給され、対応するオゾン接触槽16内で気泡として注入される。オゾン処理池4の被処理水入口と、3槽ある各オゾン接触槽16の下部処理水出口部およびオゾン処理池4の出口部には、夫々水質検査用サンプル水取水管が取り付けられており、ここから採水したサンプル水は、蛍光分析計14、15、21へ導かれている。   Below each ozone contact tank 16, an ozone diffuser 19 is installed, and the ozonized gas from the ozone generator 12 is supplied via the flow rate adjusting valve 20, and as bubbles in the corresponding ozone contact tank 16. Injected. Sample water intake pipes for water quality inspection are attached to the treated water inlet of the ozone treatment pond 4, the lower treated water outlet of each of the three ozone contact tanks 16, and the outlet of the ozone treated pond 4, respectively. The sample water collected from here is guided to the fluorescence analyzers 14, 15, and 21.

なお、オゾン処理池4出口部から採水したサンプル水は溶存オゾン濃度計13へも導かれている。また、前述した各実施の形態と同様に、着水井1から採水したサンプル水が、ろ過フィルター9を介して有機体炭素濃度計10へ導かれている。   The sample water collected from the ozone treatment pond 4 outlet is also led to the dissolved ozone concentration meter 13. Similarly to each of the above-described embodiments, the sample water collected from the landing well 1 is guided to the organic carbon concentration meter 10 through the filtration filter 9.

これら有機体炭素濃度計10、蛍光分析計14、15、21および溶存オゾン濃度計13の測定値出力は、オゾン注入制御装置11に入力され、夫々の測定値に対基づいて最適なオゾン注入量になるようにオゾン発生器12および流量調整弁20を制御するように構成されている。   The measured value outputs of the organic carbon concentration meter 10, the fluorescence analyzers 14, 15, 21 and the dissolved ozone concentration meter 13 are input to the ozone injection control device 11, and the optimum ozone injection amount is based on the respective measured values. It is comprised so that the ozone generator 12 and the flow regulating valve 20 may be controlled.

次に、本実施の形態の作用について図7を参照して説明する。図7は、各段のオゾン接触槽16の出口部から採水したサンプル水の蛍光強度減少率の変化を表す図である。なお、各オゾン接触槽16に対するオゾン注入量はほぼ等しいものとする。図において、第1段目の蛍光強度減少率をΔFL1、第2段目の蛍光強度減少率をΔFL2、および第3段目の蛍光強度減少率をΔFL3でとすると、ΔFL1、ΔFL2、ΔFL3は、(2)式、(3)式、(4)式で夫々求めることができる。

Figure 2005313078
Next, the operation of the present embodiment will be described with reference to FIG. FIG. 7 is a diagram showing changes in the fluorescence intensity decrease rate of sample water collected from the outlet of the ozone contact tank 16 at each stage. In addition, the ozone injection amount with respect to each ozone contact tank 16 shall be substantially equal. In the figure, if the first-stage fluorescence intensity decrease rate is ΔFL1, the second-stage fluorescence intensity decrease rate is ΔFL2, and the third-stage fluorescence intensity decrease rate is ΔFL3, then ΔFL1, ΔFL2, and ΔFL3 are (2), (3), and (4) can be obtained respectively.
Figure 2005313078

ここで、FL0は被処理水の蛍光強度、FL1は第1段目出口部の蛍光強度、FL2は第2段目出口部の蛍光強度、FL3は第3段目出口部の蛍光強度である。   Here, FL0 is the fluorescence intensity of the water to be treated, FL1 is the fluorescence intensity of the first stage outlet, FL2 is the fluorescence intensity of the second stage outlet, and FL3 is the fluorescence intensity of the third stage outlet.

図から解るように、オゾン処理が進むに従って、最初は反応速度が速い物質の分解が優先的に行なわれ、蛍光強度減少率の変化が大きいが、やがて反応速度の早い物質が減少し、反応速度の遅い物質の分解だけになると、蛍光強度減少率の変化が小さくなる。そこで、各段のオゾン処理槽毎に蛍光強度の減少率を監視し、予め各段毎の最も効率よくオゾン処理できるオゾン注入率を実験的に求め、各段毎に処理目標値を設定し、オゾン注入量が変化するように、オゾン発生器12での発生オゾン化ガス濃度およびガス流量調整弁20の開度をフィードバック制御することができる。   As can be seen from the figure, as the ozone treatment progresses, the decomposition of the substance with a fast reaction rate is preferentially performed at first, and the change in the fluorescence intensity decrease rate is large. If only the slow-degrading substance is decomposed, the change in the fluorescence intensity decrease rate becomes small. Therefore, the rate of decrease in fluorescence intensity is monitored for each ozone treatment tank at each stage, and the ozone injection rate that allows the most efficient ozone treatment for each stage is experimentally determined in advance, and a processing target value is set for each stage, The generated ozonized gas concentration in the ozone generator 12 and the opening of the gas flow rate adjustment valve 20 can be feedback controlled so that the ozone injection amount changes.

また、本実施の形態では、着水井1からろ過フィルター9を通して採水した原水の溶存性有機体炭素濃度(DOC)を、有機体炭素濃度計10で測定し、オゾン処理池4に対するオゾン注入量を決定すると共に、オゾン処理槽4入口部に接続された蛍光強度計14により被処理水蛍光強度(FL0)を測定している。オゾン注入制御装置11は、前記溶存性有機体炭素濃度(DOC)と被処理水蛍光強度(FL0)とを入力し、その比(FL0/DOC)の変化を監視することにより、原水水質が突発的に変化した場合でも、速やかにオゾン注入量を制御することができる。   In the present embodiment, the dissolved organic carbon concentration (DOC) of the raw water sampled from the receiving well 1 through the filtration filter 9 is measured by the organic carbon concentration meter 10, and the ozone injection amount into the ozone treatment pond 4 is measured. The fluorescence intensity (FL0) of the water to be treated is measured by the fluorescence intensity meter 14 connected to the inlet of the ozone treatment tank 4. The ozone injection control device 11 inputs the dissolved organic carbon concentration (DOC) and the fluorescence intensity (FL0) of the water to be treated, and monitors the change in the ratio (FL0 / DOC), so that the raw water quality suddenly changes. Even if the temperature changes, the ozone injection amount can be quickly controlled.

すなわち、オゾン注入制御装置11は、原水の溶存性有機体炭素濃度(DOC)とオゾン処理池4の入り口部分における原水の蛍光強度(FL0)との比(FL0/DOC)を求め、この比の値に基づいてオゾン処理池4へのオゾン注入量を制御する機能を有している。このため、原水水質が突発的に変化した場合でも、速やかにオゾン注入量を制御することができる。   That is, the ozone injection control device 11 obtains the ratio (FL0 / DOC) between the dissolved organic carbon concentration (DOC) of the raw water and the fluorescence intensity (FL0) of the raw water at the entrance of the ozone treatment pond 4, and this ratio It has a function of controlling the amount of ozone injected into the ozone treatment basin 4 based on the value. For this reason, even when the raw water quality changes suddenly, the ozone injection amount can be quickly controlled.

さらに、この場合も、オゾン処理池4の出口には溶存オゾン濃度計13が接続されており、この測定値出力がオゾン注入制御装置11に入力されているので、オゾン処理水の溶存オゾン濃度が上限値を超えた場合には、オゾン注入量を減少させるようにオゾン発生器12を制御するので、過剰なオゾン注入をこのことからも防止できる。   Furthermore, also in this case, the dissolved ozone concentration meter 13 is connected to the outlet of the ozone treatment pond 4 and this measured value output is input to the ozone injection control device 11, so that the dissolved ozone concentration of the ozone treated water is When the upper limit value is exceeded, the ozone generator 12 is controlled so as to decrease the ozone injection amount, so that excessive ozone injection can be prevented from this.

本実施の形態によれば、各段のオゾン処理槽16毎に蛍光強度の減少率を監視し、あらかじめ、設定された各段毎の処理目標値になるようにオゾン注入量をフィードバック制御することができる。また、原水中の溶存性有機体炭素濃度(DOC)を計測し、この溶存性有機体炭素濃度と、オゾン処理槽4入口部の被処理水蛍光強度の比(FL0/DOC)の変化を監視することにより、原水水質が突発的に変化した場合でも、速やかにオゾン注入量を制御することができる。さらに、オゾン処理池4の出口に設けた溶存オゾン濃度計13の測定値出力により、処理水中の溶存オゾン濃度が上限値を超えないように制御でき、無駄なオゾン化ガス注入を防止するだけでなく、過剰なオゾン化ガスによる臭素酸イオン等の副生成物が生成するのを抑止できる。   According to the present embodiment, the rate of decrease in fluorescence intensity is monitored for each ozone treatment tank 16 at each stage, and the ozone injection amount is feedback-controlled so that the treatment target value for each stage is set in advance. Can do. In addition, the dissolved organic carbon concentration (DOC) in the raw water is measured, and the change in the ratio of the dissolved organic carbon concentration to the fluorescence intensity of the water to be treated at the inlet of the ozone treatment tank 4 (FL0 / DOC) is monitored. By doing so, even when the raw water quality changes suddenly, the ozone injection amount can be quickly controlled. Furthermore, the dissolved ozone concentration meter 13 provided at the outlet of the ozone treatment pond 4 can be controlled so that the dissolved ozone concentration in the treated water does not exceed the upper limit value, and only unnecessary ozone gas injection is prevented. Therefore, it is possible to suppress the formation of by-products such as bromate ions due to excessive ozonized gas.

本発明による水処理システムの一実施の形態を説明するブロック図である。It is a block diagram explaining one embodiment of a water treatment system by the present invention. 同上一実施の形態におけるDOCとオゾン吸収濃度との関係を説明する特性図である。It is a characteristic view explaining the relationship between DOC and ozone absorption density in one embodiment same as the above. 本発明による水処理システムの他の実施の形態を説明するブロック図である。It is a block diagram explaining other embodiment of the water treatment system by this invention. 同上他の実施の形態における蛍光強度とDOCとの関係を説明する特性図である。It is a characteristic view explaining the relationship between the fluorescence intensity and DOC in other embodiment same as the above. 同上他の実施の形態におけるオゾン吸収量と原水蛍光強度に対する処理水蛍光強度の割合との関係を説明する特性図である。It is a characteristic view explaining the relationship between the amount of ozone absorption and the ratio of the treated water fluorescence intensity with respect to the raw water fluorescence intensity in other embodiment same as the above. 本発明による水処理システムのさらに他の実施の形態を説明するブロック図である。It is a block diagram explaining further another embodiment of the water treatment system by this invention. 同上更に他の実施の形態における各段オゾン接触槽での蛍光強度減少率を説明する特性図である。It is a characteristic view explaining the fluorescence intensity decreasing rate in each stage ozone contact tank in other embodiment same as the above.

符号の説明Explanation of symbols

4 オゾン処理池
5 活性炭処理池
9 懸濁物質除去用のフィルタ
10 有機体炭素濃度計
11 オゾン注入制御装置
12 オゾン発生器
13 溶存オゾン濃度計
14,15,21 蛍光分析計
16 オゾン接触槽
20 オゾン化ガス流量調節弁
4 Ozone treatment pond 5 Activated carbon treatment pond 9 Suspended substance removal filter 10 Organic carbon concentration meter 11 Ozone injection controller 12 Ozone generator 13 Dissolved ozone concentration meter 14, 15, 21 Fluorescence analyzer 16 Ozone contact tank 20 Ozone Gas flow control valve

Claims (10)

原水から懸濁物質を除去した後、オゾン処理池にてオゾン処理し、オゾン処理後活性炭処理池にて活性炭処理を行う水処理方法であって、
前記原水の一部を懸濁物質除去後に有機体炭素濃度計に導入して、原水の溶存性有機体炭素濃度を測定し、
予め求められている溶存性有機体炭素濃度とオゾン吸収率との関係から、前記測定された原水の溶存性有機体濃度に対応するオゾン吸収率に基づき、前記オゾン処理池へのオゾン注入量を決定する
ことを特徴とする水処理方法。
After removing suspended substances from raw water, it is a water treatment method in which ozone treatment is performed in an ozone treatment pond and activated carbon treatment is performed in an activated carbon treatment pond after ozone treatment,
Introducing a part of the raw water into the organic carbon concentration meter after removing suspended substances, measuring the dissolved organic carbon concentration of the raw water,
Based on the relationship between the dissolved organic carbon concentration obtained in advance and the ozone absorption rate, the amount of ozone injected into the ozone treatment pond is calculated based on the ozone absorption rate corresponding to the measured dissolved organic concentration of the raw water. A water treatment method characterized by deciding.
原水の溶存性有機体炭素濃度とオゾン処理池の入り口部分における原水の蛍光強度との比を求め、この比の値に基づいてオゾン処理池へのオゾン注入量を制御する
ことを特徴とする請求項1に記載の水処理方法。
A ratio between the dissolved organic carbon concentration of the raw water and the fluorescence intensity of the raw water at the entrance of the ozone treatment pond is obtained, and the amount of ozone injected into the ozone treatment pond is controlled based on the value of this ratio. Item 2. The water treatment method according to Item 1.
オゾン処理池の入り口部分における原水の蛍光強度と同オゾン処理池の出口部分における処理水の蛍光強度とをそれぞれ測定して、前記原水の蛍光強度に対する前記処理水の蛍光強度の割合を求め、
オゾン吸収量の変化に対する前記割合の減少特性に基づきオゾン注入に対する反応の境目となる割合を予め求めておき、
前記境目となる割合を、前記蛍光強度の測定によって得られる割合に対する目標値として、オゾン処理池へのオゾン注入量を制御する
ことを特徴とする請求項1に記載の水処理方法。
Measure the fluorescence intensity of the raw water at the entrance portion of the ozone treatment pond and the fluorescence intensity of the treated water at the exit portion of the ozone treatment pond, respectively, and determine the ratio of the fluorescence intensity of the treated water to the fluorescence intensity of the raw water,
Based on a decrease characteristic of the ratio with respect to the change in ozone absorption amount, a ratio that becomes a boundary of reaction to ozone injection is obtained in advance.
2. The water treatment method according to claim 1, wherein the amount of ozone injected into the ozone treatment pond is controlled using the ratio serving as the boundary as a target value for the ratio obtained by the measurement of the fluorescence intensity.
オゾン処理池は、順次連通するように区切られ、かつ個別にオゾンが供給される複数段のオゾン接触槽を有し、これら各オゾン接触槽の入り口と出口の蛍光強度の差により各オゾン接触槽における蛍光強度減少率をそれぞれ求め、
これら蛍光強度減少率に応じて、各オゾン接触槽毎のオゾン注入率をそれぞれ求め、この求められた注入率を目標値として各オゾン接触槽へのオゾン注入量を制御する
ことを特徴とする請求項3に記載の水処理方法。
The ozone treatment pond has a plurality of stages of ozone contact tanks that are separated so as to communicate with each other and are supplied with ozone individually, and each ozone contact tank has a difference in fluorescence intensity between the inlet and outlet of each ozone contact tank. Obtain the fluorescence intensity decrease rate at
In accordance with the fluorescence intensity reduction rate, an ozone injection rate for each ozone contact tank is determined, and the amount of ozone injected into each ozone contact tank is controlled using the determined injection rate as a target value. Item 4. The water treatment method according to Item 3.
オゾン処理池出口における処理水の溶存酸素濃度を測定し、この溶存酸素濃度が設定値以上とならないようにオゾン処理池へのオゾン注入量を制限する
ことを特徴とする請求項1乃至請求項4のいずれかに記載の水処理方法。
5. The dissolved oxygen concentration of the treated water at the ozone treatment pond outlet is measured, and the amount of ozone injected into the ozone treatment pond is limited so that the dissolved oxygen concentration does not exceed a set value. The water treatment method in any one of.
原水から懸濁物質を除去した後、オゾン処理池にてオゾン処理し、オゾン処理後活性炭処理池にて活性炭処理を行う水処理システムであって、
前記原水の一部を懸濁物質除去用のフィルターを介して導入し、原水の溶存性有機体炭素濃度を測定する有機体炭素濃度計と、
予め求められている溶存性有機体炭素濃度とオゾン吸収率との関係から、前記測定された原水の溶存性有機体濃度に対応するオゾン吸収率に基づき、前記オゾン処理池へのオゾン注入量を決定するオゾン注入制御装置と、
を備えたことを特徴とする水処理システム。
It is a water treatment system that removes suspended matter from raw water, then ozone treatment in an ozone treatment pond, and performs activated carbon treatment in an activated carbon treatment pond after ozone treatment,
An organic carbon concentration meter that introduces a part of the raw water through a filter for removing suspended substances and measures the dissolved organic carbon concentration of the raw water;
Based on the relationship between the dissolved organic carbon concentration and the ozone absorption rate obtained in advance, the amount of ozone injected into the ozone treatment pond is calculated based on the ozone absorption rate corresponding to the measured dissolved organic concentration of the raw water. An ozone injection control device to determine;
A water treatment system comprising:
オゾン処理池の入り口部分に、原水の蛍光強度を測定する蛍光分析計を設け、
オゾン注入制御装置は、原水の溶存性有機体炭素濃度とオゾン処理池の入り口部分における原水の蛍光強度との比を求め、この比の値に基づいてオゾン処理池へのオゾン注入量を制御する機能を有する
ことを特徴とする請求項6に記載の水処理システム。
At the entrance of the ozone treatment pond, a fluorescence analyzer that measures the fluorescence intensity of the raw water is installed.
The ozone injection controller calculates the ratio between the dissolved organic carbon concentration of the raw water and the fluorescence intensity of the raw water at the entrance of the ozone treatment pond, and controls the amount of ozone injected into the ozone treatment pond based on the value of this ratio It has a function. The water treatment system of Claim 6 characterized by the above-mentioned.
オゾン処理池の入り口部分における原水の蛍光強度を測定する蛍光分析計及び同オゾン処理池の出口部分における処理水の蛍光強度を測定する蛍光分析計を設け、
オゾン注入制御装置は、
前記各蛍光分析計で測定された原水の蛍光強度と処理水蛍光強度とから、原水の蛍光強度に対する処理水の蛍光強度の割合を求める機能と、
予め求められた、オゾン吸収量の変化に対する前記割合の減少特性に基づきオゾン注入に対する反応の境目となる割合を用い、この境目となる割合を、前記蛍光強度の測定によって得られる割合に対する目標値として、オゾン処理池へのオゾン注入量を制御する機能とを有する
ことを特徴とする請求項6に記載の水処理システム。
A fluorescence analyzer that measures the fluorescence intensity of raw water at the entrance of the ozone treatment pond and a fluorescence analyzer that measures the fluorescence intensity of treated water at the exit of the ozone treatment pond are provided,
The ozone injection control device
A function for determining the ratio of the fluorescence intensity of the treated water to the fluorescence intensity of the raw water from the fluorescence intensity of the raw water and the fluorescence intensity of the treated water measured by the respective fluorescence analyzers,
Based on the previously determined reduction ratio of the ratio with respect to the change in the amount of absorbed ozone, the ratio that becomes the boundary of the reaction to ozone injection is used, and the ratio that becomes the boundary is set as the target value for the ratio obtained by the measurement of the fluorescence intensity. The water treatment system according to claim 6, further comprising: a function of controlling an ozone injection amount into the ozone treatment pond.
オゾン処理池は、順次連通するように区切られ、かつ個別にオゾンが供給される複数段のオゾン接触槽を有し、これら各オゾン接触槽の入り口と出口に蛍光分析計を設け、
オゾン注入制御装置は、
前記各オゾン接触槽の入り口と出口との蛍光強度の差により各オゾン接触槽における蛍光強度減少率をそれぞれ求める機能と、
これら蛍光強度減少率に応じて、前記各オゾン接触槽毎のオゾン注入率をそれぞれ求め、この求められた注入率を目標値として各オゾン接触槽へのオゾン注入量を制御する機能とを有する
ことを特徴とする請求項6に記載の水処理システム。
The ozone treatment pond has a plurality of stages of ozone contact tanks that are separated so as to communicate sequentially and to which ozone is individually supplied, and a fluorescence analyzer is provided at the inlet and outlet of each ozone contact tank,
The ozone injection control device
A function for obtaining a decrease rate of fluorescence intensity in each ozone contact tank by a difference in fluorescence intensity between the entrance and exit of each ozone contact tank;
According to these fluorescence intensity reduction rates, the ozone injection rate for each ozone contact tank is obtained, and the ozone injection amount to each ozone contact tank is controlled using the determined injection rate as a target value. The water treatment system according to claim 6.
オゾン処理池の出口に、処理水の溶存酸素濃度を測定する溶存オゾン濃度計を設け、
オゾン注入制御装置は、この溶存酸素濃度が設定値以上とならないようにオゾン処理池へのオゾン注入量を制限する機能を有する
ことを特徴とする請求項6乃至請求項9のいずれかに記載の水処理システム。
A dissolved ozone concentration meter is installed at the outlet of the ozone treatment pond to measure the dissolved oxygen concentration of the treated water.
The ozone injection control device has a function of limiting the amount of ozone injected into the ozone treatment pond so that the dissolved oxygen concentration does not exceed a set value. Water treatment system.
JP2004134052A 2004-04-28 2004-04-28 Water treatment method and water treatment system Expired - Lifetime JP4334404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004134052A JP4334404B2 (en) 2004-04-28 2004-04-28 Water treatment method and water treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004134052A JP4334404B2 (en) 2004-04-28 2004-04-28 Water treatment method and water treatment system

Publications (3)

Publication Number Publication Date
JP2005313078A true JP2005313078A (en) 2005-11-10
JP2005313078A5 JP2005313078A5 (en) 2007-05-10
JP4334404B2 JP4334404B2 (en) 2009-09-30

Family

ID=35441071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004134052A Expired - Lifetime JP4334404B2 (en) 2004-04-28 2004-04-28 Water treatment method and water treatment system

Country Status (1)

Country Link
JP (1) JP4334404B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008153807A2 (en) * 2007-06-01 2008-12-18 Severn Trent De Nora, L.L.C. System and process for treatment of ballast water
WO2008153808A3 (en) * 2007-06-01 2009-03-12 Sev Trent De Nora L L C System and process for treatment and de-halogenation of ballast water
JP2011045853A (en) * 2009-08-28 2011-03-10 Ebara Engineering Service Co Ltd Water-purifying treatment apparatus and method
CN104803471A (en) * 2015-04-14 2015-07-29 北京化工大学常州先进材料研究院 Excellent and efficient carbon fiber biofilm carrier modification method
CN105110501A (en) * 2015-08-14 2015-12-02 苏州康博电路科技有限公司 Multi-term advanced nanometer catalytic wastewater treatment device
CN105170096A (en) * 2015-09-30 2015-12-23 太仓碧奇新材料研发有限公司 Preparation method of sisal and talc powder composite for enriching europium ions in tailing wastewater
KR101801698B1 (en) * 2016-07-28 2017-11-27 (주)한미엔텍 Advanced water purification system using membrane filtration
JP2018196844A (en) * 2017-05-23 2018-12-13 メタウォーター株式会社 Water treatment system, and water treatment method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8147673B2 (en) 2005-01-18 2012-04-03 Severn Trent De Nora, Llc System and process for treatment and de-halogenation of ballast water
US8152989B2 (en) 2005-01-18 2012-04-10 Severn Trent De Nora, Llc System and process for treating ballast water
WO2008153807A2 (en) * 2007-06-01 2008-12-18 Severn Trent De Nora, L.L.C. System and process for treatment of ballast water
WO2008153808A3 (en) * 2007-06-01 2009-03-12 Sev Trent De Nora L L C System and process for treatment and de-halogenation of ballast water
WO2008153807A3 (en) * 2007-06-01 2009-03-26 Sev Trent De Nora L L C System and process for treatment of ballast water
JP2011045853A (en) * 2009-08-28 2011-03-10 Ebara Engineering Service Co Ltd Water-purifying treatment apparatus and method
CN104803471A (en) * 2015-04-14 2015-07-29 北京化工大学常州先进材料研究院 Excellent and efficient carbon fiber biofilm carrier modification method
CN105110501A (en) * 2015-08-14 2015-12-02 苏州康博电路科技有限公司 Multi-term advanced nanometer catalytic wastewater treatment device
CN105170096A (en) * 2015-09-30 2015-12-23 太仓碧奇新材料研发有限公司 Preparation method of sisal and talc powder composite for enriching europium ions in tailing wastewater
KR101801698B1 (en) * 2016-07-28 2017-11-27 (주)한미엔텍 Advanced water purification system using membrane filtration
JP2018196844A (en) * 2017-05-23 2018-12-13 メタウォーター株式会社 Water treatment system, and water treatment method

Also Published As

Publication number Publication date
JP4334404B2 (en) 2009-09-30

Similar Documents

Publication Publication Date Title
CA2439927C (en) Methods of treating water using combinations of chlorine dioxide, chlorine and ammonia
US7108781B2 (en) Enhanced air and water purification using continuous breakpoint halogenation with free oxygen radicals
TW200922884A (en) Ultraviolet light activated oxidation process for the reduction of organic carbon in semiconductor process water
JP2005305328A (en) Water treatment controlling system
JP4673709B2 (en) Water treatment system
JP4334404B2 (en) Water treatment method and water treatment system
CA2693357C (en) Oxidation process
JP4660211B2 (en) Water treatment control system and water treatment control method
JP2007319816A (en) Water treatment apparatus and water treatment method
KR102086341B1 (en) Non-biodegradable amine waste water treatment method and apparatus of chloramine forming and uv-photolysis
JP4509644B2 (en) Ozone gas injection control system
JP3321876B2 (en) Ozone treatment apparatus, ozone treatment method, and water purification treatment method
US11174181B2 (en) Accelerated oxidation treatment method and accelerated oxidation treatment device
JP2020037059A (en) Membrane filtration system, and membrane filtration method
US20140131285A1 (en) Method and Arrangement for a Water Treatment
JP3697933B2 (en) Water treatment method and apparatus using ozone
JP4331048B2 (en) Ozone water treatment control system
JP2009000677A (en) Method and system for water treatment, and reaction tank for water treatment
JP2007326047A (en) Water treatment control device
JP2006281061A (en) Hydrogen peroxide injection control method and apparatus in accelerated oxidation water treatment method
JP2001000984A (en) Treatment method using ozone and hydrogen peroxide
WO2023162593A1 (en) Water treatment device and water treatment method
JP6749463B2 (en) Accelerated oxidation treatment method and accelerated oxidation treatment device
JP2003088882A (en) Method for water treatment
Pearce Evaluation of Bromate Formation and Control using Preformed Monochloramine in Ozonation for Indirect Potable Reuse

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070316

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090623

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4334404

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4