JPH07284782A - Method for computing required amount of ozone and controlling ozone injection - Google Patents

Method for computing required amount of ozone and controlling ozone injection

Info

Publication number
JPH07284782A
JPH07284782A JP7685194A JP7685194A JPH07284782A JP H07284782 A JPH07284782 A JP H07284782A JP 7685194 A JP7685194 A JP 7685194A JP 7685194 A JP7685194 A JP 7685194A JP H07284782 A JPH07284782 A JP H07284782A
Authority
JP
Japan
Prior art keywords
ozone
water
treated
amount
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7685194A
Other languages
Japanese (ja)
Inventor
Tetsuro Haga
鉄郎 芳賀
Masayoshi Kubota
昌良 久保田
Masahiko Ishida
昌彦 石田
Shoji Watanabe
昭二 渡辺
Minoru Suzuki
実 鈴木
Naoto Komatsu
直人 小松
Naoki Hara
直樹 原
Nobuyoshi Yamakoshi
信義 山越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7685194A priority Critical patent/JPH07284782A/en
Publication of JPH07284782A publication Critical patent/JPH07284782A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To compute easily and precisely the amount of ozone necessary for the reaction with an ozone consuming component by a method in which ozone is injected respectively to water from which an ozone consuming component was removed and water to be treated and the dissolved ozone concentrations are measured to obtain the difference in the measurement results. CONSTITUTION:Dissolved ozone concentration CW1 in treated water TW1 which was obtained by injecting ozone G into water W to be treated in an ozone catalytic reaction vessel 1 (reaction vessel) is measured with a dissolved ozone concentration meter 13, and the results are inputted in a computer 24. The treated water TW1 from which an ozone consuming component was removed in the reaction vessel 1 is introduced into an ozone catalytic comparative reaction vessel 16 as comparative water TW2, and ozone is injected. The dissolved ozone concentration CW2 in the comparative water TW2 is measured with a dissolved ozone concentration meter 21, and the results are inputted in the computer 24. The computer 24 calculates CW2-CW1 to determine the required amount of ozone for the water W. The amounts of ozone G to be injected into the treated water TW1 and the comparative water TW2 are controlled so that the concentration of dissolved ozone in the water W becomes a specified value or more.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は浄水場または下水処理場
等において、被処理水をオゾン処理する際にオゾン注入
量を算出する方法及びオゾン注入制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an ozone injection control method for calculating an ozone injection amount when ozone-treating treated water in a water purification plant or a sewage treatment plant.

【0002】[0002]

【従来の技術】河川水及び湖沼水等の取水源の水質汚濁
に伴い、浄水場等では、現行の急速ろ過法に代わり、凝
集沈殿後の沈殿水をオゾン処理した後、生物活性炭処理
を行う高度浄水処理法を採用する傾向にある。この種の
高度浄水処理法は特開昭58−174288号公報,特開平2−2
33197 号公報及び特開平4−281893 号公報等に示されて
いる。
2. Description of the Related Art Due to water pollution of intake sources such as river water and lake water, at water purification plants, etc., instead of the current rapid filtration method, the precipitated water after coagulation and sedimentation is treated with ozone and then treated with biological activated carbon. There is a tendency to adopt advanced water treatment methods. This type of advanced water purification method is disclosed in JP-A-58-174288 and JP-A-2-2.
No. 33197 and Japanese Unexamined Patent Publication No. 4-281893.

【0003】この方法は、取水した河川等からの原水を
凝集沈殿処理した後、被処理水となる沈殿水をオゾン接
触槽に導入して、水中の有機物等を脱色,脱臭,酸化処
理または変性させるものである。その後、オゾン処理さ
れた処理水を生物活性炭槽に導入して、活性炭の表面ま
たは内部に繁殖した微生物の働きにより、オゾン処理で
は除去できないアンモニア性窒素等を硝化除去すると共
に溶存有機物を代謝除去する。
In this method, raw water from a river or the like that has been taken in is subjected to coagulation-precipitation treatment, and then the precipitation water to be treated is introduced into an ozone contact tank to decolorize, deodorize, oxidize or modify organic matter in the water. It is what makes me. After that, the treated water that has been subjected to ozone treatment is introduced into a biological activated carbon tank, and by the action of the microorganisms that propagate on or inside the activated carbon, ammonia nitrogen that cannot be removed by ozone treatment is removed by nitrification and dissolved organic matter is metabolically removed. .

【0004】[0004]

【発明が解決しようとする課題】オゾン処理において
は、高い有機物の除去率の維持と共にオゾン注入処理後
の水質が安定していることが要求される。また、必要最
小限のオゾン注入量で被処理水を効率的に処理すること
が要求される。
In the ozone treatment, it is required that a high removal rate of organic substances be maintained and the water quality after the ozone injection treatment be stable. In addition, it is required to efficiently treat the water to be treated with the minimum required ozone injection amount.

【0005】一方、河川水及び湖沼等から取水する原水
中の有機物濃度及び組成は、季節的要因,気象条件さら
にはダム水の放流等の外的要因の影響を受けて大きく変
化する。
On the other hand, the concentration and composition of organic matter in raw water taken from river water, lakes and the like greatly change under the influence of external factors such as seasonal factors, meteorological conditions and discharge of dam water.

【0006】水質変動が比較的少ない原水を取水源とし
て被処理水をオゾン処理する場合には、一般に水量に比
例した一定の注入率でオゾンを注入する水量比例制御が
行われている。
When the treated water is treated with ozone by using the raw water whose water quality is relatively small as a water source, generally, the water amount proportional control for injecting ozone at a constant injection rate proportional to the water amount is performed.

【0007】しかし、上述した要因等でオゾン処理の対
象となる被処理水の水質が変化すると、前述した水量比
例制御法では、オゾンが過少または過剰に注入され、オ
ゾン注入処理後の水質が安定しない。オゾン接触槽から
排出される排オゾンは、例えば特開平5−15738号公報に
示されているようにオゾン分解触媒によって処理され
る。しかし、オゾンが過剰に注入されると排オゾン量が
多くなるため、触媒による排オゾン処理に係る負荷が大
きくなり、オゾンの処理量が減少する。オゾンの処理量
減少に伴う排オゾンの大気への排出抑制手段として、触
媒の反応温度を高くしているが、ランニングコストの上
昇を招く。
However, if the water quality of the water to be treated which is the object of ozone treatment changes due to the factors mentioned above, in the above-mentioned water amount proportional control method, ozone is injected in an excessive amount or in excess, and the water quality after ozone injection treatment becomes stable. do not do. Exhaust ozone discharged from the ozone contact tank is treated by an ozone decomposition catalyst as disclosed in, for example, Japanese Patent Laid-Open No. 15738/1993. However, when ozone is excessively injected, the amount of exhausted ozone increases, so that the load on the exhausted ozone treatment by the catalyst increases and the amount of ozone treated decreases. Although the reaction temperature of the catalyst is raised as a means for suppressing the emission of exhausted ozone to the atmosphere due to the decrease in the amount of ozone treated, it causes an increase in running cost.

【0008】このようなことから、例えば浄水場におけ
るオゾン処理では、オゾン注入後にオゾン接触槽から気
相に排出される排オゾンの濃度を検出して、このオゾン
濃度が一定値になるようにオゾン注入量を制御する排オ
ゾン濃度一定制御が行われている。また、オゾン接触槽
内の液相中に残留する溶存オゾン濃度を検出して、この
溶存オゾン濃度が一定値になるようにオゾン注入量を制
御する残留オゾン濃度一定制御が行われている。
For this reason, for example, in ozone treatment in a water purification plant, the concentration of exhaust ozone discharged from the ozone contact tank to the gas phase after ozone injection is detected, and the ozone concentration is adjusted to a constant value. Exhaust ozone concentration constant control is performed to control the injection amount. Further, the residual ozone concentration constant control is performed in which the dissolved ozone concentration remaining in the liquid phase in the ozone contact tank is detected and the ozone injection amount is controlled so that the dissolved ozone concentration becomes a constant value.

【0009】しかし、オゾンの水への溶解度及び液中で
の自己分解量は、被処理水の水温,pH及び接触時間等
の影響を受けて変化する。例えば、オゾン含有ガスを水
と接触させたとき、液中オゾン濃度は一般に知られた実
験式である(1)式で表せるが、水温が変化すると液中
オゾン濃度も変化し、被処理水の水温の影響によってオ
ゾンの溶解度が変わる。
However, the solubility of ozone in water and the amount of self-decomposition in water change depending on the water temperature, pH and contact time of the water to be treated. For example, when the ozone-containing gas is brought into contact with water, the ozone concentration in the liquid can be expressed by the generally known empirical formula (1), but when the water temperature changes, the ozone concentration in the liquid also changes, and The solubility of ozone changes depending on the water temperature.

【0010】 C=K・Y …(1) K={0.604×(1+t/273)}/1+0.06
3t ここで、C:液中オゾン濃度(g/m3),K:定数,
t:水温(℃) Y:気中オゾン濃度(g/m3) なお、定数Kは大気圧のもとでの水温との関係による一
般に知られた実験式による。
C = K · Y (1) K = {0.604 × (1 + t / 273)} / 1 + 0.06
3t where C: ozone concentration in liquid (g / m 3 ), K: constant,
t: Water temperature (° C.) Y: Ozone concentration in air (g / m 3 ) The constant K is based on a generally known empirical formula based on the relationship with the water temperature under atmospheric pressure.

【0011】一方、液中でのオゾンの自己分解はpHに
大きく依存し、低pHではオゾンの自己分解が遅いが、
高pH(アルカリ側)では速くなる。したがって、被処
理水のpHが変化すると、同一の注入率でオゾンを注入
しても液中の溶存オゾン濃度が異なってくる。この結
果、被処理水中の有機物濃度及び組成に変動がなく、か
つオゾン注入率が一定であっても、水温,pH等の変化
によって排オゾン濃度または溶存オゾン濃度が変わり、
恰も有機物濃度の変化のようにとらえられてしまう。
On the other hand, the self-decomposition of ozone in a liquid largely depends on pH, and at low pH, the self-decomposition of ozone is slow,
It becomes faster at high pH (alkaline side). Therefore, if the pH of the water to be treated changes, the concentration of dissolved ozone in the liquid will differ even if ozone is injected at the same injection rate. As a result, even if the organic matter concentration and composition in the water to be treated do not change and the ozone injection rate is constant, the exhaust ozone concentration or dissolved ozone concentration changes due to changes in water temperature, pH, etc.
The appearance is also perceived as a change in the concentration of organic matter.

【0012】したがって、排オゾン濃度または溶存オゾ
ン濃度の検出値に基づくフィードバック制御では、被処
理水を効率的に安定して処理することが難しい。
Therefore, it is difficult to efficiently and stably treat the water to be treated by the feedback control based on the detected value of the exhaust ozone concentration or the dissolved ozone concentration.

【0013】本来、オゾン注入制御は、対象となる被処
理水中の有機物濃度などから求まるオゾン要求量に基づ
いて被処理水が必要とする量のオゾンを注入すればよ
い。しかし、現状では例えば特開平2−277596 号公報ま
たは「広がる上水のオゾン処理」(電学誌,113巻3月
号,p228,1993年)等に示されているように、
被処理水が必要とするオゾン注入量を短時間で直接的に
オンラインで検出できる適切な計測器が実在しない。こ
の結果、被処理水の水質とその変化に対応した制御精度
の高いオゾン注入制御は困難であり、運用上、安全性を
配慮して過剰にオゾンが注入しているため、ランニング
コストの低減も困難である。
Originally, the ozone injection control may be performed by injecting an amount of ozone required by the water to be treated based on the required ozone amount obtained from the concentration of organic substances in the water to be treated. However, at present, as disclosed in, for example, Japanese Patent Application Laid-Open No. 2-277596 or "Ozone treatment for widespread clean water" (Electronic Journal, Vol. 113, March issue, p228, 1993), etc.,
There is no suitable measuring instrument that can directly detect the amount of ozone injection required by the water to be treated online in a short time. As a result, it is difficult to control ozone injection with high control accuracy in response to the water quality of the water to be treated and its changes, and because ozone is injected excessively in consideration of safety in operation, running cost can also be reduced. Have difficulty.

【0014】このようなことから、例えば特開昭60−16
1797号公報に示されているように、オゾン消費量に対す
る外乱となる要因とその程度に応じてオゾン注入率を修
正することが提案されているが、この種のオゾン処理設
備は取水源水質の低下に伴い新たに設置されるケースが
多く、外乱となる取水源水質の変動特性及びオゾン接触
反応槽での反応特性等を把握するのに多大な時間と労力
を要する。
From the above, for example, JP-A-60-16
As disclosed in Japanese Patent No. 1797, it has been proposed to correct the ozone injection rate according to the factor and the degree of disturbance to the ozone consumption amount. In many cases, it will be newly installed due to deterioration, and it will take a lot of time and labor to understand the fluctuation characteristics of the water quality of the intake source and the reaction characteristics in the ozone contact reaction tank, which will cause disturbances.

【0015】本発明は上述の不都合に鑑みてなされたも
ので、その主目的とするところは、被処理水中のオゾン
消費成分と反応するに必要なオゾン量(以下、必要に応
じて被処理水のオゾン要求量と称する)を簡易に高精度
で適切に算出するに好適な最適オゾン要求量算出方法を
提供することにある。
The present invention has been made in view of the above-mentioned inconveniences, and its main object is to provide an amount of ozone necessary to react with ozone consuming components in the water to be treated (hereinafter, the water to be treated may be used as necessary). The optimum ozone demand amount calculation method is suitable for easily and appropriately calculating the ozone demand amount).

【0016】本発明の他の目的とするところは、制御精
度の高いオゾン注入制御方法を提供することにある。
Another object of the present invention is to provide an ozone injection control method with high control accuracy.

【0017】[0017]

【課題を解決するための手段】上述した目的を達成する
ために、被処理水のオゾン要求量を高精度で測定する方
法について検討した結果、被処理水中のオゾンによる被
酸化性成分、いわゆる、オゾン消費成分を除去した後の
オゾン消費成分除去水(以下、必要に応じて比較水と称
する)と前記被処理水とにオゾンを注入して、オゾン注
入後の両者の溶存オゾン濃度の差分を求めれば被処理水
のオゾン要求量を測定できることを究明した。
In order to achieve the above-mentioned object, as a result of studying a method for measuring the ozone demand amount of the water to be treated with high accuracy, as a result, an oxidizable component of ozone in the water to be treated, a so-called By injecting ozone into the ozone-consuming component-removed water after removing the ozone-consuming component (hereinafter referred to as comparative water, if necessary) and the treated water, the difference between the dissolved ozone concentrations of both after the ozone injection is calculated. It was clarified that the ozone demand of the water to be treated can be measured if required.

【0018】被処理水のオゾン消費量Dgは次式(2)
で示すように、被処理水へのオゾン注入量と気相への排
出オゾン量との差分から被処理水中の溶存オゾン濃度を
除くことによって求めることができる。
The ozone consumption amount Dg of the water to be treated is calculated by the following equation (2).
As shown in, the difference can be obtained by subtracting the dissolved ozone concentration in the water to be treated from the difference between the amount of ozone injected into the water to be treated and the amount of ozone discharged to the gas phase.

【0019】 Dg=[{Qg(Cg1−Cg2)}/Qw]−Cw …(2) ここで、水量:Qw(l/h),注入オゾンガス量:Q
g(l/h),注入オゾンガス濃度:Cg1(mg/
l),オゾン含有排気ガス濃度Cg2:(mg/l),
溶存オゾン濃度:Cw:(mg/l),オゾン消費量:
Dg(mg/l) ところが、被処理水中のオゾン消費成分である被酸化性
成分が、例えばFeイオン,Mnイオンであるとする
と、次式(3),(4)及び(5)で示す被処理水中のオ
ゾン消費成分による反応の進行と共にオゾンの自己分解
による反応が進行する。
Dg = [{Qg (Cg1-Cg2)} / Qw] -Cw (2) Here, water amount: Qw (l / h), injected ozone gas amount: Q
g (l / h), injected ozone gas concentration: Cg1 (mg /
l), concentration of ozone-containing exhaust gas Cg2: (mg / l),
Dissolved ozone concentration: Cw: (mg / l), ozone consumption:
Dg (mg / l) However, if the oxidizable components that are ozone consuming components in the water to be treated are, for example, Fe ions and Mn ions, the target components represented by the following formulas (3), (4) and (5) are given. Along with the progress of the reaction due to the ozone consuming component in the treated water, the reaction due to the self-decomposition of ozone proceeds.

【0020】[0020]

【数1】 [Equation 1]

【0021】[0021]

【数2】 [Equation 2]

【0022】[0022]

【数3】 [Equation 3]

【0023】水中でのオゾンの自己分解反応の機構は複
雑であるが、次式(6)から(12)で示すように分解の
過程でヒドロペルオキシラジカル(HO2・)やヒドロキ
シルラジカル(OH・)が生成し、これが(8)及び
(9)式で示すように連鎖的にオゾンを分解すると考え
られている。一方では、生成したOH,HO2 ラジカル
は(10)から(12)式で示すように消滅する。
The mechanism of the autolysis reaction of ozone in water is complicated, but as shown in the following equations (6) to (12), hydroperoxy radicals (HO 2. ) And hydroxyl radicals (OH. ) Is generated, which is considered to decompose ozone in a chain as shown in the equations (8) and (9). On the other hand, the generated OH and HO 2 radicals disappear as shown in the equations (10) to (12).

【0024】 O3+H2O→HO3 -+OH- …(6) HO3 -+OH・→2HO2・ …(7) O3+HO2・→OH・+2O2 …(8) O3+OH・→HO2・+O2 …(9) HO2・+HO2・→H22+O2 …(10) OH・+HO2・→H2O+O2 …(11) OH・+OH・→H22 …(12) 被処理水中では、オゾン消費成分による反応{(3),
(4),(5)}とオゾンの自己分解による反応{(6)
→(12)}とが並行して進行する。このため、被処理
水中のオゾン消費成分である有機物または無機物による
オゾン消費と自己分解によるオゾン消費を区別すること
ができず、両者のオゾン消費を含むオゾン消費量は測定
できても、オゾン消費成分のみによる被処理水のオゾン
要求量の測定は困難である。
O 3 + H 2 O → HO 3 + OH (6) HO 3 + OH · → 2HO 2 ··· (7) O 3 + HO 2 · → OH · + 2O 2 ··· (8) O 3 + OH · → HO 2 · + O 2 (9) HO 2 · + HO 2 · → H 2 O 2 + O 2 … (10) OH · + HO 2 · → H 2 O + O 2 … (11) OH · + OH · → H 2 O 2 … (12) In the water to be treated, the reaction due to ozone consuming components {(3),
Reaction of (4), (5)} with ozone self-decomposition {(6)
→ (12)} progresses in parallel. For this reason, it is not possible to distinguish between ozone consumption due to organic substances or inorganic substances, which are ozone consuming components in the water to be treated, and ozone consumption due to self-decomposition. It is difficult to measure the ozone demand of the water to be treated only by using.

【0025】両者のオゾン消費を区別する手段として、
蒸留水等の有機物等を含有しない水を比較水として、こ
の比較水にオゾンを注入すれば、オゾンの自己分解のみ
による消費量を求めることができる。そして、別にオゾ
ンを注入した被処理水側のオゾン消費量と対比すれば、
オゾンの自己分解の影響を除いた被処理水中のオゾン消
費成分によるオゾン要求量を測定することができる。
As a means for distinguishing both ozone consumption,
If water that does not contain organic substances such as distilled water is used as comparison water and ozone is injected into this comparison water, the consumption amount due only to self-decomposition of ozone can be obtained. And in comparison with the amount of ozone consumption on the side of the treated water into which ozone was injected separately,
It is possible to measure the ozone demand amount due to the ozone consuming component in the water to be treated excluding the effect of self-decomposition of ozone.

【0026】この結果、オゾン注入に伴う被処理水中の
有機物等によるオゾン消費量をCR1とし、自己分解によ
るオゾン消費量をCR2とすれば、酸化反応と自己分解
の両者を含むオゾン注入後の溶存オゾン濃度K1は、前
述(2)式から次式(13)で表わされる。
As a result, if the ozone consumption amount due to organic substances in the water to be treated accompanying ozone injection is CR1 and the ozone consumption amount due to self-decomposition is CR2, the dissolved amount after ozone injection including both oxidation reaction and self-decomposition will be described. The ozone concentration K1 is represented by the following equation (13) from the above equation (2).

【0027】 K1=[{Qg(Cg1−Cg2)}/Qw]−(CR1+CR2) …(13) 一方、有機物等を含有しない蒸留水等を比較水として、
この比較水にオゾンを注入した場合、この比較水中には
オゾン消費成分が含まれていないから、有機物等の酸化
に要するオゾン消費はなく、主としてオゾンの自己分解
のみに支配されてオゾンが消費される。ここで、オゾン
注入に伴う自己分解によるオゾン消費量をCR2′とす
ると、オゾン注入後の溶存オゾン濃度K2は、前述
(2)式から次式(14)で表わされる。
K1 = [{Qg (Cg1-Cg2)} / Qw]-(CR1 + CR2) (13) On the other hand, distilled water containing no organic matter or the like is used as comparison water.
When ozone is injected into this comparative water, since ozone consuming components are not contained in this comparative water, there is no ozone consumption required for oxidation of organic substances, etc., and ozone is consumed mainly by self-decomposition of ozone. It Here, assuming that the ozone consumption amount due to self-decomposition accompanying ozone injection is CR2 ′, the dissolved ozone concentration K2 after ozone injection is expressed by the following expression (14) from the above expression (2).

【0028】 K2=[{Qg(Cg1−Cg2)}/Qw]−CR2′ …(14) したがって、オゾン注入量及び水量等の反応条件等を等
しく保持すれば、自己分解によるオゾン消費量はCR2
=CR2′となり、次式(15)で示すように比較水と
被処理水の溶存オゾン濃度の差分(K2−K1)がオゾ
ンの自己分解を除いた被処理水中のオゾン消費成分によ
るオゾン要求量として求められる。
K2 = [{Qg (Cg1-Cg2)} / Qw] -CR2 '(14) Therefore, if the reaction conditions such as the amount of injected ozone and the amount of water are kept equal, the ozone consumption due to self-decomposition is CR2.
= CR2 ', and the difference (K2-K1) between the dissolved ozone concentrations of the comparative water and the water to be treated is the ozone demand amount due to the ozone consuming component in the water to be treated excluding the self-decomposition of ozone, as shown in the following equation (15). Is required as.

【0029】 CR1=K2−K1 …(15) 既に説明したように、オゾンの水への溶解度及び液中で
の自己分解は、水温,pH等の影響を受ける。このた
め、比較水側と被処理水側の水温,pH等を整合させる
必要がある。具体的には、被処理水側の水温を検出し
て、比較水側を加温または冷却して同一水温に保持した
り、或いは、被処理水側のpHを検出して、比較水側に
酸,アルカリをpH調整剤としてに添加する等の制御が
必要になる。しかし、被処理水の水温,pH等の検出結
果に基づいて、比較水側の水温またはpHを整合させる
のでは時間遅れが生じる。この結果、被処理水の水温ま
たはpHの変動が大きい場合、短時間で同一反応条件に
保持することが困難となり、水温またはpHを被処理水
側と整合させることができない不都合が生じる。中で
も、pHの制御性はオゾンの自己分解を求める水の緩衝
能(緩衝指数)に影響され、緩衝能の大きい水は比較的
pHの調節が容易であるが、蒸留水等のpH緩衝能の小
さい水はpHの調整が難しく、短時間でpHを被処理水
側に整合させることができない。また、pH調整剤とし
て、アルカリまたは酸を用いる場合、これらの調整剤と
オゾンが反応するとオゾンの自己分解による消費量を正
確に求めることが困難になる。
CR1 = K2-K1 (15) As described above, the solubility of ozone in water and the self-decomposition in liquid are affected by water temperature, pH and the like. Therefore, it is necessary to match the water temperature, pH, etc. on the comparative water side and the treated water side. Specifically, the water temperature of the treated water side is detected and the comparative water side is heated or cooled to maintain the same water temperature, or the pH of the treated water side is detected and the comparative water side is detected. Control such as addition of acid or alkali as a pH adjuster is required. However, if the water temperature or pH of the comparative water is matched based on the detection result of the water temperature, pH, etc. of the water to be treated, there will be a time delay. As a result, when the water temperature or pH of the water to be treated fluctuates greatly, it becomes difficult to maintain the same reaction conditions in a short time, and there is the inconvenience that the water temperature or pH cannot be matched with the water to be treated side. Among them, the controllability of pH is affected by the buffering capacity (buffer index) of water that requires ozone self-decomposition, and the pH of water with a large buffering capacity is relatively easy to adjust, but the pH buffering capacity of distilled water or the like is It is difficult to adjust the pH of small water, and the pH cannot be adjusted to the side of the water to be treated in a short time. Further, when an alkali or an acid is used as the pH adjusting agent, if these adjusting agents and ozone react with each other, it becomes difficult to accurately obtain the consumption amount due to self-decomposition of ozone.

【0030】本発明者らは、前述した事柄をふまえ、オ
ゾンの自己分解による消費量を簡易に精度よく求める方
法について検討した結果、被処理水中のオゾン消費成分
を除去した後の処理水を比較水として、この比較水にオ
ゾンを注入すれば、被処理水側の水温またはpH等と整
合させるための調整を不要にできることを見出した。被
処理水中のオゾン消費成分を除去した後の処理水をオゾ
ンの自己分解による消費量を求める比較水として用いれ
ば、水温またはpH等は実質的に被処理水側水温または
pHに整合する。この結果、水温またはpHの調整が不
必要になると共にpH調整に伴うオゾン消費の外乱的要
素もなく、簡易にして精度よく被処理水中の被酸化性成
分によるオゾン要求量を測定することができる。
Based on the above-mentioned matters, the inventors of the present invention examined a method of simply and accurately obtaining the consumption amount of ozone by self-decomposition, and as a result, compared the treated water after removing the ozone consuming components in the treated water. As water, it has been found that if ozone is injected into this comparative water, adjustment for matching with the water temperature or pH of the treated water can be eliminated. When the treated water after removing the ozone consuming component in the treated water is used as the comparative water for determining the consumption amount due to the self-decomposition of ozone, the water temperature, pH or the like substantially matches the treated water side water temperature or pH. As a result, it becomes unnecessary to adjust the water temperature or pH, and there is no disturbing factor of ozone consumption accompanying the pH adjustment, and the ozone demand amount by the oxidizable component in the water to be treated can be measured easily and accurately. .

【0031】したがって、本発明の特徴とするところ
は、オゾンと反応するオゾン消費成分を含む被処理水に
おいて、前記オゾン消費成分と反応するオゾン量と前記
被処理水中でのオゾンの自己分解によるオゾン消費量と
を求めることにある。
Therefore, a feature of the present invention is that in the water to be treated containing the ozone consuming component that reacts with ozone, the amount of ozone that reacts with the ozone consuming component and ozone due to self-decomposition of ozone in the water to be treated. To find the consumption.

【0032】さらに本発明の特徴とするところは、被処
理水中のオゾンによるオゾン消費成分を除去した後の比
較水と被処理水とにオゾンを注入して、比較水と被処理
水との溶存オゾン濃度差から被処理水のオゾン要求量を
求めることにある。
Further, a feature of the present invention is that ozone is injected into the comparative water and the treated water after the ozone consuming component due to ozone in the treated water is removed, and the comparative water and the treated water are dissolved. This is to obtain the ozone demand amount of the water to be treated from the difference in ozone concentration.

【0033】前述のようにして被処理水のオゾン要求量
を求める場合、比較水を得る手段としては、被処理水に
オゾンを注入して被酸化性成分を除去した処理水を比較
水とする方法,被処理水中の被酸化性成分を活性炭等に
よって吸着除去して比較水とする方法,被処理水にオゾ
ン注入し、さらに活性炭等によって残留する被酸化性成
分を吸着除去して比較水とする方法等が、好ましい態様
である。
When the ozone demand amount of the water to be treated is calculated as described above, as a means for obtaining the comparative water, the treated water obtained by injecting ozone into the water to be treated to remove the oxidizable component is used as the comparative water. Method, method of absorbing and removing the oxidizable components in the treated water with activated carbon to obtain comparative water, and injecting ozone into the treated water, and removing residual oxidizable components with activated carbon to obtain the comparative water The method and the like are preferred embodiments.

【0034】これらの各態様の内、オゾンを被処理水に
注入して被酸化性成分を除去する方法は、オゾンの有す
る強い酸化力により効率的にオゾン消費成分である被酸
化性成分を酸化除去することができるが、オゾンの自己
分解によるオゾン消費量を求める比較水側は、単に被酸
化性成分を含有しないというだけでは正確なオゾン要求
量を求めることができない。つまり、被処理水にオゾン
を注入してオゾン消費成分を除去し、これを比較水とす
る場合、自己分解量を求めるために再びオゾンを注入す
る前の段階では、比較水中には前段階で注入したオゾン
の一部が溶存オゾンとして残留する。この残留した溶存
オゾンの濃度は、常に一定濃度ではない。このため、オ
ゾンの自己分解を求めるために比較水にオゾンを注入し
た場合、オゾン注入後の溶存オゾン濃度は前述の残留溶
存オゾン濃度の影響を受けて変化する。この結果、オゾ
ン注入後の被処理水と比較水との溶存オゾン濃度差から
オゾン要求量を求める場合、前記の残留溶存オゾンの変
動が要求量を求める際の誤差となり、精度よくオゾン要
求量を求めることができない。
In each of these embodiments, the method of injecting ozone into the water to be treated to remove the oxidizable component is to oxidize the oxidizable component which is an ozone consuming component efficiently by the strong oxidizing power of ozone. Although it can be removed, the comparative water side, which obtains the ozone consumption amount due to the self-decomposition of ozone, cannot obtain the accurate ozone demand amount simply by not containing the oxidizable component. In other words, when ozone is injected into the water to be treated to remove the ozone consuming component, and this is used as comparison water, the ozone is injected again in order to obtain the amount of self-decomposition, and in the comparison water it is used in the previous step. Part of the injected ozone remains as dissolved ozone. The concentration of the remaining dissolved ozone is not always constant. Therefore, when ozone is injected into the comparative water in order to determine the self-decomposition of ozone, the dissolved ozone concentration after the ozone injection changes under the influence of the above-mentioned residual dissolved ozone concentration. As a result, when the required ozone amount is calculated from the difference in the dissolved ozone concentration between the treated water after ozone injection and the comparative water, the fluctuation of the residual dissolved ozone causes an error in determining the required amount, and the required ozone amount can be calculated accurately. I can't ask.

【0035】そこで、本発明においては、被処理水にオ
ゾンを注入した後の被酸化性成分及び溶存オゾンを含有
しない比較水と前記被処理水とにオゾンを注入して、前
記オゾン注入後の比較水と被処理水との溶存オゾン濃度
差から被処理水のオゾン要求量を求めることにした。こ
の好ましい態様は、被処理水にオゾンを注入した後の処
理水中の溶存オゾンをエアレーション等の除去手段によ
って気相に放出し、その後比較水として再度オゾンの自
己分解量を求めるためのオゾンを注入することにある。
Therefore, in the present invention, ozone is injected into the water to be treated and the comparative water that does not contain the oxidizable component and dissolved ozone after the ozone is injected into the water to be treated, and the ozone after the ozone injection is injected. It was decided to determine the ozone demand of the water to be treated from the difference in dissolved ozone concentration between the comparative water and the water to be treated. In this preferred embodiment, the dissolved ozone in the treated water after injecting ozone into the water to be treated is released to the gas phase by a removal means such as aeration, and then ozone is again injected as comparative water for determining the amount of self-decomposition of ozone. To do.

【0036】次に、被処理水のオゾン要求量を求めるに
際し、被処理水中の有機物濃度とその組成が大きく変動
しても、高精度で被処理水のオゾン要求量を求めること
ができる方法について検討した。このための本発明の特
徴とするところは、被処理水中の被酸化性成分を除去し
た後の比較水と前記被処理水とにオゾンを注入して、前
記オゾン注入後の比較水と被処理水との溶存オゾン濃度
差から前記被処理水のオゾン要求量を求め、さらに前記
被処理水の溶存オゾン濃度の測定値が所定値以上に保持
されるように前記被処理水と比較水へのオゾン注入量を
制御することにある。この好ましい態様は、オゾン注入
後の被処理水中の溶存オゾン濃度を測定して、溶存オゾ
ン濃度の目標値との偏差に従って被処理水及び比較水へ
のオゾン注入量を制御する。
Next, in determining the ozone demand of the water to be treated, a method can be obtained with a high degree of accuracy to obtain the ozone demand of the water to be treated, even if the organic matter concentration in the water to be treated and its composition greatly fluctuate. investigated. The feature of the present invention for this is that ozone is injected into the comparative water after removal of the oxidizable components in the treated water and the treated water, and the comparative water after the ozone injection and the treated water are treated. Obtain the ozone required amount of the water to be treated from the difference in the dissolved ozone concentration with water, further to the treated water and the comparative water so that the measured value of the dissolved ozone concentration of the treated water is maintained at a predetermined value or more. It is to control the ozone injection amount. In this preferred embodiment, the dissolved ozone concentration in the treated water after ozone injection is measured, and the amount of ozone injected into the treated water and the comparative water is controlled according to the deviation from the target value of the dissolved ozone concentration.

【0037】本発明においては、被処理水のオゾン要求
量を測定するオゾン要求量計を構成するに際し、その装
置構成の簡素化を図る測定手法についても検討した。被
処理水のオゾン要求量を測定する装置構成としては、測
定装置の設置スペース,取扱性及び装置製造上の合理性
等の観点から、装置構成が簡素であり、小型化が要求さ
れる。また、被処理水のオゾン要求量を精度よく合理的
に測定するためには、前述の如く被処理水にオゾンを注
入して被酸化性成分を除去し、その後これを比較水とし
て水温及びpH等の水質条件を被処理水側に整合させる
操作が必要になる。さらに、水質が整合した比較水と被
処理水とにオゾンを注入する操作が必要になる。この場
合、操作数の増加は、水とオゾンを接触させる反応槽等
の増加に繋がり、装置構成の簡素化に逆行する。したが
って、操作数を最小限にして各操作を合理的に組合せる
ことが、オゾン要求量計を構成する上で重要な要素とな
る。
In the present invention, when constructing an ozone demand meter for measuring the ozone demand of the water to be treated, a measuring method for simplifying the apparatus constitution was also examined. As a device configuration for measuring the ozone demand amount of the water to be treated, from the viewpoint of installation space of the measurement device, handleability, rationality in manufacturing the device, etc., the device configuration is simple and downsizing is required. In addition, in order to accurately and reasonably measure the ozone demand of the water to be treated, ozone is injected into the water to be treated to remove the oxidizable components as described above, and then this is used as comparison water for water temperature and pH. It is necessary to adjust the water quality conditions such as the above to the treated water side. Further, it is necessary to inject ozone into the comparative water and the water to be treated, which have the same water quality. In this case, an increase in the number of operations leads to an increase in reaction tanks for contacting water and ozone, which goes against the simplification of the device configuration. Therefore, it is an important factor in constructing an ozone demand meter to minimize the number of operations and to rationally combine the operations.

【0038】そこで、本発明では、被処理水が導入され
るオゾン接触反応槽にオゾンを注入して被酸化性成分を
除去した処理水を前記オゾン接触反応槽の下流側に位置
する溶存オゾン除去槽に導入し、さらに前記溶存オゾン
除去槽の下流側に位置するオゾン接触比較反応槽に溶存
オゾンが除去された処理水を比較水として導入し、前記
オゾン注入後の被処理水及び比較水との溶存オゾン濃度
差から前記被処理水のオゾン要求量を求めることにし
た。
Therefore, in the present invention, the treated water obtained by injecting ozone into the ozone contact reaction tank into which the water to be treated is introduced to remove the oxidizable components is treated to remove the dissolved ozone located on the downstream side of the ozone contact reaction tank. Introduced into the tank, the treated water from which dissolved ozone has been removed is introduced as a comparative water into the ozone contact comparison reaction tank located on the downstream side of the dissolved ozone removing tank, and the treated water after the ozone injection and the comparative water are introduced. It was decided to determine the required ozone amount of the water to be treated from the difference in the dissolved ozone concentration.

【0039】さらにまた、本発明においては、被処理水
のオゾン要求量を測定するに際し、応答性に優れたオゾ
ン要求量の測定法について検討した。被処理水のオゾン
要求量は、オゾン注入後の被処理水と比較水との溶存オ
ゾン濃度の差分から求められるが、オゾン要求量を測定
する応答性はオゾン消費成分を含有しない比較水を得る
時間に左右される。そこで、被処理水中の被酸化性成分
を除去した後の比較水を短時間で得るために、オゾン注
入後の被処理水中の溶存オゾン濃度を測定する系とは別
に被処理水中の被酸化性成分を除去する水系を並列に配
設することにした。被処理水系と比較水系とを並列に配
設すると、被処理水中の被酸化性成分を除去するため
に、例えばオゾン注入量を多くして被酸化性成分の除去
を加速させることができ、応答性をよくすることができ
る。
Furthermore, in the present invention, when measuring the ozone demand amount of the water to be treated, a method of measuring the ozone demand amount having excellent responsiveness was examined. The ozone demand of the water to be treated is obtained from the difference in the dissolved ozone concentration between the water to be treated after ozone injection and the comparative water, but the responsiveness of measuring the ozone demand is to obtain comparative water that does not contain ozone consuming components. It depends on time. Therefore, in order to obtain the comparative water after removing the oxidizable components in the treated water in a short time, in addition to the system that measures the dissolved ozone concentration in the treated water after ozone injection It was decided to arrange the water system for removing the components in parallel. When the treated water system and the comparative water system are arranged in parallel, in order to remove the oxidizable component in the treated water, for example, the ozone injection amount can be increased to accelerate the removal of the oxidizable component. You can improve your sex.

【0040】被処理水及び比較水に注入したオゾンは、
全て液相に溶解するのではなく、一部のオゾンは液相か
ら気相に放出される。オゾンは強い酸化力を有するの
で、オゾン漏洩防止は環境保全のためにも必要である。
Ozone injected into the water to be treated and the comparative water is
Rather than all being dissolved in the liquid phase, some ozone is released from the liquid phase into the gas phase. Since ozone has a strong oxidizing power, prevention of ozone leakage is also necessary for environmental protection.

【0041】そこで、注入オゾンがオゾン要求量計の系
外に排出されるのを防止するために、被処理水及び比較
水から気相に排出される排オゾンガスをオゾン分解処理
手段を介して系外に排出することにした。
Therefore, in order to prevent the injected ozone from being discharged out of the system of the ozone demand meter, the exhaust ozone gas discharged from the water to be treated and the comparative water to the gas phase through the ozone decomposition treatment means. I decided to discharge it outside.

【0042】さらに、オゾン要求量を測定した後に排出
されるオゾン含有水についても、液相から気相に放出さ
れたオゾンをオゾン分解処理手段を介して系外に排出す
るようにした。
Further, with respect to the ozone-containing water discharged after measuring the required ozone amount, the ozone discharged from the liquid phase to the gas phase is discharged to the outside of the system through the ozone decomposition treatment means.

【0043】河川等から取水した原水を被処理水として
オゾン注入処理する場合、プラントでの被処理水のオゾ
ン注入処理は、被処理水とオゾンとの接触時間またはオ
ゾン接触反応槽の数と構造等の条件によって変化する。
このことから、実際のオゾン注入処理の結果を反映させ
た被処理水のオゾン要求量を測定することが重要であ
る。
When the raw water taken from a river or the like is subjected to ozone injection treatment as treated water, the ozone injection treatment of the treated water in the plant depends on the contact time between the treated water and ozone or the number and structure of ozone contact reaction tanks. It changes depending on the conditions such as.
From this, it is important to measure the ozone demand amount of the water to be treated that reflects the result of the actual ozone injection treatment.

【0044】本発明においては、被処理水のオゾン要求
量を求めるに際して、オゾン処理の対象となる被処理水
が導入されるオゾン注入処理装置を規模の大きいオゾン
要求量計と見做して、処理対象の被処理水のオゾン要求
量を求めるようにした。
In the present invention, when determining the ozone demand amount of the water to be treated, the ozone injecting treatment apparatus into which the water to be treated which is the object of ozone treatment is introduced is regarded as a large scale ozone demand meter. The ozone demand amount of the treated water to be treated was calculated.

【0045】この種のオゾン注入処理装置は、被処理水
が導入されるオゾン接触槽とこのオゾン接触槽にオゾン
を供給するオゾナイザ及び前記オゾン接触槽の下流側に
配設されて前記オゾン注入後の処理水が導入される生物
活性炭槽とから構成される。この場合、被処理水中のオ
ゾン消費成分である被酸化性成分は、オゾン接触反応槽
でオゾン注入処理され、その後、生物活性炭槽で残留分
が除去されることになる。この結果、生物活性炭槽から
得られる処理水は、オゾン消費成分となる被酸化性成分
を含まず、この処理水を被処理水のオゾン要求量を求め
る比較水として使用することができる。従って、生物活
性炭槽からの処理水の一部をサンプリングして、この処
理水にオゾンを注入した後の溶存オゾン濃度と前記被処
理水にオゾンを注入した後の溶存オゾン濃度との差分を
求めれば、実際のオゾン処理を反映させた精度の高い被
処理水のオゾン要求量を測定できる。
This type of ozone injection treatment device is disposed downstream of the ozone contact tank into which the water to be treated is introduced, the ozonizer for supplying ozone to this ozone contact tank, and the ozone contact tank, and after the ozone injection. It is composed of a biological activated carbon tank into which treated water is introduced. In this case, the oxidizable component, which is an ozone consuming component in the water to be treated, is subjected to ozone injection treatment in the ozone contact reaction tank, and then the residual content is removed in the biological activated carbon tank. As a result, the treated water obtained from the biological activated carbon tank does not contain an oxidizable component that becomes an ozone consuming component, and this treated water can be used as comparative water for determining the ozone demand amount of the treated water. Therefore, a part of the treated water from the biological activated carbon tank is sampled, and the difference between the dissolved ozone concentration after injecting ozone into this treated water and the dissolved ozone concentration after injecting ozone into the water to be treated is obtained. For example, it is possible to measure the ozone demand amount of the treated water with high accuracy that reflects the actual ozone treatment.

【0046】本発明の特徴とするところは、被処理水が
導入されるオゾン接触反応槽とこのオゾン接触反応槽に
オゾンを注入するオゾナイザ及び前記被処理水へのオゾ
ン注入後の溶存オゾン濃度を測定する溶存オゾン濃度計
とを備え、さらに前記オゾン接触反応槽の下流側に配設
されて前記オゾン注入後の処理水が導入される生物活性
炭槽とこの生物活性炭槽からの処理水をサンプリングし
て、このサンプリング水へのオゾン注入後の溶存オゾン
濃度を測定する溶存オゾン濃度計を備え、前記各溶存オ
ゾン濃度の差分から前記被処理水のオゾン要求量を求め
るようにしたことにある。
The features of the present invention are that the ozone contact reaction tank into which the water to be treated is introduced, the ozonizer for injecting ozone into the ozone contact reaction tank, and the dissolved ozone concentration after the ozone is injected into the water to be treated. A biological activated carbon tank equipped with a dissolved ozone concentration meter for measurement, further disposed on the downstream side of the ozone contact reaction tank, into which the treated water after the ozone injection is introduced, and the treated water from the biological activated carbon tank are sampled. Then, a dissolved ozone concentration meter for measuring the dissolved ozone concentration after injecting ozone into the sampling water is provided, and the ozone required amount of the water to be treated is obtained from the difference between the dissolved ozone concentrations.

【0047】また、本発明の他の特徴とするところは、
被処理水が導入されるオゾン接触反応槽とこのオゾン接
触反応槽にオゾンを注入するオゾナイザ及び前記オゾン
接触反応槽の下流側に配設されて前記オゾン注入後の処
理水が導入される生物活性炭槽とを備え、前記生物活性
炭槽からの処理水をサンプリングした比較水と前記被処
理水とにオゾンを注入して、オゾン注入後の比較水と被
処理水との溶存オゾン濃度差から前記被処理水のオゾン
要求量を求めるようにしたことにある。
Another feature of the present invention is that
An ozone contact reaction tank into which water to be treated is introduced, an ozonizer for injecting ozone into the ozone contact reaction tank, and biological activated carbon disposed downstream of the ozone contact reaction tank and into which treated water after the ozone injection is introduced. A tank is provided, and ozone is injected into the comparative water in which the treated water from the biological activated carbon tank is sampled and the treated water, and the treated ozone is injected from the difference in the dissolved ozone concentration between the comparative water after the ozone injection and the treated water. This is because the ozone demand of treated water is calculated.

【0048】本発明のオゾン注入制御方法は、前述のよ
うに比較水と被処理水との溶存オゾン濃度差から被処理
水のオゾン要求量を求め、この要求量に従って、オゾン
接触反応槽へのオゾン注入量を制御することにある。
As described above, the ozone injection control method of the present invention obtains the ozone required amount of the treated water from the difference in the dissolved ozone concentration between the comparative water and the treated water, and according to this required amount, the ozone contact reaction tank It is to control the ozone injection amount.

【0049】オゾン処理においては、オゾン消費成分と
反応するに必要なオゾン量だけでなく、オゾンの自己分
解による消費量をも補償してオゾン注入量を求めること
が必要である。そこで、オゾンの自己分解を含めたオゾ
ン注入量の測定法の好ましい態様について検討した。
In the ozone treatment, it is necessary to calculate the ozone injection amount by compensating not only the ozone amount necessary for reacting with the ozone consuming component but also the consumption amount due to self-decomposition of ozone. Then, the preferable aspect of the measuring method of the ozone injection amount including the self-decomposition of ozone was examined.

【0050】そして、被処理水と前記被処理水中のオゾ
ン消費成分を除去した後のオゾン消費成分除去水とにそ
れぞれオゾンを注入して、前記被処理水中のオゾン消費
成分と反応するオゾン量と前記オゾン消費成分除去水で
のオゾンの自己分解によるオゾン消費量とを加算して、
オゾン注入処理の対象となる被処理水へのオゾン注入量
を求めることを見出した。
Then, ozone is injected into the water to be treated and the ozone consuming component-removed water after the ozone consuming component in the water to be treated is respectively injected, and the amount of ozone which reacts with the ozone consuming component in the water to be treated and By adding the ozone consumption amount due to the self-decomposition of ozone in the ozone consuming component-removed water,
It has been found that the amount of ozone to be injected into the water to be treated, which is the target of the ozone injection treatment, is determined.

【0051】本発明では、被処理水にオゾンを注入する
場合、オゾン注入量が過少となってオゾン注入後の処理
水中の溶存オゾン濃度(または排オゾンガス濃度)が不
検出となるのを防止している。前述のようにオゾン注入
量を算出して被処理水にオゾンを注入すれば、必要最小
限のオゾンが注入されることになるが、オゾン注入量を
求めるまでの時間及び該注入量に応じてオゾンを注入す
るまでの時間等、タイムラグが生じる。また、タイムラ
グ以上に被処理水の水質変動が大きいとオゾンが過少に
注入され、処理水質の低下を招く恐れがある。そこで、
水質変動の影響に対応するため、オゾン注入処理の対象
となる被処理水へのオゾン注入後の溶存オゾン濃度(ま
たは排オゾンガス濃度)を所定値以上に保持するための
補完オゾン注入量を必要オゾン注入量に加算して、オゾ
ン注入量が過少となるのを防止することが望ましい。
In the present invention, when ozone is injected into the water to be treated, it is prevented that the ozone injection amount becomes too small and the dissolved ozone concentration (or the exhaust ozone gas concentration) in the treated water after the ozone injection becomes undetected. ing. If the ozone injection amount is calculated and ozone is injected into the water to be treated as described above, the minimum necessary amount of ozone will be injected. However, depending on the time until the ozone injection amount is obtained and the injection amount. There is a time lag such as the time until ozone is injected. Further, if the water quality fluctuation of the water to be treated is greater than the time lag, ozone is injected too little, which may lead to deterioration of the water quality of the treated water. Therefore,
In order to respond to the effects of water quality fluctuations, a supplemental ozone injection amount is required to maintain the dissolved ozone concentration (or exhaust ozone gas concentration) after ozone injection into the water to be treated that is the target of ozone injection treatment above a prescribed value. In addition to the injection amount, it is desirable to prevent the ozone injection amount from becoming too small.

【0052】さらに、オゾン消費成分除去水側でのオゾ
ンの自己分解によるオゾン消費量を求める好ましい態様
について検討した。オゾンを液中に注入した場合、注入
オゾンの一部は排オゾンガスとして気相に放出されるこ
とから、オゾン消費成分除去水側でのオゾンの自己分解
によるオゾン消費量を求めるためには、液中での自己分
解に関係しないで気相に排出されるオゾン量を考慮する
必要がある。オゾン消費成分除去水へのオゾン注入前後
の気相オゾン濃度差から前記オゾン消費成分除去水での
オゾン消費量を求める一方、該オゾン消費量とオゾン注
入後のオゾン消費成分除去水との溶存オゾン濃度差から
オゾンの自己分解によるオゾン消費量を求める。このよ
うにすると、排オゾンを加味してオゾン消費成分除去水
でのオゾンの自己分解によるオゾン消費量を精度よく求
めることができる。
Further, a preferable mode for obtaining the ozone consumption amount due to the self-decomposition of ozone on the water side from which the ozone consuming component has been removed was examined. When ozone is injected into a liquid, a part of the injected ozone is discharged to the gas phase as exhaust ozone gas.Therefore, in order to obtain the ozone consumption due to the self-decomposition of ozone on the water side where ozone-consuming components are removed, It is necessary to consider the amount of ozone emitted into the gas phase regardless of the self-decomposition in the gas. The ozone consumption of the ozone-consuming component-removed water is determined from the difference in the vapor-phase ozone concentration before and after the ozone-consuming component-removed water is injected, and the dissolved ozone between the ozone-consuming component and the ozone-consuming component-removed water after the ozone injection is obtained. The ozone consumption due to self-decomposition of ozone is calculated from the difference in concentration. By doing so, it is possible to accurately calculate the ozone consumption amount due to the self-decomposition of ozone in the ozone-consumption-component-removed water in consideration of the exhaust ozone.

【0053】したがって、本発明の特徴とするところ
は、被処理水と前記被処理水中のオゾン消費成分を除去
した後のオゾン消費成分除去水とにそれぞれオゾンを注
入して、該オゾン注入後の前記オゾン消費成分除去水と
前記被処理水との溶存オゾン濃度差から前記被処理水の
オゾン消費成分と反応するに必要なオゾン量を求め、さ
らに前記オゾン消費成分除去水へのオゾン注入前後の気
相オゾン濃度差から前記オゾン消費成分除去水でのオゾ
ン消費量を求めると共に該オゾン消費量とオゾン注入後
の前記オゾン消費成分除去水の溶存オゾン濃度差からオ
ゾン消費成分除去水での自己分解によるオゾン消費量を
求め、前記被処理水のオゾン消費成分と反応するに必要
なオゾン量とオゾン消費成分除去水でのオゾンの自己分
解によるオゾン消費量とを加算して、オゾン注入処理の
対象となる被処理水への必要オゾン注入量を求めるよう
にすることにある。
Therefore, the feature of the present invention resides in that ozone is injected into the water to be treated and the ozone-consuming component-removed water after the ozone-consuming component is removed from the water to be treated, and the ozone after the ozone injection is injected. Obtain the amount of ozone necessary to react with the ozone consuming component of the water to be treated from the difference in dissolved ozone concentration between the ozone consuming component removed water and the water to be treated, and further before and after the injection of ozone into the ozone consuming component removed water. The ozone consumption of the ozone consuming component-removed water is obtained from the difference in the vapor phase ozone concentration, and the ozone consumption and the dissolved ozone concentration difference of the ozone consuming component-removed water after ozone injection are self-decomposed in the ozone consuming component-removed water. The amount of ozone consumed by water is calculated, and the amount of ozone necessary to react with the ozone consuming component of the water to be treated and the ozone consumption due to the self-decomposition of ozone in the ozone consuming component-removed water By adding the bets is to to obtain the required ozone injection amount into the treatment water to be ozone injection process.

【0054】前述のようにして、オゾン消費成分除去水
でのオゾンの自己分解によるオゾン消費量を求める場
合、オゾン消費成分除去水へのオゾン注入量から気相へ
の排オゾン量及び前記除去水の溶存オゾン量を差し引い
て求めてもよい。
As described above, when the ozone consumption due to the self-decomposition of ozone in the ozone consuming component-removed water is obtained, the amount of ozone injected into the ozone consuming component-removing water and the amount of ozone discharged into the gas phase and the removed water are removed. It may be obtained by subtracting the amount of dissolved ozone.

【0055】[0055]

【作用】被処理水のオゾン要求量を測定する場合、被処
理水とこの被処理水中のオゾン消費成分となる被酸化性
成分を除去した後の比較水とにオゾンを注入して、オゾ
ン注入後の比較水と被処理水との溶存オゾン濃度差から
被処理水のオゾン要求量を求めているので、簡易にして
高精度で被処理水のオゾン要求量を測定することができ
る。すなわち、被処理水中の被酸化性成分を除去すると
共にこれを比較水とする。この比較水は、オゾン消費成
分の有無と無関係にオゾン要求量を求める被処理水と同
一の水で外乱的要素の影響を受けることが少ないから、
水温,pH等は実質的に被処理水側の水温,pH等に整
合することになる。
[Operation] When measuring the ozone demand amount of the water to be treated, ozone is injected into the water to be treated and the comparative water after removal of the oxidizable component which is an ozone consuming component in the water to be treated, and then ozone is injected. Since the ozone required amount of the treated water is obtained from the difference in the dissolved ozone concentration between the comparative water and the treated water, the ozone required amount of the treated water can be simply and highly accurately measured. That is, the oxidizable component in the water to be treated is removed and this is used as the comparative water. This comparative water is the same water as the water to be treated for which the ozone demand amount is obtained regardless of the presence or absence of ozone consuming components, and is less likely to be affected by disturbance factors.
The water temperature, pH, etc. substantially match the water temperature, pH, etc. on the treated water side.

【0056】この結果、オゾンの反応条件を揃えるため
に、比較水側の水温,pHを被処理水側に整合させる手
段を付設したりすることがない。
As a result, in order to make the ozone reaction conditions uniform, there is no need to attach any means for matching the water temperature and pH of the comparative water with the treated water.

【0057】また、本発明においては、被処理水のオゾ
ンによる被酸化性成分を含有しない比較水を得る手段と
して、被処理水にオゾンを注入して被酸化性成分を除去
するようにしている。被処理水のオゾン要求量を測定す
る際、必然的にオゾンを使用することになるが、強い酸
化力を有するこのオゾンによって効率的に被酸化性成分
を除くことができ、かつ、オゾン要求量測定用のオゾン
と共に被酸化性成分の除去用として共通してオゾンを利
用することができる。したがって、簡易に被処理水中の
オゾンによる被酸化性成分を除去する利点を有する。
Further, in the present invention, ozone is injected into the water to be treated to remove the oxidizable component as a means for obtaining comparative water containing no oxidizable component due to ozone in the water to be treated. . Ozone is inevitably used when measuring the ozone demand of the water to be treated, but this ozone, which has a strong oxidizing power, can efficiently remove oxidizable components, and the ozone demand Ozone can be commonly used for removing the oxidizable component together with ozone for measurement. Therefore, there is an advantage of easily removing the oxidizable component due to ozone in the water to be treated.

【0058】また、本発明においては、被処理水中の被
酸化性成分を除いて比較水を得る他の手段として、被酸
化性成分を吸着除去するようにしている。被処理水から
比較水を得る手段して、吸着によって被酸化性成分を除
けば、水温,pHを変化させる要因がなく、容易に被酸
化性成分を除去して被処理水側の水温,pH等に比較水
側を整合させることができる。
Further, in the present invention, the oxidizable component is adsorbed and removed as another means for obtaining comparative water by removing the oxidizable component in the water to be treated. There is no factor to change the water temperature and pH by removing the oxidizable component by adsorption by means of obtaining comparative water from the treated water, and the oxidizable component can be easily removed to remove the oxidizable component and the water temperature and pH on the treated water side. It is possible to match the comparison water side with the above.

【0059】さらに、比較水を得る他の手段として、被
処理水にオゾンを注入し、その後さらに吸着によって被
酸化性成分を除くようにすれば、オゾン注入段階で被処
理水中に被酸化性成分残留していても、後段の吸着によ
って残留分の被酸化性成分を除くことができる。この結
果、被処理水中の有機物等の濃度変動に対応した被処理
水のオゾン要求量の測定が可能となる。
Further, as another means for obtaining comparative water, if ozone is injected into the water to be treated and then the oxidizable component is removed by adsorption, the oxidizable component is added to the water to be treated at the ozone injection stage. Even if it remains, it is possible to remove the residual oxidizable component by adsorption in the latter stage. As a result, it becomes possible to measure the ozone demand amount of the water to be treated, which corresponds to the variation in the concentration of organic substances in the water to be treated.

【0060】本発明ではまた、比較水中に溶存オゾンが
残留して被処理水のオゾン要求量に誤差が生じるのを防
止することにした。比較水に溶存オゾンが残留している
と、その残留オゾンの要因でその後オゾンを注入しても
オゾンの自己分解による消費量が少なく測定される。
In the present invention, it is also intended to prevent the dissolved ozone remaining in the comparative water from causing an error in the ozone required amount of the water to be treated. If dissolved ozone remains in the comparative water, the amount of consumption due to self-decomposition of ozone is small even if ozone is injected later due to the residual ozone.

【0061】このために、本発明では、被処理水に自己
分解を求めるオゾンを注入する前段階で、被処理水中の
溶存オゾンをエアレーション等の手段によって気相に排
出することにした。この結果、自己分解を求めるオゾン
を注入する前段階では、比較水中に溶存オゾンが含有す
ることがないから、その後オゾンを注入しても比較水中
の溶存オゾン濃度は前段階で注入したオゾンの影響を受
けて高くなることはない。したがって、自己分解を求め
る前段階で溶存オゾンを除去すれば誤差のない被処理水
のオゾン要求量を求めることができる。
For this reason, in the present invention, the dissolved ozone in the water to be treated is discharged to the gas phase by means of aeration or the like before the ozone for self-decomposition is injected into the water to be treated. As a result, at the pre-injection stage of ozone for self-decomposition, the dissolved ozone is not contained in the comparative water. It will not be expensive to receive. Therefore, if the dissolved ozone is removed before the self-decomposition is obtained, the ozone required amount of the water to be treated can be obtained without error.

【0062】本発明の好ましい態様においては、被処理
水と比較水とにオゾンを注入して、両者の溶存オゾン濃
度差から被処理水のオゾン要求量を求める場合、オゾン
注入後の被処理水中の溶存オゾン濃度を所定値以上に保
持する。被処理水中の有機物濃度が高くなり、注入した
オゾンの全てが消費されると、その後の溶存オゾンは不
検出となり、被酸化性成分が残っていても残留分の被酸
化性成分は注入オゾンによって消費(酸化)されず、残
留分に相当するオゾン要求量が求められない。しかし、
被処理水に常に溶存オゾンが検出されるようにすること
により、被処理水中には被酸化性成分を酸化するに充分
なオゾンが注入され、オゾンによって酸化されない被酸
化性成分が残留することがなくなる。
In a preferred embodiment of the present invention, when ozone is injected into the water to be treated and the comparative water and the ozone demand amount of the water to be treated is determined from the difference in dissolved ozone concentration between the two, the water to be treated after the ozone injection is treated. The dissolved ozone concentration of is maintained above a predetermined value. When the concentration of organic substances in the water to be treated becomes high and all of the injected ozone is consumed, the dissolved ozone thereafter becomes undetectable, and even if oxidizable components remain, the residual oxidizable components will remain due to the injected ozone. It is not consumed (oxidized) and the required ozone amount corresponding to the residue is not required. But,
By ensuring that dissolved ozone is always detected in the water to be treated, sufficient ozone to oxidize the oxidizable components may be injected into the water to be treated, and oxidizable components that are not oxidized by ozone may remain. Disappear.

【0063】本発明では、オゾン要求量計を構成する装
置を簡素化するために、被処理水にオゾンを注入して溶
存オゾン濃度を測定した後、この処理水中の溶存オゾン
を除去して次にこれを比較水としてオゾンを注入し、こ
の比較水の溶存オゾン濃度を測定する方法を提案してい
る。
In the present invention, in order to simplify the device constituting the ozone demand meter, ozone is injected into the water to be treated to measure the concentration of dissolved ozone, and then the dissolved ozone in the treated water is removed to remove the ozone. We propose a method to measure the dissolved ozone concentration of this comparative water by injecting ozone as the comparative water.

【0064】また、被処理水中の被酸化性成分を除去し
て比較水を短時間に得るために、オゾン注入後の被処理
水中の溶存オゾン濃度を測定する水系とは別に、被処理
水中の被酸化性成分を除去する水系を並列に配設するよ
うにした。このようにすると、被処理水へのオゾン注入
後の溶存オゾン濃度は別系で測定され、かつ比較水への
オゾン注入量と同等に設定する必要はないから、被処理
水中の被酸化性成分の除去に際して、オゾン注入量を多
く設定し、被酸化性成分の除去を加速させることができ
る。したがって、被酸化性成分が含有しない比較水を短
時間に得ることができ、オゾン要求量の測定を応答性の
よいものとすることができる。
Further, in order to remove the oxidizable components in the treated water and obtain comparative water in a short time, in addition to the water system for measuring the dissolved ozone concentration in the treated water after ozone injection, An aqueous system for removing oxidizable components was arranged in parallel. By doing so, the dissolved ozone concentration after ozone injection into the water to be treated is measured in a separate system, and it is not necessary to set it equal to the amount of ozone injected into the comparative water. At the time of removing, the ozone injection amount can be set to be large, and the removal of the oxidizable component can be accelerated. Therefore, the comparative water that does not contain the oxidizable component can be obtained in a short time, and the required ozone amount can be measured with good responsiveness.

【0065】さらに、本発明においては、被処理水中の
被酸化性成分が除かれた比較水と被処理水へのオゾン注
入時に、これら比較水及び被処理水から気相に排出され
る排オゾンガスをオゾン分解処理手段を介して系外に排
出しているので、被処理水のオゾン要求量測定時に、測
定環境等へのオゾン漏洩を防止することができる。
Further, according to the present invention, when the ozone is injected into the comparative water and the treated water from which the oxidizable components in the treated water have been removed, the exhausted ozone gas discharged from the comparative water and the treated water into the gas phase. Is discharged to the outside of the system through the ozone decomposing process means, it is possible to prevent ozone leakage to the measurement environment or the like when measuring the required ozone amount of the water to be treated.

【0066】また、前述とは別にオゾン要求量測定後の
被処理水及び比較水中に溶存したオゾンが液相から気相
に放出されるが、本発明においては、この気相に放出さ
れたオゾンをオゾン分解処理手段を介して系外に排出す
るようにしている。したがって、オゾンは無害な酸素と
なって系外に排出され、測定環境等へのオゾン漏洩が防
止される。
Separately from the above, the ozone dissolved in the water to be treated and the comparative water after the ozone demand measurement is released from the liquid phase to the gas phase. In the present invention, the ozone released to this gas phase is released. Is discharged to the outside of the system through the ozone decomposition treatment means. Therefore, ozone becomes harmless oxygen and is discharged to the outside of the system, so that ozone is prevented from leaking to the measurement environment.

【0067】また、本発明においては、被処理水のオゾ
ン要求量を求めるに際し、被処理水が実際にオゾン注入
処理される結果に基づいて被処理水のオゾン要求量を求
めるようにしているので、被処理水のオゾン注入処理装
置のプラント特性を反映したオゾン要求量を測定するこ
とができる。すなわち、被処理水が導入されるオゾン接
触反応槽にオゾンを注入すると共にオゾン注入後の被処
理水中の溶存オゾン濃度を測定する。そして、オゾン注
入後の処理水が導入される生物活性炭槽から処理水の一
部をサンプリングして、このサンプリング水を被酸化性
成分を含有しない比較水として、この比較水にオゾンを
注入すると共に溶存オゾン濃度を測定する。したがっ
て、前述の各溶存オゾン濃度の差分を求めれば、実際の
被処理水のオゾン注入処理を反映した被処理水のオゾン
要求量を測定することができる。
Further, in the present invention, when the ozone demand amount of the treated water is determined, the ozone demand amount of the treated water is determined based on the result of the actual ozone injection treatment of the treated water. It is possible to measure the ozone demand amount that reflects the plant characteristics of the ozone injecting and treating apparatus for the water to be treated. That is, ozone is injected into the ozone contact reaction tank into which the water to be treated is introduced, and the dissolved ozone concentration in the water to be treated after the ozone injection is measured. Then, a part of the treated water is sampled from the biological activated carbon tank into which the treated water after ozone injection is introduced, and this sampled water is treated as comparative water containing no oxidizable component, and ozone is injected into this comparative water. Measure the dissolved ozone concentration. Therefore, if the difference between the dissolved ozone concentrations described above is obtained, it is possible to measure the ozone demand amount of the water to be treated that reflects the actual ozone injecting treatment of the water to be treated.

【0068】また、本発明においては、被処理水中の被
酸化性成分を含有しない比較水を得る方法として、実際
のオゾン注入処理装置からの処理水を比較水として用い
るようにしている。すなわち、前述したオゾン注入処理
装置における生物活性炭槽からの処理水の一部をサンプ
リングして、これを比較水としたものである。そして、
この比較水と被処理水とにオゾンを注入して、オゾン注
入後の被処理水と比較水との溶存オゾン濃度差から被処
理水のオゾン要求量を求めるようにしたものである。こ
のように実際に被処理水がオゾン注入処理された後の被
酸化性成分を含有しない比較水を用いれば、実プラント
のオゾン注入処理特性を反映させることができ、精度の
高い被処理水のオゾン要求量を測定することができる。
Further, in the present invention, as a method of obtaining the comparative water containing no oxidizable component in the treated water, the treated water from the actual ozone injecting treatment apparatus is used as the comparative water. That is, a part of the treated water from the biological activated carbon tank in the ozone injection treatment device described above was sampled and used as comparative water. And
Ozone is injected into the comparative water and the water to be treated, and the required ozone amount of the water to be treated is obtained from the difference in the dissolved ozone concentration between the water to be treated after the ozone injection and the comparative water. In this way, by using the comparative water that does not contain the oxidizable component after the treated water is actually subjected to the ozone injection treatment, the ozone injection treatment characteristics of the actual plant can be reflected, and the treated water with high accuracy can be reflected. The ozone demand can be measured.

【0069】本発明においては、このようにして求めた
オゾン要求量に基づいて被処理水へのオゾン注入量を制
御しているので、制御精度の高いオゾン注入制御ができ
る。さらに本発明においては、被処理水中のオゾン消費
成分と反応するオゾン量と前記被処理水中でのオゾンの
自己分解によるオゾン消費成分とを求めると共に、前記
オゾン消費成分と反応するオゾン量と自己分解によるオ
ゾン消費量とを加算してオゾン注入処理の対象となる被
処理水への必要オゾン注入量を求めるようにしている。
被処理水中のオゾン消費成分と反応するオゾン量を求め
ることは、被処理水の水質によるオゾン消費量を測定す
る上で重要な要素である。しかし、被処理水をオゾン注
入処理する際、被処理水中の有機物等によるオゾン消費
量に対応した注入量では、オゾンの自己分解によって並
行してオゾンが消費されるので、有機物等のオゾン消費
成分によって消費されるオゾン量を注入しても過不足な
る。すなわち、オゾンを液中に注入した場合、オゾンは
自己分解によって消費されるため、オゾンの自己分解の
補償分をさらに注入しなければ、被処理水中のオゾン消
費成分を効果的に処理することができない。本発明で
は、被処理水中のオゾン消費成分と反応するオゾン量に
さらにオゾンの自己分解によるオゾン消費量を加算して
補償し、被処理水への必要オゾン注入量を求めている。
したがって、被処理水のオゾン注入処理に際し、オゾン
の自己分解によるオゾン消費の影響を受けることなく被
処理水中のオゾン消費成分を処理することができる。
In the present invention, the ozone injection amount into the water to be treated is controlled based on the ozone demand amount thus obtained, so that the ozone injection control with high control accuracy can be performed. Further, in the present invention, the amount of ozone that reacts with the ozone consuming component in the water to be treated and the ozone consuming component due to the self-decomposition of ozone in the water to be treated are determined, and the amount of ozone that reacts with the ozone consuming component and the self-decomposition The amount of ozone required for the water to be treated which is the object of the ozone injection treatment is calculated by adding the amount of ozone consumed by
Obtaining the amount of ozone that reacts with the ozone consuming component in the water to be treated is an important factor in measuring the amount of ozone consumption due to the water quality of the water to be treated. However, when the water to be treated is injected with ozone, ozone is consumed in parallel by self-decomposition of ozone at an injection amount corresponding to the amount of ozone consumed by organic substances in the water to be treated. Injecting the amount of ozone consumed by is too much. That is, when ozone is injected into the liquid, the ozone is consumed by self-decomposition, so if the component for compensating the self-decomposition of ozone is not injected further, the ozone-consuming component in the water to be treated can be effectively treated. Can not. In the present invention, the amount of ozone that reacts with the ozone consuming component in the water to be treated is further compensated by adding the amount of ozone consumption due to self-decomposition of ozone to obtain the required amount of ozone to be injected into the water to be treated.
Therefore, during the ozone injection treatment of the water to be treated, the ozone consuming component in the water to be treated can be treated without being affected by the ozone consumption due to the self-decomposition of ozone.

【0070】さらに本発明においては、被処理水中のオ
ゾン消費成分によるオゾン量とオゾン消費成分除去水で
のオゾンの自己分解によるオゾン消費量とを加算した必
要オゾン注入量に、さらに補完オゾン注入量を加算して
オゾン注入量を求めている。そして、該オゾン注入量に
応じてオゾン注入処理の対象となる被処理水にオゾンを
注入するようにしている。このようにした場合、必要オ
ゾン注入量等を求めるまでの間のタイムラグ等があっ
て、その間に被処理水側で水質が変動しても、オゾン注
入処理後の溶存オゾン濃度を所定値以上を確保する補完
オゾンが注入されているので、水質変動に伴うオゾン消
費量の増大に対応することができる。したがって、水質
変動によるオゾン消費の増大に伴い処理水の溶存オゾン
濃度が不検出となることがなく、処理水質の低下を招く
ことがない。
Further, in the present invention, the supplementary ozone injection amount is further added to the required ozone injection amount obtained by adding the ozone amount due to the ozone consumption component in the water to be treated and the ozone consumption amount due to the self-decomposition of ozone in the ozone consumption component-removed water. Is added to obtain the ozone injection amount. Then, according to the ozone injection amount, ozone is injected into the water to be treated which is the object of the ozone injection process. In this case, there is a time lag between obtaining the required ozone injection amount, etc., and even if the water quality on the treated water side fluctuates during that time, the dissolved ozone concentration after the ozone injection treatment should be kept above the specified value. Since supplemental ozone to be secured is injected, it is possible to cope with an increase in ozone consumption due to water quality fluctuations. Therefore, the dissolved ozone concentration of the treated water does not become undetectable as the ozone consumption increases due to the water quality fluctuation, and the treated water quality does not deteriorate.

【0071】本発明においては、オゾンの自己分解によ
る消費量を求める態様として、オゾン消費成分除去水に
オゾンを注入して自己分解によるオゾン消費量を求める
ようにしている。オゾン消費成分除去水を用いてオゾン
の自己分解によるオゾン消費量を求めれば、他の要因に
よるオゾン消費の影響を受けることがないので、オゾン
の自己分解によるオゾン消費量を精度よく求めることが
できる。したがって、該手段によって求められた自己分
解によるオゾン消費量と、被処理水中のオゾン消費成分
と反応するオゾン量とから求められる被処理水への必要
オゾン注入量は精度の高いものとなる。また、前記の必
要オゾン注入量に応じてオゾンを被処理水へ注入すれ
ば、被処理水の水質変動に対応してオゾンを注入するこ
とができ、被処理水の水質が変動しても安定したオゾン
注入処理が可能となり、オゾン注入後の水質の安定化が
はかれる。
In the present invention, as a mode of determining the consumption amount of ozone due to self-decomposition, ozone is injected into the ozone-consuming component-removed water to determine the ozone consumption amount due to self-decomposition. If the ozone consumption due to the self-decomposition of ozone is obtained using the ozone-consumption-component-removed water, it is not affected by the ozone consumption due to other factors. Therefore, the ozone consumption due to the self-decomposition of ozone can be accurately obtained. . Therefore, the required ozone injection amount into the water to be treated, which is obtained from the ozone consumption due to self-decomposition obtained by the means and the amount of ozone that reacts with the ozone consuming component in the water to be treated, is highly accurate. In addition, if ozone is injected into the water to be treated according to the required ozone injection amount, ozone can be injected in response to changes in the water quality of the water to be treated, and it is stable even if the water quality of the water to be treated changes. The ozone injection process described above can be performed, and the water quality after ozone injection can be stabilized.

【0072】また、オゾンの自己分解によるオゾン消費
量を求める他の好ましい態様として、本発明ではオゾン
消費成分除去水へのオゾン注入前後の気相のオゾン濃度
差から、前記除去水でのオゾン消費量を求めて、該オゾ
ン消費量と前記除去水の溶存オゾン濃度差からオゾンの
自己分解によるオゾン消費量を求めるようにしている。
このようにしてオゾンの自己分解によるオゾン消費量を
求めれば、液中での自己分解に関与しないで気相に排出
されオゾンを除外することができる。
As another preferred embodiment for obtaining the ozone consumption amount due to self-decomposition of ozone, in the present invention, the ozone consumption in the removed water is calculated from the difference in the ozone concentration in the gas phase before and after the ozone injection into the ozone-consuming component removed water. The amount of ozone is calculated, and the amount of ozone consumed by self-decomposition of ozone is calculated from the difference between the amount of ozone consumed and the concentration of dissolved ozone in the removed water.
If the ozone consumption amount due to the self-decomposition of ozone is obtained in this way, it is possible to exclude the ozone discharged into the gas phase without participating in the self-decomposition in the liquid.

【0073】[0073]

【実施例】【Example】

(実施例1)以下、本発明の一実施例を図面に基づいて
説明する。図1に示す被処理水のオゾン要求量測定装置
1Aのシステムフローにおいて、被処理水Wはオゾン接
触反応槽1へ導入され、この反応槽にはオゾナイザ2か
ら所定濃度に設定された濃度を有するオゾンガスOGが
注入される。この実施例では、オゾン発生量が例えば1
g/hから20g/h程度の小容量のオゾナイザ2を用
いている。
(Embodiment 1) An embodiment of the present invention will be described below with reference to the drawings. In the system flow of the ozone demand measuring device 1A for water to be treated shown in FIG. 1, the water W to be treated is introduced into the ozone contact reaction tank 1, and the reaction tank has a concentration set to a predetermined concentration by the ozonizer 2. Ozone gas OG is injected. In this embodiment, the ozone generation amount is, for example, 1
The ozonizer 2 having a small capacity of about g / h to 20 g / h is used.

【0074】オゾナイザ2の入口側には除湿器3が配設
され、オゾナイザ2に供給する原料ガスG(空気または
酸素)中の湿分を除去し、露点が低くなった乾燥原料ガ
スGをオゾナイザ2に供給する。この実施例では、フィ
ルター4を介してエアーポンプ5で原料ガスGとしての
空気をオゾナイザ2に供給している。この場合、原料ガ
スとして酸素または酸素富化空気を用いてもよく、特定
されるわけではない。オゾナイザ2からのオゾン濃度
は、オゾン濃度計6で、例えば隔膜型ポーラログラフ電
極による方法または紫外線吸収式による方法等によって
測定される。オゾン濃度計の測定法の原理は特に限定さ
れない。
A dehumidifier 3 is disposed on the inlet side of the ozonizer 2 to remove moisture in the raw material gas G (air or oxygen) supplied to the ozonizer 2 and to use the dry raw material gas G having a low dew point as an ozonizer. Supply to 2. In this embodiment, air as a raw material gas G is supplied to the ozonizer 2 by the air pump 5 via the filter 4. In this case, oxygen or oxygen-enriched air may be used as the source gas and is not specified. The ozone concentration from the ozonizer 2 is measured by the ozone concentration meter 6 by, for example, a diaphragm polarographic electrode method or an ultraviolet absorption method. The principle of the measurement method of the ozone concentration meter is not particularly limited.

【0075】オゾナイザ2からのオゾン発生濃度は、制
御器7で制御される。この実施例ではオゾナイザ2を構
成する放電部(図示せず)への印加電圧を調節すること
によって発生オゾン濃度を制御している。この場合、後
述する他の実施例のようにプラント規模レベルでの多量
のオゾン発生量(例えば10kg/hから20kg/h程
度)が要求されるときは、高電圧印加時の周波数を調節
して発生オゾン濃度を制御する方法が採られるが、特に
発生オゾン濃度の制御方式にはとらわれない。
The ozone generation concentration from the ozonizer 2 is controlled by the controller 7. In this embodiment, the concentration of ozone generated is controlled by adjusting the voltage applied to the discharge section (not shown) that constitutes the ozonizer 2. In this case, when a large amount of ozone generation (for example, about 10 kg / h to 20 kg / h) at the plant scale level is required as in other embodiments described later, the frequency during high voltage application is adjusted. A method of controlling the generated ozone concentration is adopted, but the method of controlling the generated ozone concentration is not particularly limited.

【0076】オゾン接触反応槽1内に注入されるオゾン
OGの流量は、定流量弁8で調節され、所定の流量に設
定されたオゾンOGが流量計9を介してオゾン接触反応
槽1に注入される。
The flow rate of ozone OG injected into the ozone contact reaction tank 1 is adjusted by the constant flow valve 8, and the ozone OG set to a predetermined flow rate is injected into the ozone contact reaction tank 1 through the flow meter 9. To be done.

【0077】オゾン接触反応槽1内に被処理水Wを供給
するサンプリングポンプ10は、測定対象となる被処理
水Wをサンプリングして前記反応槽1に導入する。そし
て、前記被処理水Wの流量は定流量調節弁11で所定流
量に調節され、流量計12を介してオゾン接触反応槽1
内に導入される。オゾン接触反応槽1内に導入される被
処理水Wは、同時に導入されるオゾンOGのガス流れに
対して対向流となってオゾンと接触し流下する。
The sampling pump 10 for supplying the water W to be treated into the ozone contact reaction tank 1 samples the water W to be measured and introduces it into the reaction tank 1. The flow rate of the water to be treated W is adjusted to a predetermined flow rate by the constant flow rate control valve 11, and the ozone contact reaction tank 1 is passed through the flow meter 12.
Will be introduced in. The water W to be treated, which is introduced into the ozone contact reaction tank 1, becomes a counterflow to the gas flow of the ozone OG which is simultaneously introduced, and comes into contact with ozone and flows down.

【0078】オゾンが注入された後の被処理水W中の溶
存オゾン濃度CW1を測定する溶存オゾン濃度計13に
は、前述の如く隔膜型ポーラログラフ電極法または紫外
線吸収式等によるオゾン濃度計を用いることができる。
溶存オゾン濃度計13の入口側に配設された気液分離器
14で、オゾン接触反応槽1からの処理水TW1中に含
まれるオゾンガスを気液分離し、溶存オゾン濃度計13
にオゾンガスが混入するのを防止する。そして、オゾン
が分離された処理水TW1は、溶存オゾン濃度計13に
導入される。この実施例では、オゾンが注入された被処
理水W中の溶存オゾン濃度CW1を測定するに際し、オ
ゾン接触反応槽1を出た処理水TW1中の溶存オゾン濃
度CW1を測定しているが、オゾン接触反応槽1内に溶
存オゾン濃度計13を配設して溶存オゾン濃度CW1を
測定してもよい。または、サンプリングポンプ(図示せ
ず)等でオゾン接触反応槽1からサンプル水を採取し
て、それを測定してもよく、特に測定個所及び採水法等
が限定されるものではない。また、本発明では溶存オゾ
ン濃度計13を導水管15中に配設しているが、処理水
TW1を例えばサンプリングポンプ(図示せず)でサン
プリングし、それを測定してもよい。
As the dissolved ozone concentration meter 13 for measuring the dissolved ozone concentration CW1 in the water W to be treated after the ozone is injected, the diaphragm type polarographic electrode method or the ozone concentration meter by the ultraviolet absorption method or the like is used as described above. be able to.
The gas-liquid separator 14 disposed on the inlet side of the dissolved ozone concentration meter 13 gas-liquid separates the ozone gas contained in the treated water TW1 from the ozone contact reaction tank 1, and the dissolved ozone concentration meter 13
Prevents ozone gas from mixing in. Then, the treated water TW1 from which ozone has been separated is introduced into the dissolved ozone concentration meter 13. In this example, when measuring the dissolved ozone concentration CW1 in the water to be treated W into which ozone has been injected, the dissolved ozone concentration CW1 in the treated water TW1 exiting the ozone contact reaction tank 1 is measured. The dissolved ozone concentration meter 13 may be provided in the contact reaction tank 1 to measure the dissolved ozone concentration CW1. Alternatively, the sample water may be sampled from the ozone contact reaction tank 1 with a sampling pump (not shown) or the like, and the sampled water may be measured, and the measurement location and the water sampling method are not particularly limited. Further, although the dissolved ozone concentration meter 13 is arranged in the water conduit 15 in the present invention, the treated water TW1 may be sampled by, for example, a sampling pump (not shown) and measured.

【0079】オゾン接触比較反応槽16は、前記したオ
ゾン接触反応槽1と同等の機能を有する。そして、この
オゾン接触比較反応槽16には被処理水中のオゾン消費
成分となる被酸化性成分が除かれた水が導入される。こ
の実施例では、オゾン接触反応槽1で被処理水中にオゾ
ンを注入して被酸化性成分を酸化した後の処理水を比較
水TW2として導入している。また、オゾン接触比較反
応槽16に導入される比較水TW2は、本実施例のよう
に前段階でオゾン注入によって被酸化性成分が酸化除去
された場合は、後述する実施例3のように溶存オゾンが
除去されて導入される。なお、被処理水中のオゾン消費
成分となる被酸化性成分の除去手段としては、例えば活
性炭による吸着,セラミック膜又は中空糸膜等による除
去手段、またはこれらの組み合わせがあり、比較水を得
る手段が特に本発明の実施例のみに限定されるものでは
ない。
The ozone contact reaction tank 16 has the same function as the ozone contact reaction tank 1 described above. Then, water from which the oxidizable component which is the ozone consuming component in the treated water is removed is introduced into the ozone contact comparison reaction tank 16. In this embodiment, the treated water after the ozone is injected into the water to be treated in the ozone contact reaction tank 1 to oxidize the oxidizable component is introduced as the comparative water TW2. Further, the comparative water TW2 introduced into the ozone contact comparison reaction tank 16 is dissolved as in Example 3 described later when the oxidizable component is oxidized and removed by the ozone injection in the previous stage as in this example. Ozone is removed and introduced. As a means for removing the oxidizable component that becomes an ozone consuming component in the water to be treated, there are, for example, adsorption by activated carbon, a removal means by a ceramic membrane or a hollow fiber membrane, or a combination thereof, and there is a means for obtaining comparative water. In particular, the present invention is not limited to the embodiments.

【0080】さらに、このオゾン接触比較反応槽16に
はオゾナイザ2からオゾンガスOGが導入される。この
オゾンガスOGの流量及びオゾン濃度はオゾン接触反応
槽1内へのオゾン導入と同等に設定され、定流量弁17
にてオゾンガス流量が調節制御される。また、比較水T
W2の流量もオゾン接触反応槽1への被処理水Wの流量
と同等に設定される。
Further, ozone gas OG is introduced from the ozonizer 2 into the ozone contact comparison reaction tank 16. The flow rate and the ozone concentration of this ozone gas OG are set to be equal to those of the introduction of ozone into the ozone contact reaction tank 1, and the constant flow valve 17
The ozone gas flow rate is adjusted and controlled at. Also, comparison water T
The flow rate of W2 is also set equal to the flow rate of the water W to be treated to the ozone contact reaction tank 1.

【0081】前記定流量弁17の出口側には、流量計1
8が配設されている。槽1及び16にオゾンガスOGを
導入する場合、オゾン濃度の変動を避けるため、さらに
は経済性の観点から、本発明の一実施例では一つのオゾ
ナイザ2を用いて、このオゾナイザ2の出口側のオゾン
導入管19を途中で分岐している。さらに、被処理水W
と比較水TW2とに対するオゾンOGの接触時間及び各
水W,TW2の滞留時間等の反応条件を揃えるため、オ
ゾン接触反応槽1及びオゾン接触比較反応槽16の形状
及び容積さらに槽内壁の材質等を同等にしている。
On the outlet side of the constant flow valve 17, the flow meter 1
8 are provided. When the ozone gas OG is introduced into the tanks 1 and 16, one ozonizer 2 is used in one embodiment of the present invention in order to avoid fluctuations in ozone concentration, and from the viewpoint of economy, the outlet side of this ozonizer 2 is used. The ozone introducing pipe 19 is branched in the middle. Furthermore, treated water W
In order to make the reaction conditions such as the contact time of ozone OG and the retention time of each water W, TW2 with respect to the reference water TW2 and the comparison water TW2, the shapes and volumes of the ozone contact reaction tank 1 and the ozone contact comparison reaction tank 16 and the material of the inner wall of the tank, etc. Are equal.

【0082】オゾン接触比較反応槽16の出口側に配設
された気液分離器20で、オゾンが注入された比較水T
W2中のオゾンを気液分離する。溶存オゾン濃度計21
で、オゾンが注入された比較水TW2中の溶存オゾン濃
度CW2を測定する。そして、前記気液分離器20でオ
ゾンが分離された比較水TW2は、オゾン濃度計21に
導入されて溶存オゾン濃度CW2が測定される。なお、
この実施例ではオゾン接触比較反応槽16を出た比較水
TW2の溶存オゾン濃度CW2を測定しているが、比較
反応槽16内の比較水TW2の溶存オゾン濃度CW2を
測定してもよく、特に測定個所及び採水法等は限定され
ない。なお、前述のように各溶存オゾン濃度計13,2
1で溶存オゾン濃度CW1,CW2が測定される場合、
オゾンを注入してから測定までの時間は同等に設定され
る。なお、前述のように各溶存オゾン濃度計13,21
で溶存オゾン濃度CW1,CW2が測定される場合、オ
ゾンを注入してから測定までの時間は同等に設定され
る。
In the gas-liquid separator 20 disposed on the outlet side of the ozone contact comparison reaction tank 16, the comparison water T into which ozone was injected was used.
Ozone in W2 is separated into gas and liquid. Dissolved ozone concentration meter 21
Then, the dissolved ozone concentration CW2 in the comparative water TW2 into which ozone is injected is measured. Then, the comparative water TW2 from which ozone has been separated by the gas-liquid separator 20 is introduced into the ozone concentration meter 21 and the dissolved ozone concentration CW2 is measured. In addition,
In this embodiment, the dissolved ozone concentration CW2 of the comparative water TW2 discharged from the ozone contact comparative reaction tank 16 is measured, but the dissolved ozone concentration CW2 of the comparative water TW2 in the comparative reaction tank 16 may be measured, and particularly, The measurement location and water sampling method are not limited. As described above, each dissolved ozone concentration meter 13, 2
When the dissolved ozone concentrations CW1 and CW2 are measured in 1,
The time from the injection of ozone to the measurement is set to be equal. As described above, each dissolved ozone concentration meter 13, 21
When the dissolved ozone concentrations CW1 and CW2 are measured in, the time from injection of ozone to the measurement is set to be equal.

【0083】排オゾン排出管23の入口側は前述したそ
れぞれの槽1,16の気相部に連通し、さらに、各気液
分離器14,20の気相部に連通している。そして、前
述した各槽の液相から気相に放出されるオゾン含有排気
ガスEGまたは各気液分離器からの排オゾンは、この排
出管23を介して系外に排出される。
The inlet side of the exhaust ozone discharge pipe 23 is connected to the gas phase portions of the tanks 1 and 16 described above, and further to the gas phase portions of the gas liquid separators 14 and 20. Then, the ozone-containing exhaust gas EG discharged from the liquid phase of each tank to the gas phase or the exhaust ozone from each gas-liquid separator is discharged to the outside of the system through the discharge pipe 23.

【0084】オゾン注入の対象となる被処理水のオゾン
要求量を演算する演算器24で、オゾン接触反応槽1で
オゾンが注入された後の被処理水Wの溶存オゾン濃度C
W1が溶存オゾン濃度計13からの出力値として入力さ
れる。この演算器24にはオゾン接触比較反応槽16で
オゾンが注入された後の比較水TW2の溶存オゾン濃度
CW2が、別の溶存オゾン濃度計21からの出力値とし
て入力される。なお、本発明の一実施例では、被処理水
Wの溶存オゾン濃度と比較水TW2の溶存オゾン濃度の
測定に際し、2つのオゾン濃度計を用いてそれぞれ独立
して測定している。これに対し、1つのオゾン濃度計を
用いて交互に測定対象水のオゾン濃度を測定してもよ
く、オゾン濃度計の数及び測定手段等が限定されるもの
ではない。演算器24では、各溶存オゾン濃度CW2,
CW1との差分を次式(16)に従って求め、その差分
を被処理水のオゾン要求量DKとして出力する。
In the calculator 24 for calculating the ozone demand amount of the water to be treated which is the object of ozone injection, the dissolved ozone concentration C of the water to be treated W after the ozone is injected in the ozone contact reaction tank 1
W1 is input as an output value from the dissolved ozone concentration meter 13. The dissolved ozone concentration CW2 of the comparative water TW2 after ozone is injected in the ozone contact comparison reaction tank 16 is input to the calculator 24 as an output value from another dissolved ozone concentration meter 21. In addition, in one Example of this invention, when measuring the dissolved ozone concentration of the to-be-processed water W and the dissolved ozone concentration of the comparative water TW2, it measures independently using two ozone concentration meters. On the other hand, one ozone concentration meter may be used to alternately measure the ozone concentration of the water to be measured, and the number of ozone concentration meters and measuring means are not limited. In the calculator 24, each dissolved ozone concentration CW2,
The difference from CW1 is obtained according to the following equation (16), and the difference is output as the ozone demand amount DK of the water to be treated.

【0085】 DK=CW2−CW1 …(16) 次に係る構成の動作について説明する。DK = CW2-CW1 (16) Next, the operation of this configuration will be described.

【0086】先ずオゾン要求量の測定対象となるオゾン
消費成分を含有する被処理水Wは、サンプリングポンプ
10によってオゾン接触反応槽1内に導入され、この被
処理水Wは設定された所定量が導入される。被処理水W
中の被酸化性成分となるオゾン消費成分は、測定対象の
被処理水によって、その組成と濃度が異なるが、例え
ば、有機物として色度の要因となるフミン質,臭気成分
となるジェオスミン(Geosmin,C1222O)、2−メチ
ルイソボルネオール(2−Methylisoborneol,C11
20O)、さらに無機物としてFeイオン,Mnイオン及
びSS(SuspendedSolids)等があげられる。
First, the water to be treated W containing the ozone consuming component to be measured of the required amount of ozone is introduced into the ozone contact reaction tank 1 by the sampling pump 10, and the water to be treated W has a predetermined amount set. be introduced. Treated water W
The composition and concentration of the ozone consuming component that becomes an oxidizable component in the inside vary depending on the water to be measured, but for example, humic substances that are factors of chromaticity as an organic substance, and geosmin that becomes an odor component (Geosmin, C 12 H 22 O), 2- methyl-isoborneol (2-Methylisoborneol, C 11 H
20 O), Fe ions, Mn ions and SS (S uspended S olids), and the like as further inorganic material.

【0087】オゾン接触反応槽1内には、被処理水Wと
は別にオゾナイザ2から所定濃度のオゾンガスOGが注
入され、前記被処理水Wに対するオゾン注入率は所定値
に設定される。オゾン接触反応槽1内に被処理水Wとオ
ゾンが供給されることによって、この反応槽1内では被
処理水W中の被酸化性成分は注入されたオゾンによって
酸化されると同時に注入したオゾンは逆に消費される。
一方、前述した被処理水W中の被酸化性成分によるオゾ
ンの消費とは別に、注入されたオゾンの一部は自己分解
によって酸素に転化され、オゾン自身の自己分解によっ
て消費される。ここで、酸化反応と自己分解の両者を含
むオゾン注入後の溶存オゾン濃度K1は前述(13)式
で表わされるから、この溶存オゾン濃度K1に対応する
被処理水Wの溶存オゾン濃度CW1が、溶存オゾン濃度
計13で測定されて演算器24に入力される。
Into the ozone contact reaction tank 1, ozone gas OG having a predetermined concentration is injected from the ozonizer 2 separately from the water to be treated W, and the ozone injection rate for the water to be treated W is set to a predetermined value. By supplying the water W to be treated and the ozone into the ozone contact reaction tank 1, the oxidizable components in the water W to be treated are oxidized by the injected ozone in the reaction tank 1 and the ozone injected at the same time. Is conversely consumed.
On the other hand, apart from the consumption of ozone by the oxidizable components in the water W to be treated, part of the injected ozone is converted to oxygen by self-decomposition and consumed by self-decomposition of ozone itself. Here, since the dissolved ozone concentration K1 after ozone injection including both oxidation reaction and self-decomposition is represented by the above equation (13), the dissolved ozone concentration CW1 of the water to be treated W corresponding to this dissolved ozone concentration K1 is It is measured by the dissolved ozone concentration meter 13 and input to the calculator 24.

【0088】前述のようにして被処理水Wにオゾンが注
入される場合、他方のオゾン接触比較反応槽16では被
処理水にオゾン注入後、被酸化性成分を含有しない比較
水TW2が導入される。すなわち、オゾン接触反応層1
で被酸化性成分が除去された比較水TW2が導入され
る。そして、この比較水量は前述の被処理水量と同等に
設定される。さらに、このオゾン接触比較反応槽16に
は、前述したオゾン接触反応槽1に注入されるオゾンと
同等の濃度と注入量を有するオゾンが注入される。
When ozone is injected into the water to be treated W as described above, in the other ozone contact comparison reaction tank 16, after the ozone is injected into the water to be treated, the comparative water TW2 containing no oxidizable component is introduced. It That is, the ozone contact reaction layer 1
Comparative water TW2 from which the oxidizable component has been removed is introduced. Then, this comparative water amount is set to be equal to the above-mentioned treated water amount. Further, ozone having the same concentration and injection amount as the ozone injected into the ozone contact reaction tank 1 described above is injected into the ozone contact comparison reaction tank 16.

【0089】ここで、このオゾン接触比較反応槽16で
は、比較水TW2中にオゾン消費成分が含まれていない
ため、有機物等の酸化に要するオゾン消費はなく、注入
したオゾンの消費(減少)はオゾンの自己分解のみに支
配されてオゾンが消費される。
Here, in the ozone contact comparison reaction tank 16, since the ozone consuming component is not contained in the comparison water TW2, there is no ozone consumption required for the oxidation of the organic matter and the consumption (reduction) of the injected ozone. Ozone is consumed by being controlled only by self-decomposition of ozone.

【0090】この結果、オゾン注入後の溶存オゾン濃度
K2は前述(14)式で表わされるから、この溶存オゾ
ン濃度K2に対応する比較水TW2の溶存オゾン濃度C
W2が、溶存オゾン濃度計21で測定されて演算器24
に入力される。
As a result, the dissolved ozone concentration K2 after the ozone injection is expressed by the above equation (14), and therefore the dissolved ozone concentration C of the comparative water TW2 corresponding to this dissolved ozone concentration K2.
W2 is measured by the dissolved ozone concentration meter 21, and the calculator 24
Entered in.

【0091】なお、被処理水Wにオゾンを注入した後の
被酸化性成分を含有しない比較水TW2と、これとは別
に被酸化性成分を含有する被処理水Wとにオゾンを注入
して、両者TW2,Wの溶存オゾン濃度を比較した場
合、比較水TW2側はオゾンの自己分解によって注入オ
ゾンが消費されるのみであるから、溶存オゾン濃度計1
3,21で測定される各溶存オゾン濃度CW1,CW2の
関係はCW1<CW2となる。
Incidentally, by injecting ozone into the comparative water TW2 containing no oxidizable component after injecting ozone into the water to be treated W and the treated water W containing an oxidizable component separately from this. When comparing the dissolved ozone concentrations of the two TW2 and W, the injected ozone is only consumed by the self-decomposition of ozone on the side of the comparative water TW2. Therefore, the dissolved ozone concentration meter 1
The relationship between the dissolved ozone concentrations CW1 and CW2 measured at 3, 21 is CW1 <CW2.

【0092】前述のようにして、被処理水W側の溶存オ
ゾン濃度CW1と比較水TW2側の溶存オゾン濃度CW
2が測定されて演算器24に入力され、前述(16)式
に基づいてその差分が求められる場合、測定対象となる
被処理水Wのオゾン要求量はオゾンの自己分解量を除い
た値となり、この差分が被処理水のオゾン要求量DKと
して求められる。
As described above, the dissolved ozone concentration CW1 on the treated water W side and the dissolved ozone concentration CW on the comparative water TW2 side are measured.
When 2 is measured and input to the calculator 24, and the difference is obtained based on the above equation (16), the ozone demand amount of the water W to be measured becomes a value excluding the amount of self-decomposition of ozone. This difference is obtained as the ozone demand amount DK of the water to be treated.

【0093】さらに詳述すると、被処理水Wと比較水T
W2との両者の溶存オゾン濃度K1,K2の差分DRは
前述(13)及び(14)式から次式(17)で示され
るが、オゾン注入量等のオゾン反応条件等が同一であれ
ば自己分解によるオゾン消費量CR2,CR2′は相殺
されるから、この差分DRは次式(18)に示すよう
に、自己分解によるオゾン消費量CR2を除いた被処理
水Wのオゾン消費量CR1と等しい値となる。
More specifically, the treated water W and the comparative water T
The difference DR between the dissolved ozone concentrations K1 and K2 of W2 and W2 is expressed by the following equation (17) from the above equations (13) and (14), but if the ozone reaction conditions such as the amount of injected ozone are the same, Since the ozone consumption amounts CR2 and CR2 'due to the decomposition are offset, this difference DR is equal to the ozone consumption amount CR1 of the water W to be treated excluding the ozone consumption amount CR2 due to self-decomposition, as shown in the following equation (18). It becomes a value.

【0094】 DR=(CR1+CR2)−CR2′ …(17) DR=CR1 …(18) そして、この差分DRは溶存オゾン濃度計13,21で
測定される溶存オゾン濃度の差分DKに対応する。した
がって、被処理水Wの溶存オゾン濃度CW1と比較水T
W2の溶存オゾン濃度CW2を測定して、この溶存オゾ
ン濃度CW2,CW1の差分DKを求めれば、被処理水
W側での自己分解によるオゾン消費量を除いた被処理水
のオゾン要求量DKが求められる。
DR = (CR1 + CR2) −CR2 ′ (17) DR = CR1 (18) Then, this difference DR corresponds to the difference DK of the dissolved ozone concentration measured by the dissolved ozone concentration meters 13 and 21. Therefore, the dissolved ozone concentration CW1 of the water W to be treated and the comparative water T
If the dissolved ozone concentration CW2 of W2 is measured and the difference DK between the dissolved ozone concentrations CW2 and CW1 is obtained, the ozone demand amount DK of the treated water excluding the ozone consumption amount due to self-decomposition on the treated water W side is Desired.

【0095】前述のようにして被処理水のオゾン要求量
を求める場合、測定対象の被処理水中の有機物濃度と組
成の変化と共にpH,水温等も変化すると、オゾンの溶
解度及び液中でのオゾンの自己分解量も変化することに
なる。このため、比較水TW2側のpH,水温等を被処理
水W側に整合させて両者の反応条件を揃えなければなら
ない。そこで、本発明においては、被酸化性成分を含有
しない比較水を得る際、被処理水Wをもとに該被処理水
中のオゾンによる被酸化性成分を除去して、被酸化性成
分を含有しない比較水を得るようにしている。このた
め、この比較水は水温またはpHを変化させる外乱的影
響を受けることがなく、被酸化性成分の有無とは別に元
の被処理水Wと同一の水であるから、水温,pH等の反
応条件は被処理水W側に整合することになる。
When the ozone demand amount of the water to be treated is obtained as described above, if the pH, water temperature and the like change along with changes in the concentration and composition of the organic matter in the water to be measured, the solubility of ozone and the ozone in the liquid. The self-decomposition amount of will also change. Therefore, it is necessary to match the pH and water temperature of the comparative water TW2 with those of the water to be treated W so that the reaction conditions of the two are the same. Therefore, in the present invention, when obtaining the comparative water containing no oxidizable component, the oxidizable component due to ozone in the treated water is removed based on the treated water W to contain the oxidizable component. Not trying to get comparative water. For this reason, this comparative water is not affected by the disturbance that changes the water temperature or pH, and is the same as the original water to be treated W regardless of the presence or absence of the oxidizable component. The reaction conditions will match the treated water W side.

【0096】したがって、自己分解によるオゾン消費量
を求める比較水側の水温,pHを被処理水側に整合させ
るための調整手段が不必要になると共にpH調整等に伴
うオゾン消費の外乱的要素も排除できるので、簡易にし
て精度よく被処理水の被酸化性成分によるオゾン消費か
ら被処理水のオゾン要求量を求めることができる。
Therefore, an adjusting means for matching the water temperature and pH on the comparative water side for obtaining the ozone consumption due to self-decomposition with the water to be treated becomes unnecessary, and disturbance factors of ozone consumption due to pH adjustment and the like are also caused. Since it can be eliminated, the ozone demand amount of the water to be treated can be obtained simply and accurately from the ozone consumption by the oxidizable components of the water to be treated.

【0097】(実施例2)図2は本発明の他の実施例を
示す。オゾン接触比較反応槽16の上流側には被処理水
W中のオゾンによる被酸化性成分を吸着除去する吸着槽
30が配設され、この吸着槽にはサンプリングポンプ1
0の吐出側で分岐されて被処理水Wが導入される。そし
て、流量計31で測定された被処理水Wの流量は流量調
節弁32にて調節され、オゾン接触反応槽1への被処理
水Wの流量と同等に設定される。ここで、吸着槽30で
は被処理水W中の被酸化性成分が吸着除去される。この
実施例では、吸着槽30内に例えば活性炭等の吸着剤3
3を充填している。なお、吸着槽30の上流側でオゾン
を注入して、被処理水中の被酸化性成分を酸化し、その
後さらに吸着槽30で被酸化性成分を除いてよい。
(Embodiment 2) FIG. 2 shows another embodiment of the present invention. An adsorption tank 30 for adsorbing and removing an oxidizable component due to ozone in the water W to be treated is disposed upstream of the ozone contact comparison reaction tank 16, and the sampling pump 1 is provided in this adsorption tank.
The water W to be treated is introduced by being branched on the discharge side of 0. Then, the flow rate of the treated water W measured by the flow meter 31 is adjusted by the flow rate control valve 32, and is set to be equal to the flow rate of the treated water W to the ozone contact reaction tank 1. Here, the oxidizable component in the water W to be treated is adsorbed and removed in the adsorption tank 30. In this embodiment, the adsorbent 3 such as activated carbon is placed in the adsorption tank 30.
3 is filled. It should be noted that ozone may be injected on the upstream side of the adsorption tank 30 to oxidize the oxidizable component in the water to be treated, and then the oxidizable component may be removed in the adsorption tank 30.

【0098】オゾン接触反応槽の出口側に配設された配
水管34は、オゾン接触比較反応槽16からの配水管3
5と連通し、各槽1,16からの排水は該管34,35
を介して系外に排出される。
The water pipe 34 disposed on the outlet side of the ozone contact reaction tank is the water pipe 3 from the ozone contact reaction tank 16.
5 and the drainage water from the tanks 1 and 16 is connected to the pipes 34 and 35.
Is discharged to the outside of the system via.

【0099】吸着槽30で被酸化性成分が除去された処
理水は、比較水TW2としてオゾン接触比較反応槽16
に導入される。このオゾン接触比較反応槽16には、オ
ゾンOGが注入される。したがって、ここでは、比較水
中に被酸化性成分が存在しないから、オゾンの自己分解
によるオゾン消費が進行し、該比較水中の溶存オゾン濃
度CW2が溶存オゾン濃度計21で測定される。一方、
オゾン接触反応槽1には被酸化性成分を含有する被処理
水が導入されると共にオゾンが注入される。そして、オ
ゾン注入後の溶存オゾン濃度CW1が溶存オゾン濃度計
13によって測定される。
The treated water from which the oxidizable components have been removed in the adsorption tank 30 is the ozone contact comparison reaction tank 16 as the comparison water TW2.
Will be introduced to. Ozone OG is injected into the ozone contact comparison reaction tank 16. Therefore, here, since the oxidizable component does not exist in the comparative water, ozone consumption due to self-decomposition of ozone proceeds, and the dissolved ozone concentration CW2 in the comparative water is measured by the dissolved ozone concentration meter 21. on the other hand,
Into the ozone contact reaction tank 1, water to be treated containing an oxidizable component is introduced and ozone is also injected. Then, the dissolved ozone concentration CW1 after ozone injection is measured by the dissolved ozone concentration meter 13.

【0100】前記オゾン注入後の各水の溶存オゾン濃度
CW1,CW2は、被処理水Wのオゾン要求量を求める
演算器24に入力され、ここで、各溶存オゾン濃度CW
1,CW2の差分から被処理水Wのオゾン要求量DKが
求められて出力される。
The dissolved ozone concentrations CW1 and CW2 of each water after the ozone injection are input to the calculator 24 for obtaining the ozone demand amount of the water W to be treated, where the dissolved ozone concentrations CW are
The required ozone amount DK of the water W to be treated is calculated from the difference between 1 and CW2 and output.

【0101】前述のようにして被処理水Wのオゾン要求
量DKが求められる場合、被酸化性成分を含有しない比
較水を得る手段として、被処理水中の被酸化性成分を吸
着によって除去すれば、比較水の水温,pH等を変化さ
せる大きな要因がないから、被処理水側の水温,pHと
比較水側が整合し、容易に被酸化性成分を含有しない比
較水を得ることができる。
When the ozone demand amount DK of the water to be treated W is obtained as described above, as a means for obtaining comparative water containing no oxidizable component, the oxidizable component in the water to be treated can be removed by adsorption. Since there is no major factor that changes the water temperature, pH, etc. of the comparative water, the water temperature, pH of the treated water matches the comparative water side, and comparative water containing no oxidizable component can be easily obtained.

【0102】(実施例3)図3は本発明の他の実施例を
示す。溶存オゾン除去槽36は、比較水TW2が導入さ
れるオゾン接触比較反応槽16の上流側に配設されてい
る。本発明の一実施例では、オゾン接触比較反応槽16
の上流側であって、オゾン接触反応槽1の下流側に配設
されている。
(Embodiment 3) FIG. 3 shows another embodiment of the present invention. The dissolved ozone removal tank 36 is arranged on the upstream side of the ozone contact comparison reaction tank 16 into which the comparison water TW2 is introduced. In one embodiment of the present invention, ozone contact comparison reactor 16
Is provided on the upstream side of the ozone contact reaction tank 1 and on the downstream side of the ozone contact reaction tank 1.

【0103】溶存オゾン除去槽36には、N2 等の無機
性ガスまたは空気が無数の細孔を有する散気管37を介
して導入され、オゾン接触反応槽1からこの溶存オゾン
除去槽36内に導入された処理水TW1中にバブリング
される。
Inorganic gas such as N 2 or air is introduced into the dissolved ozone removing tank 36 through the air diffuser 37 having innumerable pores, and the ozone contact reaction tank 1 enters the dissolved ozone removing tank 36. Bubbling is performed in the introduced treated water TW1.

【0104】さらに詳述すると、オゾナイザ2に空気を
供給するエアーポンプ5の吐出側から通気管39を通し
て、空気が溶存オゾン除去槽31内に放出される。この
結果、処理水中TW1中の溶存オゾンは、分圧の低下に
伴い、液相から気相に放出され、被処理水W中にオゾン
を注入した後の処理水TW1中に残留する溶存オゾンが
除去される。
More specifically, air is discharged into the dissolved ozone removing tank 31 from the discharge side of the air pump 5 for supplying air to the ozonizer 2 through the ventilation pipe 39. As a result, the dissolved ozone in the treated water TW1 is released from the liquid phase to the gas phase as the partial pressure decreases, and the dissolved ozone remaining in the treated water TW1 after the ozone has been injected into the water to be treated W remains. To be removed.

【0105】この一実施例では、経済性の観点から空気
を用いてバブリング(エアレーション)をし、溶存オゾ
ンの除去を加速しているが、溶存オゾン除去槽36での
処理水TW1の滞留時間を長く確保してオゾンの自己分
解で溶存オゾンを除去してもよい。すなわち、液中のオ
ゾンは時間の経過と共に自己分解して酸素に転化する。
水温及びpH等によってオゾンの自己分解速度は異なる
が、短時間でオゾンの自己分解が進行し溶存オゾンがな
くなる。
In this embodiment, bubbling (aeration) is performed by using air from the viewpoint of economy to accelerate the removal of dissolved ozone, but the retention time of the treated water TW1 in the dissolved ozone removal tank 36 is Dissolved ozone may be removed by self-decomposition of ozone after securing it for a long time. That is, the ozone in the liquid is self-decomposed and converted into oxygen over time.
Although the self-decomposition rate of ozone differs depending on the water temperature, pH, etc., self-decomposition of ozone progresses in a short time and dissolved ozone disappears.

【0106】流量調節弁39Aで、溶存オゾン除去槽3
6に導入するガス(本実施例では空気)の流量を所定流
量に調節する。導入ガスは流量計39Bを介して溶存オ
ゾン除去槽36に導入される。
With the flow rate control valve 39A, the dissolved ozone removing tank 3
The flow rate of the gas (air in this embodiment) introduced into No. 6 is adjusted to a predetermined flow rate. The introduced gas is introduced into the dissolved ozone removing tank 36 via the flow meter 39B.

【0107】次に係る構成の装置の動作について説明す
る。被処理水Wにオゾンが注入されて、被処理水中の被
酸化性成分が除かれた処理水TW1は、次に比較水TW
2としてオゾン接触比較反応槽16に導入されるが、該
反応槽16に導入される前に溶存オゾン除去槽36に導
入される。
The operation of the apparatus having the following structure will be described. The treated water TW1 in which ozone has been injected into the treated water W to remove the oxidizable components in the treated water is the comparative water TW.
2 is introduced into the ozone contact comparison reaction tank 16, but is introduced into the dissolved ozone removal tank 36 before being introduced into the reaction tank 16.

【0108】ここでは、溶存オゾン除去槽36内に空気
が導入されてバブリングされ、オゾンが注入された後の
処理水TW1中に残留する溶存オゾンが液相から気相に
放出される。次に、前記の操作によって液相に残留する
溶存オゾンが除去された処理水は、自己分解によるオゾ
ン消費量を求める比較水TW2としてオゾン接触比較反
応槽16に導入され、該槽16にはオゾンが注入されて
その後比較水中の溶存オゾン濃度CW2が測定される。
そして、この溶存オゾン濃度CW2とオゾン注入後の被
処理水W中の溶存オゾン濃度CW1との差分DRから被
処理水のオゾン要求量DKとして求められる。
Here, air is introduced into the dissolved ozone removing tank 36 to be bubbled, and the dissolved ozone remaining in the treated water TW1 after the ozone is injected is released from the liquid phase to the gas phase. Next, the treated water from which the dissolved ozone remaining in the liquid phase has been removed by the above-mentioned operation is introduced into the ozone contact comparison reaction tank 16 as comparison water TW2 for obtaining ozone consumption due to self-decomposition, and the ozone is stored in the tank 16. Is injected and then the dissolved ozone concentration CW2 in the comparative water is measured.
Then, the ozone demand amount DK of the water to be treated is obtained from the difference DR between the dissolved ozone concentration CW2 and the dissolved ozone concentration CW1 in the water to be treated W after the ozone injection.

【0109】前述のようにして被処理水のオゾン要求量
が求められる場合、オゾンの自己分解を求める比較水T
W2側には、オゾン注入前の段階で溶存オゾンを含有す
ることがない。したがって、その後オゾンを注入しても
比較水中の溶存オゾン濃度は前段階で注入した残留オゾ
ンの影響を受けることがなく、被処理水のオゾン要求量
の測定に際し、精度の高いオゾン要求量を求めることが
できる。
When the required ozone amount of the water to be treated is obtained as described above, the comparison water T for obtaining the self decomposition of ozone is obtained.
The W2 side does not contain dissolved ozone before the ozone injection. Therefore, even if ozone is injected after that, the dissolved ozone concentration in the comparative water is not affected by the residual ozone injected in the previous step, and when measuring the ozone requirement of the water to be treated, a highly accurate ozone requirement is required. be able to.

【0110】(実施例4)図4は本発明の他の実施例を
示す。
(Embodiment 4) FIG. 4 shows another embodiment of the present invention.

【0111】比較器40には、オゾンOGが注入された
後の被処理水中の溶存オゾン濃度を測定する溶存オゾン
濃度計13からの測定値CW1と、被処理水Wへのオゾ
ン注入後の溶存オゾン濃度の目標値K0 とが入力され
る。
In the comparator 40, the measured value CW1 from the dissolved ozone concentration meter 13 for measuring the dissolved ozone concentration in the water to be treated after the ozone OG is injected, and the dissolved value after the ozone is injected into the water to be treated W. The target value K 0 of the ozone concentration is input.

【0112】この目標値K0 は、オゾン注入後の被処理
水中の溶存オゾン濃度を所定値以上に保持するための目
標値で、任意に設定される。この目標値は変更可能であ
り、被処理水中の被酸化性成分の濃度とその組成及び変
動幅等が加味されて設定される。この比較器40では、
溶存オゾン濃度CW1と目標値との偏差±ΔKn(以
下、単に偏差ΔKnと称する)が求められ、この偏差Δ
Knは演算器41に入力される。
The target value K 0 is a target value for keeping the dissolved ozone concentration in the water to be treated after ozone injection at a predetermined value or more, and is arbitrarily set. This target value can be changed, and is set in consideration of the concentration of the oxidizable component in the water to be treated, its composition, fluctuation range, and the like. In this comparator 40,
The deviation ± ΔKn (hereinafter simply referred to as deviation ΔKn) between the dissolved ozone concentration CW1 and the target value is obtained, and this deviation Δ
Kn is input to the calculator 41.

【0113】比較器40で求められた偏差ΔKnが負の
偏差−ΔKnである場合、演算器41では、この偏差Δ
Knに対応した修正オゾン注入率ΔFが求められ、この
修正オゾン注入率ΔFは次の演算器42に入力される。
When the deviation ΔKn obtained by the comparator 40 is a negative deviation −ΔKn, the deviation 41 is calculated by the calculator 41.
The corrected ozone injection rate ΔF corresponding to Kn is obtained, and the corrected ozone injection rate ΔF is input to the next calculator 42.

【0114】前記偏差ΔKnと修正オゾン注入率ΔFの
関係は、図5に示すように予め被処理水へのオゾン注入
処理特性の関係に応じて設定される。演算器42には、
さらに基準オゾン注入率Fnが予め入力され、次式(1
9)に従って被処理水Wへ注入するオゾン注入率Fmが
求められる。
The relationship between the deviation ΔKn and the corrected ozone injection rate ΔF is set in advance in accordance with the relationship between the ozone injection treatment characteristics of the water to be treated as shown in FIG. The calculator 42 has
Further, the reference ozone injection rate Fn is input in advance, and the following equation (1
According to 9), the ozone injection rate Fm to be injected into the water to be treated W is obtained.

【0115】 Fm=Fn+ΔF …(19) 基準オゾン注入率Fnは、オゾン吸収特性等が加味され
て任意に設定され、かつ設定変更可能であり、予め被処
理水へのオゾン注入処理特性の関係に応じて求められ
る。
Fm = Fn + ΔF (19) The reference ozone injection rate Fn is arbitrarily set in consideration of ozone absorption characteristics and the like, and the setting can be changed in advance. Required according to.

【0116】前記のようにして求められた被処理水への
オゾン注入率Fmは、次に被処理水へのオゾン注入量F
jを求める演算器43に入力される。さらに、この演算
器43にはオゾン接触反応槽1への被処理水の流量Q1
を測定する流量計12からの出力値が被処理水流量Q1
として入力される。
The ozone injection rate Fm into the water to be treated obtained as described above is the ozone injection amount F into the water to be treated.
It is input to the computing unit 43 for obtaining j. Further, the calculator 43 is provided with a flow rate Q1 of the water to be treated to the ozone contact reaction tank 1.
The output value from the flow meter 12 for measuring
Is entered as.

【0117】この結果、演算器43では、オゾン注入率
mと被処理水流量Q1との関係から、次式(20)に従
ってオゾン注入量Fjを演算する。
As a result, the calculator 43 calculates the ozone injection amount Fj from the relationship between the ozone injection rate m and the treated water flow rate Q1 according to the following equation (20).

【0118】 Fj=Fm×Q1 …(20) 制御器44では、オゾナイザ2のオゾン発生量Sjをオ
ゾン注入量Fjに応じて制御する。オゾナイザ2への原
料ガス(空気または酸素)の供給流量を一定とした場
合、オゾン発生量Sjは、オゾナイザ2の放電部(図示
せず)への印加電圧を変化させることによって制御でき
る。そして、周波数を一定とすれば、印加電圧を高くす
るに従ってオゾン発生濃度が高くなりオゾン発生量が多
くなる。一方、印加電圧を一定とした場合、周波数を高
くするに従ってオゾン発生濃度が高くなりオゾン発生量
が多くなる。なお、印加電圧または周波数を下げれば、
オゾン発生量は少なくなる。この実施例では、オゾン注
入量Fjに応じて制御器44でオゾナイザ2への印加電
圧を変化させてオゾン発生量Sjを制御しているが、印
加電圧によらない場合は、周波数を制御してもよく、特
にその制御法は限定されない。
Fj = Fm × Q1 (20) The controller 44 controls the ozone generation amount Sj of the ozonizer 2 according to the ozone injection amount Fj. When the supply flow rate of the source gas (air or oxygen) to the ozonizer 2 is constant, the ozone generation amount Sj can be controlled by changing the voltage applied to the discharge part (not shown) of the ozonizer 2. When the frequency is constant, the ozone generation concentration increases and the ozone generation amount increases as the applied voltage increases. On the other hand, when the applied voltage is constant, the ozone generation concentration increases and the ozone generation amount increases as the frequency increases. If the applied voltage or frequency is lowered,
The amount of ozone generated will decrease. In this embodiment, the controller 44 changes the voltage applied to the ozonizer 2 in accordance with the ozone injection amount Fj to control the ozone generation amount Sj. However, if it does not depend on the applied voltage, the frequency is controlled. The control method is not particularly limited.

【0119】前述のように制御される場合、オゾナイザ
2は制御器44によりオゾン注入量Fjに応じたオゾン
量を発生させる。そして、被処理水Wにはオゾナイザ2
から前記のオゾン注入量Fjに応じたオゾンが注入され
る。なお、比較水TW2にも被処理水Wと同量のオゾン
が注入される。
When controlled as described above, the ozonizer 2 causes the controller 44 to generate an ozone amount corresponding to the ozone injection amount Fj. Then, the treated water W has an ozonizer 2
From the above, ozone corresponding to the ozone injection amount Fj is injected. Note that the same amount of ozone as the water to be treated W is injected into the comparative water TW2.

【0120】次に係る構成の作用について説明する。オ
ゾン注入後の被処理水W中の溶存オゾン濃度CW1は、
溶存オゾン濃度計13によって測定される。該測定値は
出力値として比較器40に入力され、溶存オゾン濃度C
W1とは別に入力された目標値K0 との偏差ΔKnが求
められる。
The operation of the above arrangement will be described. The dissolved ozone concentration CW1 in the water to be treated W after ozone injection is
It is measured by the dissolved ozone concentration meter 13. The measured value is input to the comparator 40 as an output value, and the dissolved ozone concentration C
The deviation ΔKn from the target value K 0 input separately from W1 is obtained.

【0121】この偏差ΔKnは演算器41に入力され
る。ここで、オゾン注入後の被処理水W中の溶存オゾン
濃度CW1が目標値K0 よりも低く、負の偏差−ΔKn
である場合、演算器41ではその偏差−Knに対応した
修正オゾン注入率ΔFが求められ、この修正オゾン注入
率ΔFは演算器42に入力される。そして、該修正オゾ
ン注入率ΔFと基準オゾン注入率ΔFとに基づいた被処
理水へのオゾン注入率Fjが求められ、該オゾン注入率
Fjに従って求められたオゾン注入量Fjが被処理水W
に注入される。
This deviation ΔKn is input to the calculator 41. Here, the dissolved ozone concentration CW1 in the water to be treated W after ozone injection is lower than the target value K 0 , and the negative deviation −ΔKn
In this case, the calculator 41 obtains the corrected ozone injection rate ΔF corresponding to the deviation −Kn, and the corrected ozone injection rate ΔF is input to the calculator 42. Then, the ozone injection rate Fj into the water to be treated is calculated based on the corrected ozone injection rate ΔF and the reference ozone injection rate ΔF, and the ozone injection amount Fj obtained according to the ozone injection rate Fj is the treated water W.
Is injected into.

【0122】一方、被処理水W中の溶存オゾン濃度CW
1が目標値K0 を上回る場合、目標値K0 と溶存オゾン
濃度CW1との偏差ΔKnは正の偏差+ΔKnとして比
較器40から演算器41に入力される。この場合、ここ
では溶存オゾン濃度CW1が所定値(目標値)以上に保
持されているので、オゾン注入量を補足するための修正
オゾン注入率ΔFは次の演算器42に加算されない。し
たがって、オゾナイザ2は基準オゾン注入率Fnに基づ
いて求められたオゾン注入量Fjに従ってオゾンを被処
理水Wに注入することになる。
On the other hand, the dissolved ozone concentration CW in the water W to be treated
If 1 exceeds the target value K 0, the deviation DerutaKn target value K 0 and dissolved ozone concentration CW1 is input from the comparator 40 as a positive deviation + DerutaKn to the calculator 41. In this case, since the dissolved ozone concentration CW1 is maintained above the predetermined value (target value) here, the corrected ozone injection rate ΔF for supplementing the ozone injection amount is not added to the next calculator 42. Therefore, the ozonizer 2 injects ozone into the water to be treated W in accordance with the ozone injection amount Fj obtained based on the reference ozone injection rate Fn.

【0123】前述のようにして被処理水Wへのオゾン注
入率またはオゾン注入量が制御される場合、オゾン注入
後の被処理水W中の溶存オゾン濃度は、目標値との偏差
に従って所定値以上に保持されることになるので、オゾ
ン注入後の被処理水W中の溶存オゾン濃度が不検出とな
ることがない。
When the ozone injection rate or the ozone injection amount into the water to be treated W is controlled as described above, the dissolved ozone concentration in the water to be treated W after the ozone injection has a predetermined value in accordance with the deviation from the target value. Since the above is maintained, the dissolved ozone concentration in the water W to be treated after ozone injection will not be undetected.

【0124】したがって、被処理水W中には、該被処理
水中の被酸化性成分を酸化するに充分なオゾンが注入さ
れ、オゾン注入量の不足によって未反応の被酸化性成分
の残留がなく、精度の高い被処理水のオゾン要求量を測
定することができる。
Therefore, sufficient ozone to oxidize the oxidizable components in the water to be treated is injected into the water to be treated W, and there is no residual unreacted oxidizable component due to insufficient ozone injection amount. It is possible to measure the ozone demand amount of the water to be treated with high accuracy.

【0125】一方、前述したオゾン注入後の溶存オゾン
濃度の制御とは別に、本発明の一実施例では、被処理水
のオゾン要求量を測定するに際し、その装置構成の簡素
化を図っている。
On the other hand, in addition to the control of the dissolved ozone concentration after the ozone injection described above, in one embodiment of the present invention, when measuring the ozone demand amount of the water to be treated, the structure of the device is simplified. .

【0126】前述した実施例の図3(または図4)に基
づいて説明すると、被処理水Wが導入されるオゾン接触
反応槽1の下流側にはオゾン注入後の処理水TW1中の
溶存オゾンを除去する溶存オゾン除去槽36が配設され
ている。前記溶存オゾン除去槽36の下流側にはオゾン
接触比較反応槽16が配設され、それぞれの槽1,36
及び16は水の流れに対し直列に配設されている。オゾ
ン接触反応槽1の出口側には、オゾンOG注入後の溶存
オゾン濃度CW1を測定する溶存オゾン濃度計13が配
設され、さらにオゾン接触比較反応槽16の出口側に
は、オゾンOG注入後の比較水TW2中の溶存オゾン濃
度CW2を測定する溶存オゾン濃度計21が配設されて
いる。
Explaining with reference to FIG. 3 (or FIG. 4) of the above-mentioned embodiment, the dissolved ozone in the treated water TW1 after ozone injection is provided on the downstream side of the ozone contact reaction tank 1 into which the treated water W is introduced. A dissolved ozone removing tank 36 for removing the above is provided. An ozone contact comparison reaction tank 16 is disposed on the downstream side of the dissolved ozone removal tank 36.
And 16 are arranged in series with the flow of water. On the outlet side of the ozone contact reaction tank 1, a dissolved ozone concentration meter 13 for measuring the dissolved ozone concentration CW1 after injection of ozone OG is disposed, and on the outlet side of the ozone contact comparison reaction tank 16, after ozone OG injection. The dissolved ozone concentration meter 21 for measuring the dissolved ozone concentration CW2 in the comparative water TW2 of FIG.

【0127】前記のようにそれぞれの槽1,36及び1
6が配設されている場合、先ずオゾン接触反応槽1には
オゾン要求量の測定対象となる被処理水Wが導入され
る。そして、ここで、オゾナイザ2からオゾンOGが槽
1に注入され、被処理水W中のオゾン消費成分となる被
酸化性成分が酸化されると共に、オゾン注入後の溶存オ
ゾン濃度CW1が測定され、測定値CW1は演算器24
に入力される。
As described above, each tank 1, 36 and 1
In the case where No. 6 is provided, first, the water to be treated W, which is the object of measuring the required ozone amount, is introduced into the ozone contact reaction tank 1. Then, here, ozone OG is injected from the ozonizer 2 into the tank 1 to oxidize the oxidizable component that is an ozone consuming component in the water W to be treated, and the dissolved ozone concentration CW1 after ozone injection is measured. The measured value CW1 is calculated by the calculator 24.
Entered in.

【0128】溶存オゾン濃度CW1が測定された前記オ
ゾン注入後の処理水TW1は、その後、下流側に配設さ
れた溶存オゾン除去槽36に導入される。ここで、前段
階で注入して液相中に残留している処理水TW1中の溶
存オゾンがエアーレーションによって気相に放出されて
除去される。
The treated water TW1 after the ozone injection, for which the dissolved ozone concentration CW1 has been measured, is then introduced into the dissolved ozone removing tank 36 arranged on the downstream side. Here, the dissolved ozone in the treated water TW1 injected in the previous stage and remaining in the liquid phase is released to the gas phase by aeration and removed.

【0129】溶存オゾンが除去された処理水は、その
後、被酸化性成分及び溶存オゾンを含有しない比較水T
W2として、溶存オゾン除去槽36の下流側に配設され
たオゾン接触比較反応槽16に導入される。ここでは、
被酸化性成分を含有しない比較水TW2にオゾンOGを
注入することによって、オゾンの自己分解によるオゾン
消費を求め、オゾン注入後の比較水TW2中の溶存オゾ
ン濃度CW2を溶存オゾン濃度計21によって測定す
る。この測定値CW2は、出力値として演算器24に入
力される。演算器24では入力された各溶存オゾン濃度
CW1,CW2から前述(16)式に基づいて被処理水
のオゾン要求量DRを求める。
The treated water from which the dissolved ozone had been removed was then treated with a comparative water T containing no oxidizable component and dissolved ozone.
As W2, it is introduced into the ozone contact comparison reaction tank 16 arranged on the downstream side of the dissolved ozone removal tank 36. here,
By injecting ozone OG into the comparative water TW2 containing no oxidizable component, ozone consumption due to self-decomposition of ozone is obtained, and the dissolved ozone concentration CW2 in the comparative water TW2 after ozone injection is measured by the dissolved ozone concentration meter 21. To do. The measured value CW2 is input to the calculator 24 as an output value. The calculator 24 obtains the ozone demand amount DR of the water to be treated from the input dissolved ozone concentrations CW1 and CW2 based on the equation (16).

【0130】前述のようにして被処理水Wのオゾン要求
量を測定する場合、各操作を行う水槽1,36及び16
を直列に配設しているので、被処理水Wにオゾンを注入
して、該水の溶存オゾンCW1を測定し、その後、溶存
オゾンを除去し、これを比較水TW2として用いること
が可能となる。このため、被酸化性成分を含有しない比
較水を得るための操作は、被処理水Wにオゾンを注入し
て有機物等によるオゾン消費を求める操作によって兼用
することができる。
When the ozone demand amount of the water W to be treated is measured as described above, the water tanks 1, 36 and 16 for carrying out the respective operations are carried out.
Are arranged in series, it is possible to inject ozone into the water to be treated W, measure the dissolved ozone CW1 of the water, and then remove the dissolved ozone, and use this as the comparative water TW2. Become. Therefore, the operation for obtaining the comparative water containing no oxidizable component can be combined with the operation for injecting ozone into the water to be treated W to obtain the ozone consumption by the organic matter and the like.

【0131】したがって、比較水を得るため別にオゾン
を注入して被酸化性成分を除く操作と、その操作のため
水槽が不必要となり被処理水のオゾン要求量を測定する
計器構成が簡素化される。
Therefore, the operation of separately injecting ozone to obtain the comparative water to remove the oxidizable component and the operation makes the water tank unnecessary and simplifies the instrument structure for measuring the ozone required amount of the treated water. It

【0132】(実施例5)図6は本発明の他の実施例を
示す。被処理水Wが導入されるオゾン消費成分除去槽5
0の下流側にはオゾン接触比較反応槽16が配設されて
いる。被処理水Wはサンプリングポンプ10,定流量調
節弁51,流量計52を介してオゾン消費成分除去槽5
0に導入される。53はオゾン消費成分除去槽50への
オゾン注入流量を調節する定流量弁を示し、54は流量
計を示す。
(Embodiment 5) FIG. 6 shows another embodiment of the present invention. Ozone-consuming component removal tank 5 into which treated water W is introduced
An ozone contact comparison reaction tank 16 is disposed on the downstream side of 0. The water W to be treated is passed through the sampling pump 10, the constant flow rate control valve 51, and the flow meter 52 to remove the ozone consuming component removal tank 5.
Introduced to zero. Reference numeral 53 is a constant flow valve for adjusting the flow rate of ozone injected into the ozone consuming component removal tank 50, and 54 is a flow meter.

【0133】被処理水Wが分水して導入されるオゾン接
触反応槽1は、前記除去槽50の水系と並列に配設され
る。すなわち、サンプリングポンプ10の吐出側で分水
されて各槽1,50に導入される。
The ozone contact reaction tank 1 into which the water W to be treated is divided and introduced is arranged in parallel with the water system of the removal tank 50. That is, water is separated on the discharge side of the sampling pump 10 and introduced into each tank 1, 50.

【0134】前述のように構成されている場合、被処理
水Wが分水して導入されるオゾン消費成分除去槽50で
は、該槽50にオゾンOGが注入されて被処理水W中の
被酸化性成分が酸化され、その後、溶存オゾン除去槽3
6を介して溶存オゾンが除去された後被酸化性成分を含
有しない比較水TW2としてオゾン接触比較反応槽16
に導入される。同時にこの比較反応槽16にはオゾンO
Gが注入され、オゾン注入後の比較水の溶存オゾン濃度
CW2が溶存オゾン濃度計21によって測定される。
In the case of the above configuration, in the ozone consuming component removing tank 50 into which the water W to be treated is divided and introduced, ozone OG is injected into the tank 50 to remove the water in the water W to be treated. Oxidizing component is oxidized, and then dissolved ozone removal tank 3
After the dissolved ozone is removed via 6, the ozone contact comparison reaction tank 16 is used as comparison water TW2 containing no oxidizable component.
Will be introduced to. At the same time, ozone O
G is injected, and the dissolved ozone concentration CW2 of the comparative water after ozone injection is measured by the dissolved ozone concentration meter 21.

【0135】一方、分水されてオゾン接触反応槽1に導
入された被処理水Wは、ここで、オゾンOGが注入され
被処理水W中のオゾン消費成分である被酸化性成分は酸
化され、これに伴いオゾンの自己分解と共に注入オゾン
は消費され、その後オゾン注入後の溶存オゾン濃度CW
1が溶存オゾン濃度計13によって測定される。
On the other hand, the water W to be treated, which has been divided into water and introduced into the ozone contact reaction tank 1, is injected with ozone OG to oxidize the oxidizable component which is an ozone consuming component in the water W to be treated. As a result, the injected ozone is consumed along with the self-decomposition of ozone, and then the dissolved ozone concentration CW after ozone injection
1 is measured by the dissolved ozone concentration meter 13.

【0136】前述のようにして測定された各溶存オゾン
濃度CW1及びCW2は被処理水のオゾン要求量を求め
る演算器24に入力され、ここで、前述の(16)式に
基づいて濃度CW1,CW2差分から被処理水のオゾン
要求量DRが求められることになる。
The dissolved ozone concentrations CW1 and CW2 measured as described above are input to the calculator 24 for determining the ozone demand amount of the water to be treated, where the concentrations CW1 and CW1 are calculated on the basis of the equation (16). The ozone demand amount DR of the water to be treated is obtained from the CW2 difference.

【0137】被処理水のオゾン要求量が前述のようにし
て測定される場合、この実施例では被酸化性成分を含有
しない比較水を得るために、被処理水を分水してオゾン
消費成分除去槽50に導入し、ここで、被処理水W中の
被酸化性成分を除くようにしている。ここでは、被酸化
性成分を除く操作であるから、オゾン接触反応槽1及び
オゾン接触比較反応槽16に注入するオゾン注入量と同
等に設定する制約を受けないので、オゾン注入量を多く
設定して被酸化性成分の除去を加速させることができ、
短時間に被酸化性成分を含有しない比較水を得ることが
できる。
When the ozone demand amount of the water to be treated is measured as described above, in this example, the water to be treated is divided to obtain a comparative water containing no oxidizable component. It is introduced into the removal tank 50, and the oxidizable component in the water to be treated W is removed here. Here, since the operation is to remove the oxidizable component, there is no restriction to set the ozone injection amount equal to the ozone injection amount injected into the ozone contact reaction tank 1 and the ozone contact comparison reaction tank 16, so that the ozone injection amount is set to be large. Can accelerate the removal of oxidizable components,
Comparative water containing no oxidizable component can be obtained in a short time.

【0138】したがって、被処理水の水質変動が大きく
とも比較水を得るための時間的制約を少なくできるの
で、被処理水のオゾン要求量の測定に際し応答性に優れ
たオゾン要求量の測定ができる。
Therefore, even if the water quality of the water to be treated varies greatly, it is possible to reduce the time constraint for obtaining the comparative water. Therefore, when measuring the ozone demand of the water to be treated, it is possible to measure the ozone demand with excellent responsiveness. .

【0139】(実施例6)図7は本発明の他の実施例を
示す。溶存オゾン処理槽60は、オゾン接触比較反応槽
16の下流側に配設され、前記反応槽16からのオゾン
注入後の比較水TW2を系外に排出する際、この比較水
を直接系外に排出しないで溶存オゾンを除去した後排出
する機能を有する。
(Embodiment 6) FIG. 7 shows another embodiment of the present invention. The dissolved ozone treatment tank 60 is disposed on the downstream side of the ozone contact comparison reaction tank 16, and when the comparison water TW2 after ozone injection from the reaction tank 16 is discharged to the outside of the system, It has the function of removing the dissolved ozone without discharging it and then discharging it.

【0140】さらに詳述すると、溶存オゾン処理槽60
にはオゾン接触比較反応槽16からの比較水が導入さ
れ、さらに、この処理槽60には溶存オゾン除去槽36
に導入される空気と同じくエアーポンプ5から空気が導
入されてバブリング(エアーレーション)される。この
結果、オゾン接触比較反応槽16で注入されて比較水中
に残留するオゾン、すなわち、溶存オゾンは分圧の低下
に伴い液相から気相に放出される。なお、他の手段で溶
存オゾンを除去してもよいことは勿論である。
More specifically, the dissolved ozone treatment tank 60.
Comparative water from the ozone contacting / comparing reaction tank 16 is introduced into the processing tank 60, and the dissolved ozone removing tank 36 is provided in the processing tank 60.
The air is introduced from the air pump 5 and bubbled (aerated) like the air introduced into the. As a result, the ozone injected in the ozone contact comparison reaction tank 16 and remaining in the comparison water, that is, the dissolved ozone, is released from the liquid phase to the gas phase as the partial pressure decreases. Of course, the dissolved ozone may be removed by other means.

【0141】一方、実施例3で説明したように、オゾン
接触反応槽1の下流側には溶存オゾン除去槽36が配設
され、この溶存オゾン除去槽36の下流側にはオゾン接
触比較反応槽16が配設されている。そして、溶存オゾ
ン除去槽36には、被処理水W中にオゾンが注入された
後の被酸化性成分を含有しない処理水TW1が導入され
る。さらに、この溶存オゾン除去槽36にはエアーポン
プ5から通気管39を介して空気が導入される。この結
果、溶存オゾンは液相から気相に放出される。溶存オゾ
ン除去槽36は、オゾン注入後の溶存オゾンを気相に放
出する機能とその結果として溶存オゾンを含有しない比
較水を得る2つの機能を兼用する。
On the other hand, as described in the third embodiment, the dissolved ozone removing tank 36 is disposed downstream of the ozone contact reaction tank 1, and the ozone contact comparison reaction tank is provided downstream of the dissolved ozone removing tank 36. 16 are provided. Then, the treated water TW1 containing no oxidizable component after the ozone has been injected into the treated water W is introduced into the dissolved ozone removal tank 36. Further, air is introduced into the dissolved ozone removing tank 36 from the air pump 5 through the ventilation pipe 39. As a result, dissolved ozone is released from the liquid phase to the gas phase. The dissolved ozone removing tank 36 has both the function of releasing dissolved ozone after ozone injection into the gas phase and the two functions of obtaining comparative water containing no dissolved ozone as a result.

【0142】流量調節弁61で、フィルター4及びエア
ーポンプ5を介して溶存オゾン処理槽60に導入される
空気の流量を所定値に調節設定する。62は前記流量調
節弁を示し、61は流量計を示す。
The flow rate adjusting valve 61 adjusts and sets the flow rate of the air introduced into the dissolved ozone treatment tank 60 via the filter 4 and the air pump 5 to a predetermined value. Reference numeral 62 represents the flow rate control valve, and 61 represents a flow meter.

【0143】一方、排オゾン排出管23の入口側は、前
述したそれぞれの槽1,16,36及び60の気相部に
連通されている。さらに、各気液分離器14,20の気
相部に連通されている。他方、この排オゾン排出管23
の出口側は、ミストセパレータ65を介してオゾン分解
処理手段66に連通されている。
On the other hand, the inlet side of the exhaust ozone discharge pipe 23 is connected to the gas phase portions of the respective tanks 1, 16, 36 and 60 described above. Furthermore, the gas-liquid separators 14 and 20 are communicated with the gas phase portions. On the other hand, this exhaust ozone discharge pipe 23
The outlet side of is connected to the ozone decomposition treatment means 66 through the mist separator 65.

【0144】そして、前述した各槽1,16,36及び
60に液相から気相に放出されるオゾン含有排気ガスE
Gまたは各気液分離器14,20からの排オゾンは、こ
の排オゾン排出管23を介してミストセパレータ65で
水分が除去された後、オゾン分解処理手段66に導入さ
れる。
The ozone-containing exhaust gas E discharged from the liquid phase to the gas phase into each of the tanks 1, 16, 36 and 60 described above.
The exhaust ozone from G or each of the gas-liquid separators 14 and 20 is introduced into the ozone decomposition treatment means 66 after the water is removed by the mist separator 65 through the exhaust ozone exhaust pipe 23.

【0145】オゾン分解処理手段66は、排オゾン分解
槽67とこの排オゾン分解槽67内に充填されるオゾン
分解触媒63とから構成されている。本発明の実施例で
はオゾン分解触媒としてMnO2 触媒を充填している
が、活性炭、またはFe,Ni等の少なくとも一種の元
素,酸化物または複合酸化物,さらにはPt,Pd等の
貴金属触媒等を用いてもよい。
The ozone decomposing means 66 comprises an exhaust ozone decomposing tank 67 and an ozone decomposing catalyst 63 filled in the exhaust ozone decomposing tank 67. In the embodiment of the present invention, MnO 2 catalyst is filled as an ozone decomposition catalyst. However, activated carbon, at least one element such as Fe or Ni, an oxide or a composite oxide, and a noble metal catalyst such as Pt or Pd are used. May be used.

【0146】オゾン含有排気ガスEGがオゾン分解処理
手段66を通過することによって、ガス中のオゾンが酸
素に転化され、オゾンを含有しない排ガスとして系外に
排出される。なお、この実施例では、排オゾン分解槽6
7内に触媒63を充填してオゾンを分解しているが、熱
分解によってオゾンを処理してもよく、特に排オゾン処
理法が触媒法に限定されるものではない。
When the ozone-containing exhaust gas EG passes through the ozone decomposition processing means 66, the ozone in the gas is converted into oxygen and is discharged out of the system as exhaust gas containing no ozone. In this embodiment, the exhaust ozone decomposing tank 6
Although the catalyst 63 is filled in 7 to decompose ozone, ozone may be treated by thermal decomposition, and the exhaust ozone treatment method is not particularly limited to the catalytic method.

【0147】排水管68の一端は、溶存オゾン処理槽6
0に連通され、他端は系外に臨んでいる。そして、この
排水管68を介して溶存オゾン処理槽60で処理された
水が排水として系外に排出される。ミストセパレータ6
5からの排水も排水管68を介して系外に排出される
が、溶存オゾン処理槽60に導入してから排出してもよ
い。また、本発明の実施例では、各槽1,16,31及
び60から排出されるオゾン含有排気ガスを共通のオゾ
ン分解処理手段66によって処理しているが、それぞれ
独立して処理してもよい。例えば、オゾン接触反応槽1
及びオゾン接触比較反応槽16から排出されるオゾン含
有排気ガスを処理するオゾン分解処理手段(図示せず)
と、溶存オゾン除去槽36及び溶存オゾン処理槽60か
ら排出されるオゾン含有排気ガスを処理するオゾン分解
処理手段(図示せず)とに区分してもよい。
One end of the drain pipe 68 is connected to the dissolved ozone treatment tank 6
It is connected to 0, and the other end faces the outside of the system. Then, the water treated in the dissolved ozone treatment tank 60 is discharged out of the system as drainage through the drainage pipe 68. Mist separator 6
The wastewater from No. 5 is also discharged to the outside of the system through the drain pipe 68, but it may be discharged after being introduced into the dissolved ozone treatment tank 60. Further, in the embodiment of the present invention, the ozone-containing exhaust gas discharged from each tank 1, 16, 31, and 60 is processed by the common ozone decomposition processing means 66, but it may be processed independently. . For example, ozone contact reaction tank 1
And ozone decomposition processing means (not shown) for processing the exhaust gas containing ozone discharged from the ozone contact comparison reaction tank 16
And the ozone decomposing means (not shown) for treating the ozone-containing exhaust gas discharged from the dissolved ozone removing tank 36 and the dissolved ozone treating tank 60.

【0148】前述のように構成されている場合、オゾン
接触反応槽1及びオゾン接触比較反応槽16から気相に
放出されるオゾン含有排気ガスEGは、オゾン分解処理
手段66を介して系外に排出されることになるので、被
処理水のオゾン要求量を測定する際、測定環境の保全及
び環境へのオゾン漏洩を防止することができる。すなわ
ち、被処理水のオゾン要求量測定時、オゾン接触反応槽
1及びオゾン接触比較反応槽16に注入したオゾンの全
ては液相に溶解せず、一部のオゾンは液相から気相に放
出されるが、気相に放出されるオゾン含有排気ガスEG
はオゾン分解処理手段66によって含有オゾンが酸素に
転化された後系外に排出され、オゾンが直接系外に排出
されることがない。
In the case of the above configuration, the ozone-containing exhaust gas EG released from the ozone contact reaction tank 1 and the ozone contact comparison reaction tank 16 to the gas phase is discharged to the outside of the system via the ozone decomposition treatment means 66. Since it is discharged, it is possible to protect the measurement environment and prevent ozone leakage to the environment when measuring the ozone demand amount of the water to be treated. That is, when measuring the ozone demand amount of the water to be treated, all of the ozone injected into the ozone contact reaction tank 1 and the ozone contact comparison reaction tank 16 is not dissolved in the liquid phase, and some ozone is released from the liquid phase to the gas phase. However, the exhaust gas EG containing ozone is released into the gas phase.
Is not discharged directly to the outside of the system after the contained ozone is converted to oxygen by the ozone decomposition processing means 66 and then discharged to the outside of the system.

【0149】したがって、測定環境の保全及びオゾン漏
洩を防止できる被処理水のオゾン要求量の測定法を提供
することができる。
Therefore, it is possible to provide a method for measuring the ozone demand amount of the water to be treated which can maintain the measurement environment and prevent ozone leakage.

【0150】一方、前述した各反応槽1,16からのオ
ゾン含有排気ガスEGとは別に、オゾン要求量を測定し
た後に排出されるオゾン含有水からの環境へのオゾン漏
洩を防止するために、本発明の実施例ではオゾン注入後
の被処理水及び比較水中の溶存オゾンを液相から気相に
放出させて、そのオゾン含有排気ガスEGをオゾン分解
処理手段66を介して系外に排出している。
On the other hand, in addition to the ozone-containing exhaust gas EG from each of the reaction tanks 1 and 16 described above, in order to prevent ozone leakage to the environment from ozone-containing water discharged after the ozone demand is measured, In the embodiment of the present invention, dissolved ozone in the water to be treated and the comparative water after ozone injection is released from the liquid phase to the gas phase, and the ozone-containing exhaust gas EG is discharged to the outside of the system through the ozone decomposition treatment means 66. ing.

【0151】すなわち、オゾン要求量測定後の被処理水
及び比較水中には前段階で注入したオゾンが溶存オゾン
として残留している。そこで、オゾン注入後の処理水T
W1を溶存オゾン除去槽36に導入すると共に、同じく
オゾン注入後の比較水TW2を溶存オゾン処理槽60に
導入する。そして、エアーレーション等の手段によって
溶存オゾンを液相から気相に放出させて溶存オゾンを除
去すると共に、排出されたオゾン含有排気ガスは、オゾ
ン分解処理手段66を介して系外に排出するようにした
ものである。この結果、被処理水のオゾン要求量を測定
時、系外には溶存オゾンを含有しない排水が排出され、
かつ溶存オゾン除去した後の気相に放出されるオゾン含
有排気ガスは、オゾン分解処理手段によってオゾンは酸
素に転化されて排出されることになる。
That is, the ozone injected in the previous stage remains as dissolved ozone in the water to be treated and the comparative water after the measurement of the required ozone amount. Therefore, treated water T after ozone injection
W1 is introduced into the dissolved ozone removing tank 36, and similarly, comparative water TW2 after ozone injection is introduced into the dissolved ozone treatment tank 60. Then, dissolved ozone is released from the liquid phase to the gas phase by means of aeration or the like to remove the dissolved ozone, and the discharged ozone-containing exhaust gas is discharged to the outside of the system through the ozone decomposition treatment means 66. It is the one. As a result, when measuring the ozone demand of the water to be treated, wastewater containing no dissolved ozone is discharged outside the system,
In addition, the ozone-containing exhaust gas released into the gas phase after the removal of dissolved ozone is converted into oxygen by the ozone decomposition processing means and discharged.

【0152】したがって、前述と同様に測定環境の保全
及びオゾン漏洩を防止できる被処理水のオゾン要求量の
測定法を提供することができる。
Therefore, similarly to the above, it is possible to provide a method for measuring the ozone demand amount of the water to be treated which can preserve the measurement environment and prevent ozone leakage.

【0153】(実施例7)図8は本発明の他の実施例を
示す。オゾン注入例を浄水場を例にとり説明する。河川
等の取水源から取水口を経て取水された原水RWは、導
水管(図示せず)を経て沈砂池(図示せず)に至り、こ
こで粒径の大きな砂等が除去された後、着水井70に導
かれる。
(Embodiment 7) FIG. 8 shows another embodiment of the present invention. An example of ozone injection will be explained using a water purification plant as an example. Raw water RW taken from a water intake source such as a river through an intake port reaches a sand basin (not shown) through a water conduit (not shown), and after sand having a large particle size is removed, It is led to the landing well 70.

【0154】原水RWは、その後、薬品混和池71に導
かれ、ここで硫酸バンドまたはPAC(ポリ塩化アルミニ
ウム)等の凝集剤72、さらには凝集補助剤となるアル
カリ剤73と混和された後、フロック形成池74へ送ら
れる。
The raw water RW is then introduced into a chemical mixing basin 71, where it is mixed with a coagulant 72 such as a sulfuric acid band or PAC (polyaluminum chloride), and further with an alkaline agent 73 serving as a coagulant auxiliary agent. It is sent to the floc formation pond 74.

【0155】フロック形成池74では、原水中の微粒子
が凝集したマイクロフロックの成長が促進される。その
後、大きく成長したフロックを含有する凝集水は、沈殿
池75に導かれ、ここで、フロックの沈降分離が行われ
る。
In the floc formation pond 74, the growth of micro flocs in which fine particles in the raw water are aggregated is promoted. After that, the condensed water containing the flocs that have grown greatly is guided to the sedimentation tank 75, where the sedimentation and separation of the flocs is performed.

【0156】前記のようなプロセスを経てフロックが沈
降分離された沈殿水SWは、その後オゾン注入処理の対
象となる被処理水としてオゾン注入処理装置76に導入
される。オゾン注入処理装置76は、オゾンを発生させ
るオゾナイザ77とこのオゾナイザ77からのオゾンO
Zが導入されるオゾン接触反応槽78及びこのオゾン接
触反応槽78から排出されるオゾン含有排気ガスEGを
処理するオゾン分解処理手段79から主要部が構成され
る。
The settling water SW from which flocs have been settled and separated through the above-described process is then introduced into the ozone injection treatment device 76 as water to be treated which is the object of ozone injection treatment. The ozone injecting and treating apparatus 76 is an ozonizer 77 for generating ozone and ozone O from the ozonizer 77.
The ozone contact reaction tank 78 into which Z is introduced and the ozone decomposition processing means 79 for processing the ozone-containing exhaust gas EG discharged from this ozone contact reaction tank 78 are mainly constituted.

【0157】さらに詳述すると、原料ガスRA(空気ま
たは酸素)が除湿器80で湿分が除去された後、オゾナ
イザ77に供給される。なお、原料ガスRAはブロワー
Bで供給される。ここで、酸素がオゾン化され、オゾン
含有ガスは通気管81を介して多数の小孔(図示せず)
を有する散気管82からオゾン接触反応槽78に導入さ
れる。オゾン接触反応槽78に導入されたオゾンの大部
分は、液中に溶解するが、一部のオゾンは溶解せずに接
触槽78の上部からオゾン含有排気ガスEGとして気相
Gに放出される。
More specifically, the source gas RA (air or oxygen) is supplied to the ozonizer 77 after the moisture is removed by the dehumidifier 80. The raw material gas RA is supplied by the blower B. Here, the oxygen is ozonized, and the ozone-containing gas passes through the ventilation pipe 81 and has many small holes (not shown).
Is introduced into the ozone contact reaction tank 78 from the air diffusing pipe 82. Most of the ozone introduced into the ozone contact reaction tank 78 is dissolved in the liquid, but some ozone is not dissolved and is discharged from the upper portion of the contact tank 78 into the gas phase G as ozone-containing exhaust gas EG. .

【0158】オゾン発生手段であるオゾナイザ77は、
制御器83と高周波インバータ84及び高電圧変圧器8
5さらに放電部(図示せず)とから主要部が構成され
る。そして、電源86から高周波インバータ84及び高
電圧変圧器85を介して放電部に高周波数の高電圧が印
加される。
The ozonizer 77, which is an ozone generating means,
Controller 83, high frequency inverter 84, and high voltage transformer 8
5 Further, a main part is composed of a discharge part (not shown). Then, a high frequency high voltage is applied from the power source 86 to the discharge unit via the high frequency inverter 84 and the high voltage transformer 85.

【0159】さらに詳述すれば、放電部を構成する誘電
体(図示せず)とこれに対向する電極(図示せず)に高
周波数の高電圧が印加される。
More specifically, a high frequency high voltage is applied to a dielectric (not shown) forming the discharge part and an electrode (not shown) facing the dielectric.

【0160】オゾンの発生手段としては、無声放電方
式,電解法,光化学反応法さらに高周波電解法などある
が、オゾン発生効率の点から一般的には無声放電方式が
採られる。そして、印加する電圧の種類に対応して直流
コロナ,交流コロナ放電等に区分されるが、効率の面か
ら交流コロナ放電によるオゾン発生が採られる。本発明
の一実施例では、交流コロナ放電によるオゾナイザを用
いているが、オゾン発生手段が特に限定されるものでは
ない。
As a means for generating ozone, there are a silent discharge method, an electrolysis method, a photochemical reaction method, and a high frequency electrolysis method, and the silent discharge method is generally adopted from the viewpoint of ozone generation efficiency. Then, it is classified into direct current corona, alternating current corona discharge, etc. according to the type of voltage to be applied, but ozone is generated by alternating current corona discharge in terms of efficiency. In one embodiment of the present invention, an ozonizer by AC corona discharge is used, but the ozone generating means is not particularly limited.

【0161】オゾナイザ77によるオゾンの発生量は原
料ガス流量を一定とした場合、放電部での消費電力W
(放電電力)によって決まり、消費電力を大きくするに
従って発生オゾン濃度は高くなる。そして、次式(2
1)に示すようにオゾナイザ77を構成する放電部の誘
電体の材質,放電の有効面積,放電ギャップ等の条件が
決まれば、消費電力は印加電圧と電源周波数によって決
まる。
The amount of ozone generated by the ozonizer 77 is the power consumption W in the discharge section when the flow rate of the raw material gas is constant.
(Discharge power), and the generated ozone concentration increases as the power consumption increases. Then, the following equation (2
As shown in 1), the power consumption is determined by the applied voltage and the power supply frequency, when the conditions such as the material of the dielectric material of the discharge part constituting the ozonizer 77, the effective area of discharge, the discharge gap, etc. are determined.

【0162】 W=f・(εd/4πdd)・S・γ・dg[2√2Eeff−{1+(εg・dd)/ (εd・dg)}γ・dg]×1/9×10-11 …(21) ここで、f:電源周波数,εd:誘電体の誘電率,ε
g:反応ガスの誘電率,dg:放電ギャップ(cm),
d:誘電体の厚さ(cm),S:放電の有効面積(cm2),E
eff:印加電圧,γ:臨海破壊電界(γ=(Vs+Ve)/
dg),Vs:放電開始電圧,Ve:減火電圧。
W = f · (εd / 4πd d ) · S · γ · dg [2√2E eff − {1+ (εg · d d ) / (εd · dg)} γ · dg] × 1/9 × 10 -11 (21) where f: power supply frequency, εd: dielectric constant of dielectric, ε
g: dielectric constant of reaction gas, dg: discharge gap (cm),
d d : thickness of dielectric (cm), S: effective area of discharge (cm 2 ), E
eff : Applied voltage, γ: Seaside breakdown electric field (γ = (Vs + Ve) /
dg), Vs: discharge start voltage, Ve: extinguishing voltage.

【0163】したがって、消費電力を増加させてオゾン
発生量を大きくするには、印加電圧または電源周波数を
制御すればよい。本発明の一実施例では印加電圧を一定
として高周波インバータによって周波数を制御し、これ
によってオゾン発生量を変化させているが、両者または
印加電圧を制御してオゾン発生量を変化させてもよい。
Therefore, in order to increase the power consumption and increase the ozone generation amount, the applied voltage or the power supply frequency may be controlled. In one embodiment of the present invention, the applied voltage is kept constant and the frequency is controlled by the high-frequency inverter to change the ozone generation amount, but both or the applied voltage may be controlled to change the ozone generation amount.

【0164】オゾン接触反応槽78からのオゾン含有排
気ガスEG中の水分を除去するミストセパレータ87の
下流側には、オゾン分解処理手段79が配設されてい
る。オゾン分解触媒88としては,前述した実施例6で
説明した触媒があげられる。また、先に説明したように
熱分解等で処理してもよく、使用触媒及びオゾン分解法
が特に限定されるものではない。
Ozone decomposition treatment means 79 is disposed downstream of the mist separator 87 for removing water in the ozone-containing exhaust gas EG from the ozone contact reaction tank 78. Examples of the ozone decomposition catalyst 88 include the catalyst described in the above-described sixth embodiment. Further, as described above, the treatment may be performed by thermal decomposition or the like, and the catalyst used and the ozone decomposition method are not particularly limited.

【0165】ブロワー89で、オゾン接触反応槽78か
らのオゾン含有排気ガスEGを吸引して系外に排出す
る。
The blower 89 sucks the ozone-containing exhaust gas EG from the ozone contact reaction tank 78 and discharges it to the outside of the system.

【0166】オゾン接触反応槽78の下流側に配設され
た生物活性炭槽90には、活性炭91が充填され、オゾ
ン接触反応槽78からの処理水TWが導入される。活性
炭91を充填して通水した当初は、この活性炭の表面ま
たは内部に微生物の存在は少ないが、時間の経過と共に
この活性炭91の表面または内部には馴養されて繁殖し
た微生物(図示せず)が存在する。微生物の優占種とし
てはPseudomonas 等が上げられる。
A biological activated carbon tank 90 disposed on the downstream side of the ozone contact reaction tank 78 is filled with activated carbon 91, and treated water TW from the ozone contact reaction tank 78 is introduced. At the beginning of filling with activated carbon 91 and passing water, there are few microorganisms on the surface or inside of this activated carbon, but with the passage of time, microorganisms that have acclimatized and propagated on the surface or inside of this activated carbon (not shown). Exists. Pseudomonas etc. are mentioned as the dominant species of microorganisms.

【0167】オゾン接触反応槽78からの処理水TW
は、微生物の働きによりオゾン処理では除去できないア
ンモニア性窒素が硝化除去されると共に、オゾン処理に
よって低分子化された溶存有機物の代謝除去が行われ
る。前記のようにして処理された生物活性炭槽90から
の水は、その後配水池(図示せず)等に送られる。本発
明の一実施例では図示していないが、生物活性炭槽90
は必要に応じてこの槽90を出た処理水を用いて逆洗さ
れ、活性炭91に過剰に付着した微生物が取り除かれ
る。
Treated water TW from the ozone contact reaction tank 78
Ammonia nitrogen that cannot be removed by ozone treatment is nitrified and removed by the action of microorganisms, and dissolved organic matter whose molecular weight has been lowered by ozone treatment is also metabolically removed. The water from the biological activated carbon tank 90 treated as described above is then sent to a distribution reservoir (not shown) or the like. Although not shown in the embodiment of the present invention, the biological activated carbon tank 90
Is back-washed with the treated water that has flowed out of the tank 90 as needed, and the microorganisms excessively attached to the activated carbon 91 are removed.

【0168】オゾン接触反応槽78の下流側に配設され
た溶存オゾン濃度計92は、オゾン接触反応槽78に導
入されてオゾンOGが注入された後の実プラント側の溶
存オゾン濃度CW1を測定する。サンプリングポンプ9
3で、生物活性炭槽90からの処理水BLの一部をサン
プリングする。
The dissolved ozone concentration meter 92 disposed on the downstream side of the ozone contact reaction tank 78 measures the dissolved ozone concentration CW1 on the actual plant side after being introduced into the ozone contact reaction tank 78 and injected with ozone OG. To do. Sampling pump 9
At 3, a part of the treated water BL from the biological activated carbon tank 90 is sampled.

【0169】サンプリングされた生物活性炭槽90から
の処理水BLは、オゾン要求量測定装置1Bを構成する
オゾン接触比較反応槽94に導入され、該槽94にはオ
ゾナイザ2側からオゾンOGが注入される。前記オゾン
接触比較反応槽94は、前述した実施例1で説明した被
処理水のオゾン要求量測定装置1Aと同等の機能,構成
を有し、オゾン接触反応槽78及び生物活性炭槽90か
らなる処理プロセスとは別に設けられる。なお、サンプ
リング水Sに対するオゾン注入率は、被処理水Wに対す
るオゾン注入率と同等に設定される。さらに、図9にオ
ゾン要求量測定装置1Bの詳細を示すように、オゾン接
触比較反応槽94へのサンプリング水Sの流量は流量調
節弁95にて調節され、オゾン接触比較反応槽94にお
けるサンプリング水Sの滞留時間またはオゾンとの接触
時間が調節される。96は調節弁95の出口側に配設さ
れた流量計を示す。一方、前記槽94での滞留時間また
は接触時間は、この槽94とは別に被処理水Wが導入さ
れるプラント側のオゾン接触反応槽78での条件と同等
に設定される。
The treated water BL sampled from the biological activated carbon tank 90 is introduced into the ozone contact comparison reaction tank 94 which constitutes the ozone demand measuring device 1B, and ozone OG is injected into the tank 94 from the ozonizer 2 side. It The ozone contact comparison reaction tank 94 has the same function and configuration as the ozone demand amount measuring apparatus 1A of the water to be treated described in the above-mentioned first embodiment, and is composed of the ozone contact reaction tank 78 and the biological activated carbon tank 90. It is provided separately from the process. The ozone injection rate for the sampling water S is set to be equal to the ozone injection rate for the water W to be treated. Further, as shown in detail in the ozone demand measuring device 1B in FIG. 9, the flow rate of the sampling water S to the ozone contact comparison reaction tank 94 is adjusted by the flow rate adjusting valve 95, and the sampling water in the ozone contact comparison reaction tank 94 is adjusted. The residence time of S or the contact time with ozone is adjusted. Reference numeral 96 denotes a flow meter arranged on the outlet side of the control valve 95. On the other hand, the residence time or contact time in the tank 94 is set to be equal to the condition in the ozone contact reaction tank 78 on the plant side where the water W to be treated is introduced separately from the tank 94.

【0170】オゾン接触比較反応槽94の出口側には溶
存オゾン濃度計21が配設され、オゾン注入後のサンプ
リング水S中の溶存オゾン濃度CW2を測定する。前記
のようにして測定された各溶存オゾン濃度CW1及びC
W2は、被処理水Wのオゾン要求量を求める演算器24
に出力値として入力される。この結果、この演算器では
前式(16)に従って被処理水のオゾン要求量DKを求
めて出力する。
A dissolved ozone concentration meter 21 is provided on the outlet side of the ozone contact comparison reaction tank 94 to measure the dissolved ozone concentration CW2 in the sampling water S after ozone injection. Each dissolved ozone concentration CW1 and C measured as described above
W2 is a calculator 24 for calculating the ozone demand amount of the water W to be treated.
Is input as an output value to. As a result, this computing unit obtains and outputs the ozone demand amount DK of the water to be treated according to the above equation (16).

【0171】前述のようにして被処理水のオゾン要求量
が求められる場合、被処理水Wが導入されるプラント側
のオゾン接触反応槽78では、有機物等の被酸化性成分
によるオゾン消費と自己分解によるオゾン消費との両者
を含むオゾン消費の反応が進行し、被処理水W側は実際
のオゾン注入処理の特性を反映させた結果としてオゾン
注入後の溶存オゾン濃度CW1が求められる。一方、自
己分解によるオゾン消費を求める比較水は、被処理水W
にオゾンを注入し、その後生物活性炭槽90を経た前記
被処理水と同一系の水で、この比較水を得る前処理工程
で水温,pH等を変化させる外乱的影響を受けることが
ないから、被酸化性成分を含有しないもの、被処理水側
に整合した水温,pH等を維持する。そして、この比較
水も前述の被処理水と同様に実プラントでの処理特性を
反映する。
When the ozone demand amount of the water to be treated is obtained as described above, in the ozone contact reaction tank 78 on the plant side into which the water to be treated W is introduced, the ozone consumption and self-oxidation due to oxidizable components such as organic substances The reaction of ozone consumption including both ozone consumption due to decomposition progresses, and the dissolved water concentration CW1 after ozone injection is obtained on the treated water W side as a result of reflecting the characteristics of the actual ozone injection treatment. On the other hand, the comparative water used to calculate ozone consumption due to self-decomposition is treated water W
Since ozone is injected into the water, and then water of the same system as the water to be treated that has passed through the biological activated carbon tank 90, there is no disturbance effect that changes the water temperature, pH, etc. in the pretreatment step for obtaining this comparative water, Maintains water temperature, pH, etc. that does not contain oxidizable components and that matches the treated water side. Then, this comparative water also reflects the treatment characteristics in the actual plant, like the above-mentioned treated water.

【0172】したがって、被処理水のオゾン要求量を求
めるに際し、被処理水が実際にオゾン注入処理される結
果に基づいて被処理水のオゾン要求量を求めることがで
きるので、精度の高い被処理水のオゾン要求量を測定す
ることができる。
Therefore, when the ozone demand amount of the water to be treated is obtained, the ozone demand amount of the water to be treated can be obtained based on the result of the actual ozone injection treatment of the water to be treated. The ozone demand of water can be measured.

【0173】(実施例8)図10は本発明の他の実施例
を示す。この実施例は被処理水Wのオゾン要求量を測定
するに際し、オゾン注入処理装置76を構成するオゾン
接触反応槽78の下流側に配設された生物活性炭槽90
からの処理水BLの一部をサンプリングして、このサン
プリング水を比較水としたものである。
(Embodiment 8) FIG. 10 shows another embodiment of the present invention. In this embodiment, when measuring the ozone demand amount of the water W to be treated, a biological activated carbon tank 90 disposed downstream of the ozone contact reaction tank 78 constituting the ozone injection treatment device 76.
A part of the treated water BL from No. 1 was sampled, and this sampled water was used as comparative water.

【0174】サンプリングポンプ100で、凝集沈殿終
了後の沈殿池75からの沈殿水SWを被処理水Wとして
サンプリングする。サンプリングされた被処理水Wは、
図11にその詳細を示すように、オゾン要求量測定装置
1Aを構成するオゾン接触反応槽1に導入される。
With the sampling pump 100, the settling water SW from the settling tank 75 after the completion of the coagulation and settling is sampled as the water W to be treated. The sampled water W is
As shown in detail in FIG. 11, it is introduced into the ozone contact reaction tank 1 which constitutes the ozone demand amount measuring device 1A.

【0175】他方のサンプリングポンプ93は、オゾン
注入処理装置76を構成するオゾン接触反応槽78の下
流側に配設された生物活性炭槽90からの処理水BLの
一部をサンプリングする。そして、サンプリングされた
処理水BLは比較水として、オゾン要求量測定装置1A
を構成するオゾン接触比較反応槽16に流量調節弁10
1及び流量計102を介して導入される。
The other sampling pump 93 samples a part of the treated water BL from the biological activated carbon tank 90 arranged on the downstream side of the ozone contact reaction tank 78 constituting the ozone injection processing device 76. The sampled treated water BL is used as a comparative water, and the ozone demand amount measuring device 1A is used.
Flow control valve 10 in ozone contact comparison reaction tank 16
1 and the flow meter 102.

【0176】被処理水及び比較水が導入される各槽1,
16には、オゾナイザ2からオゾンOGが注入される。
そして各槽1,16への被処理水及び比較水の流量は同
等に設定され、各水へのオゾン注入量も同等に設定され
る。
Each tank 1, into which the water to be treated and the comparative water are introduced
Ozone OG is injected from 16 from the ozonizer 2.
Then, the flow rates of the water to be treated and the comparative water to the respective tanks 1 and 16 are set to be equal, and the ozone injection amount to each water is also set to be equal.

【0177】前述のようにしてオゾン要求量測定対象の
被処理水をオゾン接触反応槽1に導入し、かつ生物活性
炭槽90からの処理水BLを比較水としてオゾン接触比
較反応槽16に導入する場合、前記比較水中にはオゾン
消費成分となる被酸化性成分が含まれていないから、自
己分解によるオゾン消費を求める比較水を得るため被酸
化性成分を除去する手段が不必要となる。したがって、
装置構成を簡素化して被処理水のオゾン要求量を測定す
ることができる。
As described above, the water to be treated whose ozone demand is to be measured is introduced into the ozone contact reaction tank 1, and the treated water BL from the biological activated carbon tank 90 is introduced into the ozone contact comparison reaction tank 16 as comparison water. In this case, since the comparative water does not contain an oxidizable component that becomes an ozone consuming component, a means for removing the oxidizable component is not necessary to obtain comparative water for obtaining ozone consumption by self-decomposition. Therefore,
It is possible to measure the ozone demand amount of the water to be treated by simplifying the device configuration.

【0178】(実施例9)図12は本発明の他の実施例
を示す。
(Embodiment 9) FIG. 12 shows another embodiment of the present invention.

【0179】制御器110は、被処理水へのオゾン注入
量を制御するもので、この制御器を構成する演算器11
1には、オゾン要求量測定装置1Aからの被処理水のオ
ゾン要求量DKが入力される。
The controller 110 controls the amount of ozone injected into the water to be treated, and the arithmetic unit 11 which constitutes this controller.
In 1, the ozone demand amount DK of the water to be treated from the ozone demand amount measuring device 1A is input.

【0180】さらに詳述すると、被処理水中のオゾン消
費成分となる被酸化性成分が除去された比較水と前記被
処理水とにオゾンを注入して、前記オゾン注入後の比較
水と被処理水との溶存オゾン濃度CW1,CW2の差分
から求められた被処理水のオゾン要求量DKが入力され
る。このオゾン要求量は、オゾン要求量測定装置1Aを
構成する演算器24から入力される。
More specifically, ozone is injected into the water to be treated and the comparative water from which the oxidizable component to be the ozone consuming component in the water to be treated has been injected, and the comparative water after the ozone injection and the to-be-treated water are treated. The ozone demand amount DK of the water to be treated obtained from the difference between the dissolved ozone concentrations CW1 and CW2 with water is input. The ozone demand amount is input from the calculator 24 that constitutes the ozone demand amount measuring device 1A.

【0181】オゾン要求量DKが入力される演算器11
1には、さらに、沈殿池55からオゾン接触反応槽78
に流入する被処理水の流量Fが流量計112で測定され
て入力される。
The calculator 11 into which the requested ozone amount DK is input.
1 further includes the ozone contact reaction tank 78 from the settling tank 55.
The flow rate F of the water to be treated flowing into is measured by the flow meter 112 and input.

【0182】この結果、この演算器111では被処理水
のオゾン要求量DKの測定結果に基づく必要オゾン注入
量Njを、オゾン要求量DKと被処理水の流量Fに基づ
いて次式(22)に従い演算する。
As a result, in this computing unit 111, the required ozone injection amount Nj based on the measurement result of the ozone demand amount DK of the water to be treated is calculated from the following equation (22) based on the ozone demand amount DK and the flow rate F of the water to be treated. Calculate according to.

【0183】 Nj=DK×F …(22) 113は演算器で、前記の演算器111で求められた必
要オゾン注入量Njが入力され、さらに、前記流量計1
12からの被処理水の流量Fが入力される。この結果、
この演算器113では被処理水のオゾン要求量DKの測
定結果に基づく要求オゾン注入率Djを必要オゾン注入
量Njと被処理水の流量Fに基づいて次式(23)に従
い演算する。
Nj = DK × F (22) 113 is a computing unit, to which the required ozone injection amount Nj obtained by the computing unit 111 is input, and further the flow meter 1
The flow rate F of the treated water from 12 is input. As a result,
The calculator 113 calculates the required ozone injection rate Dj based on the measurement result of the ozone demand amount DK of the treated water based on the required ozone injection amount Nj and the flow rate F of the treated water according to the following equation (23).

【0184】 Dj=Nj/F …(23) 114も演算器で、演算器113で求められた要求オゾ
ン注入率Djが入力される。さらに、この演算器114
には基準オゾン注入率Sjが入力され、次式(24)に
従ってオゾン接触反応槽78の被処理水へ注入するオゾ
ン注入率Pjを演算する。
Dj = Nj / F (23) 114 is also an arithmetic unit, and the required ozone injection rate Dj obtained by the arithmetic unit 113 is input. Furthermore, this computing unit 114
Is input with the reference ozone injection rate Sj, and the ozone injection rate Pj to be injected into the water to be treated in the ozone contact reaction tank 78 is calculated according to the following equation (24).

【0185】 Pj=Sj+Dj …(24) なお、前記演算器114に入力される基本オゾン注入率
Sjは、予めオゾン吸収特性等が加味されて任意に設定
され、かつ設定変更可能である。そして前記基本オゾン
注入率Sjはオペレータ等によって入力設定される。
Pj = Sj + Dj (24) The basic ozone injection rate Sj input to the computing unit 114 can be arbitrarily set in consideration of ozone absorption characteristics and the like and can be changed. The basic ozone injection rate Sj is input and set by an operator or the like.

【0186】また、この実施例では前述の如く、演算器
114にオゾン吸収特性等を加味して基本オゾン注入率
Sjを入力しているが、基本オゾン注入率Sjの代わり
にオゾンの自己分解によるオゾンの自己分解消費量を入
力してもよい。すなわち、比較水へ注入したオゾン注入
量,溶存オゾン濃度及び気相へのオゾン含有排気ガス濃
度の関係から、比較水側におけるオゾンの自己分解によ
る自己分解消費量を求めて入力し、前記被処理水のオゾ
ン要求量と加算してオゾン処理対象の被処理水にオゾン
を注入してもよい。このようにすると、被処理水へのオ
ゾン注入はオゾン要求量と共に自己分解によるオゾン消
費も加味したものとなり、オゾン注入が過少となること
が抑制される。
Further, in this embodiment, as described above, the basic ozone injection rate Sj is input to the calculator 114 in consideration of the ozone absorption characteristics and the like. However, instead of the basic ozone injection rate Sj, ozone is self-decomposed. You may enter the self-decomposition consumption of ozone. That is, the self-decomposition consumption amount due to self-decomposition of ozone on the comparison water side is obtained and input from the relationship between the injection amount of ozone injected into the comparison water, the concentration of dissolved ozone and the concentration of ozone-containing exhaust gas into the gas phase, It is also possible to add ozone to the amount of ozone required of water and inject ozone into the water to be treated to be ozone-treated. By doing so, the ozone injection into the water to be treated takes into account ozone demand and ozone consumption due to self-decomposition, so that the ozone injection is suppressed from becoming insufficient.

【0187】115は演算器で、この演算器には前述し
た演算器114からのオゾン注入率Pjが入力される。
さらに、この演算器115には沈殿池55からオゾン接
触反応槽78に流入する被処理水の流量Fが流量計11
2から入力される。
Reference numeral 115 denotes a calculator, to which the ozone injection rate Pj from the calculator 114 is input.
Further, the flow rate F of the water to be treated flowing from the settling tank 55 into the ozone contact reaction tank 78 is supplied to the calculator 115.
Input from 2.

【0188】この結果、この演算器115ではオゾン注
入率Pjと被処理水の流量Fに基づいて次式(25)に
従ってオゾン注入量Ojを演算する。
As a result, the calculator 115 calculates the ozone injection amount Oj according to the following equation (25) based on the ozone injection rate Pj and the flow rate F of the water to be treated.

【0189】 Oj=Pj×F …(25) 前述のようにして求められたオゾン注入量Ojは、次に
オゾナイザ77のオゾン発生量Gsを制御する制御器8
3に入力され、この制御器83はオゾナイザ77のオゾ
ン発生量Gsを制御する。
Oj = Pj × F (25) The ozone injection amount Oj obtained as described above is the controller 8 for controlling the ozone generation amount Gs of the ozonizer 77 next.
3, the controller 83 controls the ozone generation amount Gs of the ozonizer 77.

【0190】さらに詳述すると、制御器83は入力され
たオゾン注入量Ojに基づいて、高周波インバータ84
の周波数を制御し、オゾン注入量Ojに応じたオゾン発
生量Gsを制御する。そして、被処理水にはオゾナイザ
77から前記のオゾン注入量Ojに応じたオゾンが注入
される。
More specifically, the controller 83 controls the high frequency inverter 84 based on the input ozone injection amount Oj.
Of the ozone injection amount Oj is controlled to control the ozone generation amount Gs according to the ozone injection amount Oj. Then, ozone corresponding to the ozone injection amount Oj is injected from the ozonizer 77 into the water to be treated.

【0191】なお、本発明の実施例では、被処理水への
オゾン注入量Ojをオゾン要求量DKに従って制御する
場合、必要オゾン注入量Njを演算器111で求め次に
要求オゾン注入率Djを演算器113で求めて、これを
基本オゾン注入率Sjに加算しているが、図13に示す
ように他の方法でもよい。すなわち、演算器116に基
本オゾン注入率Sjを入力し、さらにオゾン接触反応槽
78への被処理水の流量Fを入力して、この演算器11
6で次式(26)に従って基本オゾン注入量Stを演算
する。
In the embodiment of the present invention, when the ozone injection amount Oj into the water to be treated is controlled according to the ozone demand amount DK, the required ozone injection amount Nj is calculated by the calculator 111, and the required ozone injection rate Dj is then calculated. Although calculated by the calculator 113 and added to the basic ozone injection rate Sj, another method may be used as shown in FIG. That is, the basic ozone injection rate Sj is input to the calculator 116, and the flow rate F of the water to be treated to the ozone contact reaction tank 78 is also input to the calculator 11
In step 6, the basic ozone injection amount St is calculated according to the following equation (26).

【0192】 St=Sj×F …(26) そして、演算器116で求められた基本オゾン注入量S
tを演算器117に入力すると共に、前述の演算器11
1で求められた必要オゾン注入量Njを入力し、次式
(27)に従ってオゾン注入量Ojを演算してもよい。
St = Sj × F (26) Then, the basic ozone injection amount S obtained by the calculator 116
t is input to the calculator 117, and the calculator 11
The required ozone injection amount Nj obtained in 1 may be input and the ozone injection amount Oj may be calculated according to the following equation (27).

【0193】 Oj=St+Nj …(27) 次に係る構成の動作について説明する。被処理水のオゾ
ン要求量DKは、オゾン注入後の溶存オゾン濃度CW
1,CW2の差分から求められ、このオゾン要求量DK
は被処理水へのオゾン注入量を制御する演算器111に
入力される。そして、この演算器111では他に入力さ
れる被処理水の流量Fとの関係から、被処理水のオゾン
要求量DKに基づく必要オゾン注入量Njを求め、この
必要オゾン注入量Njに応じて被処理水にオゾンが注入
される。
Oj = St + Nj (27) Next, the operation of the above configuration will be described. The ozone demand amount DK of the water to be treated is the dissolved ozone concentration CW after ozone injection.
This ozone demand amount DK is calculated from the difference between 1 and CW2.
Is input to the calculator 111 that controls the amount of ozone injected into the water to be treated. Then, in this computing unit 111, the required ozone injection amount Nj based on the ozone demand amount DK of the water to be treated is obtained from the relationship with the flow rate F of the water to be treated that is input to the other, and according to this required ozone injection amount Nj. Ozone is injected into the water to be treated.

【0194】前述のようにして、被処理水にオゾンが注
入される場合、被処理水へのオゾン注入量は被処理水の
オゾン要求量DKの測定結果に応じて注入されことにな
る。この結果、被処理水中の有機物濃度等が変動してオ
ゾン消費成分が増減しても、それに対応するよう被処理
水のオゾン要求量DKが測定されて、このオゾン要求量
DKに応じたオゾンが注入されるので、被処理水へのオ
ゾン注入量が過少または過剰となることがなく、制御精
度の高いオゾン注入制御が可能となる。
As described above, when ozone is injected into the water to be treated, the amount of ozone injected into the water to be treated is to be injected according to the measurement result of the ozone demand amount DK of the water to be treated. As a result, even if the concentration of organic substances in the water to be treated fluctuates and the ozone consumption component increases or decreases, the ozone demand amount DK of the water to be treated is measured so as to correspond to it, and ozone corresponding to this ozone demand amount DK is generated. Since it is injected, the amount of ozone injected into the water to be treated does not become too small or excessive, and ozone injection control with high control accuracy becomes possible.

【0195】したがって、被処理水へのオゾン注入量の
過少に伴う水質低下を抑制でき、一方、過剰注入に伴う
ランニングコストの上昇を防止でき、被処理水の水質と
その変動に対応した制御精度の高いオゾン注入制御方法
を提供することができる。
Therefore, it is possible to suppress the deterioration of water quality due to the excessive amount of ozone injection into the water to be treated, while preventing the increase of running cost due to the excessive injection, and the control accuracy corresponding to the water quality of the water to be treated and its fluctuation. It is possible to provide a high ozone injection control method.

【0196】なお、この発明の実施例では、被処理水が
導入されるオゾン反応接触槽78へのオゾン注入量を被
処理水のオゾン要求量DKに従って制御する場合、実施
例1で説明した測定手段によって求められたオゾン要求
量DKを演算器111に入力して、その後オゾン注入量
を制御しているが、他の手段でもよい。例えば、前述の
実施例7または実施例8で説明した被処理水のオゾン要
求量の測定手段に従って求められたオゾン要求量DKを
演算器111に入力して、これに基づいて被処理水への
オゾン注入量を制御してもよく、本発明がこの実施例の
みに限定されるものではない。
In the embodiment of the present invention, when the amount of ozone injected into the ozone reaction contact tank 78 into which the water to be treated is introduced is controlled according to the ozone demand amount DK of the water to be treated, the measurement described in the first embodiment is carried out. Although the ozone demand amount DK obtained by the means is input to the calculator 111 and the ozone injection amount is controlled thereafter, other means may be used. For example, the ozone demand amount DK obtained according to the ozone demand amount measuring means of the treated water described in the seventh or eighth embodiment is input to the calculator 111, and based on this, the ozone demand amount DK is calculated. The ozone injection amount may be controlled, and the present invention is not limited to this embodiment.

【0197】(実施例10)図14は本発明の他の実施
例を示す。演算器120には、オゾナイザ2からオゾン
接触比較反応槽16(またはオゾン接触反応槽1)に注
入されるオゾンガス濃度G1を測定するオゾン濃度計6
からの出力値、すなわち、オゾン濃度G1が入力され
る。オゾン濃度計123では、オゾン接触比較反応槽1
6から排出される排オゾンガスの濃度を測定する。該オ
ゾン濃度計で測定された排オゾンガス濃度G2は、演算
器120に入力される。演算器120では、オゾンガス
濃度G1,G2が入力されることよって、次式(28)
に従ってオゾン接触比較反応槽16でのオゾン消費成分
除去水(比較水)によるオゾン消費量G3が求められ
る。
(Embodiment 10) FIG. 14 shows another embodiment of the present invention. The ozone concentration meter 6 for measuring the ozone gas concentration G1 injected from the ozonizer 2 into the ozone contact comparison reaction tank 16 (or ozone contact reaction tank 1) is provided in the calculator 120.
Output value, that is, the ozone concentration G1 is input. In the ozone concentration meter 123, the ozone contact comparison reaction tank 1
The concentration of the exhaust ozone gas discharged from No. 6 is measured. The exhaust ozone gas concentration G2 measured by the ozone concentration meter is input to the calculator 120. Since the ozone gas concentrations G1 and G2 are input to the calculator 120, the following equation (28)
According to the above, the ozone consumption amount G3 by the ozone consuming component removed water (comparative water) in the ozone contact comparison reaction tank 16 is obtained.

【0198】 G3=G1−G2 …(28) なお、オゾン消費量G3は、オゾンの自己分解によるオ
ゾン消費量とオゾン消費成分除去水に溶存する溶存オゾ
ン量を含む。
G3 = G1-G2 (28) The ozone consumption amount G3 includes the ozone consumption amount due to self-decomposition of ozone and the dissolved ozone amount dissolved in the ozone consumption component-removed water.

【0199】演算器121には、演算器120で求めら
れたオゾン消費量G4及び溶存オゾン濃度計21からの
溶存オゾン濃度CW2が入力される。そして、次式(2
9)に従ってオゾンの自己分解によるオゾン消費量DB
が求められる。本発明の実施例では、オゾン消費成分除
去水に注入されたオゾンの自己分解によるオゾン消費量
DBを求めている。
To the calculator 121, the ozone consumption G4 obtained by the calculator 120 and the dissolved ozone concentration CW2 from the dissolved ozone concentration meter 21 are input. Then, the following equation (2
According to 9), ozone consumption DB due to self-decomposition of ozone
Is required. In the embodiment of the present invention, the ozone consumption DB due to the self-decomposition of ozone injected into the ozone consuming component-removed water is calculated.

【0200】 DB=G3−CW2 …(29) 演算器122には、演算器121で求められた液相にお
けるオゾンの自己分解によるオゾン消費量DBが入力さ
れる。この演算器122には、被処理水のオゾン要求
量、すなわち、被処理水中のオゾン消費成分によって消
費されるオゾン量DKも入力される。詳述すると、オゾ
ンが注入された後の被処理水中の溶存オゾン濃度CW1
が演算器24に入力され、さらにオゾン消費成分除去水
にオゾンを注入した後の溶存オゾン濃度CW2が入力さ
れて、前述の(16)式に従って求められたオゾン要求
量DK(オゾン消費成分によって消費されるオゾン量)
が入力される。
DB = G3-CW2 (29) The ozone consumption amount DB due to self-decomposition of ozone in the liquid phase obtained by the calculator 121 is input to the calculator 122. The ozone demand amount of the water to be treated, that is, the ozone amount DK consumed by the ozone consuming component in the water to be treated is also input to the calculator 122. More specifically, the dissolved ozone concentration CW1 in the water to be treated after ozone was injected
Is input to the calculator 24, and the dissolved ozone concentration CW2 after the ozone is injected into the ozone consuming component-removed water is input, and the ozone demand amount DK (consumed by the ozone consuming component is calculated according to the above equation (16). Amount of ozone)
Is entered.

【0201】演算器122に、オゾンの自己分解による
オゾン消費量DBが入力され、さらにオゾン要求量DK
が入力されることによって、演算器122では次式(3
0)に従ってオゾン注入処理の対象となる被処理水に注
入する必要オゾン注入量FGが求められる。
The ozone consumption DB due to the self-decomposition of ozone is input to the calculator 122, and the ozone demand amount DK is further input.
By inputting the
According to 0), the required ozone injection amount FG to be injected into the water to be treated which is the object of ozone injection treatment is obtained.

【0202】 FG=DB+DK …(30) 前述のようにして、オゾン注入処理の対象となる被処理
水へのオゾン注入量が求められる場合、被処理水中のオ
ゾン消費成分によって消費されるオゾン量と、さらにオ
ゾン消費とは別にオゾンの自己分解によって消費される
オゾン消費量が加味されて実際のオゾン注入に必要なオ
ゾン注入量FGが求められる。
FG = DB + DK (30) As described above, when the amount of ozone injected into the water to be treated which is the object of the ozone injection treatment is obtained, the amount of ozone consumed by the ozone consuming component in the water to be treated is Further, the ozone injection amount FG required for actual ozone injection is obtained by taking into consideration the ozone consumption amount consumed by self-decomposition of ozone in addition to the ozone consumption.

【0203】この必要オゾン注入量FGに従ってオゾン
を注入すれば、オゾン注入量が自己分解によって過少と
なることがない。
If ozone is injected according to the required ozone injection amount FG, the ozone injection amount will not become too small due to self-decomposition.

【0204】(実施例11)図15は本発明の他の実施
例を示す。演算器124には、前述の実施例10で説明
した演算器122で求められた必要オゾン注入量FGが
注入される。さらに、この演算器124には、オゾン注
入処理の対象となる被処理水のオゾン注入後の溶存オゾ
ン濃度(または排オゾン濃度)を所定値以上に保持する
ための補完オゾン注入量Tjが入力される。演算器12
4では、次式(31)に従ってオゾン注入量Jkが求め
られる。
(Embodiment 11) FIG. 15 shows another embodiment of the present invention. The necessary ozone injection amount FG obtained by the calculator 122 described in the tenth embodiment is injected into the calculator 124. Further, the supplemental ozone injection amount Tj for maintaining the dissolved ozone concentration (or exhaust ozone concentration) after the ozone injection of the water to be treated which is the object of the ozone injection processing at a predetermined value or more is input to the calculator 124. It Calculator 12
In 4, the ozone injection amount Jk is calculated according to the following equation (31).

【0205】 Jk=FG+Tj …(31) 補完オゾン注入量Tjは、オゾン吸収特性等が加味して
予め任意に設定されている。
Jk = FG + Tj (31) The supplemental ozone injection amount Tj is set in advance in consideration of ozone absorption characteristics and the like.

【0206】演算器125には、演算器124で求めら
れたオゾン注入量Jkが入力される。また、オゾン注入
処理の対象となる被処理水の流量Fを測定する流量計1
12からの測定値Fが入力される。演算器125では、
オゾン注入量Jkに基づくオゾン量Gjが、オゾン注入
量Jkと流量Fに基づいて次式(32)に従い求められ
る。
The ozone injection amount Jk obtained by the calculator 124 is input to the calculator 125. Further, a flow meter 1 for measuring the flow rate F of the water to be treated which is the target of the ozone injection treatment.
The measured value F from 12 is input. In the calculator 125,
The ozone amount Gj based on the ozone injection amount Jk is obtained according to the following equation (32) based on the ozone injection amount Jk and the flow rate F.

【0207】 Gj=Jk×F …(32) 演算器126には、演算器125で求められたオゾン量
Gj及び被処理水の流量Fが入力される。そして、次式
(33)に従ってオゾン接触反応槽78に流入する被処
理水へ注入するオゾン注入率Grが求められる。
Gj = Jk × F (32) The calculator 126 receives the ozone amount Gj and the flow rate F of the water to be treated, which are calculated by the calculator 125. Then, the ozone injection rate Gr to be injected into the water to be treated flowing into the ozone contact reaction tank 78 is obtained according to the following equation (33).

【0208】 Gr=Gj/F …(33) 演算器127には、演算器126からオゾン注入率Gr
が入力され、また、オゾン接触反応槽に流入する被処理
水の流量Fが流量計112から入力される。そして、オ
ゾン注入率Grと被処理水の流量Fに基づいて、次式
(34)に従ってガスとなる注入オゾン量Hgを求め
る。
Gr = Gj / F (33) The calculator 127 has an ozone injection rate Gr from the calculator 126.
Is input, and the flow rate F of the water to be treated flowing into the ozone contact reaction tank is also input from the flow meter 112. Then, based on the ozone injection rate Gr and the flow rate F of the water to be treated, the injected ozone amount Hg that becomes a gas is obtained according to the following equation (34).

【0209】 Hg=Gr×F …(34) 前述のようして求められた注入オゾン量Hgは、次にオ
ゾナイザ77のオゾン発生量Gsを制御する制御器83
に入力され、制御器83ではオゾナイザ77のオゾン発
生量Gsを制御する。さらに詳述すると、制御器83に
入力された注入オゾン量Hgに基づいて、高周波インバ
ータ84の周波数を制御し、注入オゾンHgに応じたオ
ゾン発生量Gsを制御する。そして、被処理水にはオゾ
ナイザ77から前記の注入オゾン量Hgに応じたオゾン
が注入される。
Hg = Gr × F (34) The injected ozone amount Hg obtained as described above is the controller 83 for controlling the ozone generation amount Gs of the ozonizer 77 next.
The controller 83 controls the ozone generation amount Gs of the ozonizer 77. More specifically, the frequency of the high-frequency inverter 84 is controlled based on the injected ozone amount Hg input to the controller 83, and the ozone generation amount Gs according to the injected ozone Hg is controlled. Then, ozone corresponding to the injected ozone amount Hg is injected from the ozonizer 77 into the water to be treated.

【0210】前述のようにして、被処理水にオゾンが注
入されて制御される場合、被処理水のオゾン要求量とオ
ゾンの自己分解によるオゾン消費量の両者が加味されて
注入されることになる。したがって、オゾンの自己分解
によってオゾンが消費されても注入したオゾン量が過少
となることがなく、処理水質の低下を防止することがで
きる。
As described above, when ozone is injected into the water to be treated for control, both the required ozone amount of the water to be treated and the ozone consumption amount due to self-decomposition of ozone are added. Become. Therefore, even if ozone is consumed by self-decomposition of ozone, the amount of injected ozone does not become too small, and deterioration of treated water quality can be prevented.

【0211】[0211]

【発明の効果】本発明によれば、被処理水中のオゾン消
費成分と反応するに必要なオゾン量を簡易に高精度で求
めることができる。また、被処理水のオゾン注入に際
し、オゾン消費成分と反応するに必要なオゾン量に基づ
いてオゾン注入量を制御しているので、制御精度の高い
オゾン注入制御法を提供することができる。
According to the present invention, the amount of ozone required to react with the ozone consuming component in the water to be treated can be easily and accurately determined. Further, since the ozone injection amount is controlled on the basis of the ozone amount necessary for reacting with the ozone consuming component upon ozone injection of the water to be treated, it is possible to provide an ozone injection control method with high control accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すオゾン要求量測定方法
のシステムフロー図。
FIG. 1 is a system flow diagram of an ozone demand amount measuring method showing an embodiment of the present invention.

【図2】本発明の他の実施例を示すオゾン要求量測定方
法のシステムフロー図。
FIG. 2 is a system flow chart of an ozone demand amount measuring method showing another embodiment of the present invention.

【図3】本発明の他の実施例を示すオゾン要求量測定方
法のシステムフロー図。
FIG. 3 is a system flow chart of an ozone demand amount measuring method according to another embodiment of the present invention.

【図4】本発明の他の実施例を示すオゾン要求量測定方
法のシステムフロー図。
FIG. 4 is a system flow chart of an ozone demand amount measuring method showing another embodiment of the present invention.

【図5】図4の部分機能図。5 is a partial functional diagram of FIG. 4.

【図6】本発明の他の実施例を示すオゾン要求量測定方
法のシステムフロー図。
FIG. 6 is a system flow diagram of an ozone required amount measuring method showing another embodiment of the present invention.

【図7】本発明の他の実施例を示すオゾン要求量測定方
法のシステムフロー図。
FIG. 7 is a system flow diagram of an ozone demand amount measuring method showing another embodiment of the present invention.

【図8】本発明の一実施例によるオゾン要求量測定方法
を適用した浄水場の水処理プロセスフロー図。
FIG. 8 is a water treatment process flow chart of a water purification plant to which the ozone demand measurement method according to one embodiment of the present invention is applied.

【図9】図8の部分詳細図。FIG. 9 is a partial detailed view of FIG.

【図10】本発明の他の実施例を示す浄水場の水処理プ
ロセスフロー図。
FIG. 10 is a water treatment process flow chart of a water purification plant showing another embodiment of the present invention.

【図11】図10の部分詳細図。FIG. 11 is a partial detailed view of FIG.

【図12】本発明の一実施例を示すオゾン注入制御方法
のシステムフロー図。
FIG. 12 is a system flow diagram of an ozone injection control method showing an embodiment of the present invention.

【図13】本発明の他の実施例を示すオゾン注入制御方
法のシステムフロー図。
FIG. 13 is a system flow chart of an ozone injection control method showing another embodiment of the present invention.

【図14】本発明の他の実施例を示すオゾン注入制御方
法のシステムフロー図。
FIG. 14 is a system flow chart of an ozone injection control method showing another embodiment of the present invention.

【図15】本発明の他の実施例を示すオゾン注入制御方
法のシステムフロー図。
FIG. 15 is a system flow chart of an ozone injection control method showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…オゾン接触反応槽、2,77…オゾナイザ、5…エ
アーポンプ、6…オゾン濃度計、13,21,92…溶
存オゾン濃度計、16,94…オゾン接触比較反応槽、
24,42,43,111,113,114,115,
116,117…演算器、30…吸着槽、36…溶存オ
ゾン除去槽、40…比較器、44,110…制御器、50
…オゾン消費成分除去槽、60…溶存オゾン処理槽、6
6…オゾン分解処理手段、67…排オゾン分解槽、70
…着水井、71…薬品混和池、74…フロック形成池、
75…沈殿池、78…オゾン接触反応槽、84…高周波
インバータ、85…高電圧変圧器、89…ブロワー、9
0…生物活性炭槽。
1 ... Ozone contact reaction tank, 2, 77 ... Ozonizer, 5 ... Air pump, 6 ... Ozone concentration meter, 13, 21, 92 ... Dissolved ozone concentration meter, 16, 94 ... Ozone contact comparison reaction tank,
24, 42, 43, 111, 113, 114, 115,
116, 117 ... Arithmetic unit, 30 ... Adsorption tank, 36 ... Dissolved ozone removal tank, 40 ... Comparator, 44, 110 ... Controller, 50
… Ozone-consuming component removal tank, 60… Dissolved ozone treatment tank, 6
6 ... Ozone decomposition processing means, 67 ... Waste ozone decomposition tank, 70
... water landing well, 71 ... chemical mixing pond, 74 ... floc formation pond,
75 ... Settling tank, 78 ... Ozone contact reaction tank, 84 ... High frequency inverter, 85 ... High voltage transformer, 89 ... Blower, 9
0 ... Bioactive carbon tank.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 昭二 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 鈴木 実 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分工場内 (72)発明者 小松 直人 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分工場内 (72)発明者 原 直樹 茨城県日立市大みか町五丁目2番1号 株 式会社日立製作所大みか工場内 (72)発明者 山越 信義 茨城県日立市大みか町五丁目2番1号 株 式会社日立製作所大みか工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shoji Watanabe 7-1-1 Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory (72) Minoru Suzuki 1-chome, Kokubun-cho, Hitachi-shi, Ibaraki No. 1 inside the Kokubun Plant of Hitachi, Ltd. (72) Naoto Komatsu 1-1-1 Kokubuncho, Hitachi City, Ibaraki Prefecture Inside the Kokubun Plant of Hitachi, Ltd. (72) Naoki Hara Five Omika-cho, Hitachi City, Ibaraki Prefecture 2-2-1, Hitachi Ltd. Omika Plant (72) Inventor Nobuyoshi Yamakoshi 5-2-1 Omika-cho, Hitachi City, Ibaraki Prefecture Hitachi Ltd. Omika Plant

Claims (24)

【特許請求の範囲】[Claims] 【請求項1】オゾン消費成分を含む被処理水に対して、
前記オゾン消費成分と反応するオゾン量と前記被処理水
中でのオゾンの自己分解によるオゾン消費量とを求め、
前記オゾン消費成分と反応するオゾン量と自己分解によ
るオゾン消費量とを加算して被処理水のオゾン要求量と
することを特徴とするオゾン要求量算出方法。
1. A treated water containing an ozone consuming component,
Obtaining the amount of ozone that reacts with the ozone consuming component and the amount of ozone consumed by self-decomposition of ozone in the water to be treated,
A method for calculating a required ozone amount, comprising adding the amount of ozone that reacts with the ozone consuming component and the amount of ozone consumed by self-decomposition to obtain the required amount of ozone for the water to be treated.
【請求項2】オゾン消費成分を含む被処理水にオゾン含
有ガスを接触させてオゾン処理する方法において、前記
被処理水のオゾン要求量を請求項1に記載の方法によっ
て算出し、オゾン含有ガスの注入量を制御することを特
徴とするオゾン注入制御方法。
2. A method for ozone treatment by bringing ozone-containing gas into contact with water to be treated containing ozone-consuming components, wherein the ozone demand amount of the water to be treated is calculated by the method according to claim 1, and ozone-containing gas is obtained. A method for controlling ozone injection, which comprises controlling the injection amount of ozone.
【請求項3】被処理水と、前記被処理水中のオゾン消費
成分を除去した後のオゾン消費成分除去水とにそれぞれ
オゾンを注入して、前記被処理水中のオゾン消費成分と
反応するオゾン量と前記オゾン消費成分除去水でのオゾ
ンの自己分解によるオゾン消費量とを加算して被処理水
のオゾン要求量とすることを特徴とするオゾン要求量算
出方法。
3. An amount of ozone that reacts with the ozone consuming component in the treated water by injecting ozone into the treated water and the ozone consuming component-removed water after removing the ozone consuming component in the treated water, respectively. And an ozone consumption amount due to self-decomposition of ozone in the ozone consuming component-removed water to obtain an ozone demand amount of the water to be treated.
【請求項4】オゾン消費成分を含む被処理水にオゾン含
有ガスを接触させてオゾン処理する方法において、前記
被処理水のオゾン要求量を請求項3に記載の方法によっ
て算出し、オゾン含有ガスの注入量を制御することを特
徴とするオゾン注入制御方法。
4. In a method of ozone treatment by bringing ozone-containing gas into contact with water to be treated containing ozone-consuming components, the ozone demand amount of the water to be treated is calculated by the method according to claim 3, and ozone-containing gas is obtained. A method for controlling ozone injection, which comprises controlling the injection amount of ozone.
【請求項5】被処理水と、前記被処理水中のオゾン消費
成分を除去した後のオゾン消費成分除去水とにそれぞれ
オゾンを注入して、前記被処理水中のオゾン消費成分と
反応するオゾン量と、前記オゾン消費成分除去水でのオ
ゾンの自己分解によるオゾン消費量とを求め、両者を加
算してオゾン要求量とし、更に、前記被処理水のオゾン
注入後の溶存オゾン濃度又は排オゾンガス濃度を所定値
以上に保持するための補完オゾン注入量を前記オゾン要
求量に加算してオゾン注入量とし、該オゾン注入量を満
足するように被処理水にオゾン含有ガスを注入すること
を特徴とするオゾン注入制御方法。
5. The amount of ozone that reacts with the ozone consuming component in the treated water by injecting ozone into the treated water and the ozone consuming component-removed water after removing the ozone consuming component in the treated water, respectively. And the ozone consumption amount due to the self-decomposition of ozone in the ozone consuming component-removed water, and adding them to obtain the ozone demand amount, and further, the dissolved ozone concentration or the exhaust ozone gas concentration after the ozone injection of the water to be treated. Is added to the required ozone amount to obtain a supplemental ozone injection amount for maintaining the above value above a predetermined value, and an ozone-containing gas is injected into the water to be treated so as to satisfy the ozone injection amount. Control method for ozone injection.
【請求項6】被処理水と、前記被処理水中のオゾン消費
成分を除去した後のオゾン消費成分除去水とにそれぞれ
オゾンを注入して、該オゾン注入後の前記オゾン消費成
分除去水と前記被処理水との溶存オゾン濃度差から前記
被処理水中のオゾン消費成分と反応するに必要なオゾン
量を求め、更に、前記オゾン消費成分除去水へのオゾン
注入前後の気相オゾン濃度差から前記オゾン消費成分除
去水でのオゾン消費量を求めると共に、該オゾン消費量
と該溶存オゾン濃度差からオゾン消費成分除去水でのオ
ゾンの自己分解によるオゾン消費量を求め、前記被処理
水のオゾン消費成分と反応するに必要なオゾン量とオゾ
ンの自己分解によるオゾン消費量とを加算して、オゾン
注入量を決定することを特徴とするオゾン注入量算出方
法。
6. Ozone is injected into the water to be treated and the ozone-consuming component-removed water after the ozone-consuming component is removed from the water to be treated, and the ozone-consuming component-removed water after the ozone injection and the ozone-consumable component-removed water after the ozone are injected. Obtain the amount of ozone necessary to react with the ozone consuming component in the treated water from the difference in the dissolved ozone concentration with the water to be treated, further, from the difference in the gas phase ozone concentration before and after the ozone injection into the ozone consuming component removal water The ozone consumption of the ozone consuming component-removed water is determined, and the ozone consumption of the ozone consuming component-removed water due to self-decomposition of ozone is determined from the difference between the ozone consumption and the dissolved ozone concentration. A method for calculating an amount of injected ozone, wherein the amount of injected ozone is determined by adding the amount of ozone required to react with the components and the amount of ozone consumed by self-decomposition of ozone.
【請求項7】オゾン消費成分を含む被処理水にオゾン含
有ガスを接触させるオゾン処理方法において、請求項6
で算出したオゾン注入量を満足するオゾン含有ガスを被
処理水に注入することを特徴とするオゾン処理方法。
7. An ozone treatment method in which ozone-containing gas is brought into contact with water to be treated containing ozone-consuming components.
An ozone treatment method comprising injecting an ozone-containing gas satisfying the ozone injection amount calculated in step 1 into the water to be treated.
【請求項8】被処理水と、前記被処理水中のオゾン消費
成分を除去した後のオゾン消費成分除去水とにそれぞれ
オゾンを注入して、該オゾン注入後の前記オゾン消費成
分除去水と前記被処理水との溶存オゾン濃度差から前記
被処理水中のオゾン消費成分と反応するに必要なオゾン
量を求め、更に、前記オゾン消費成分除去水へのオゾン
注入量から該除去水の溶存オゾン濃度及び該除去水から
気相へ排出される排オゾン量を差し引いて前記オゾン消
費成分除去水でのオゾンの自己分解によるオゾン消費量
を求め、前記被処理水のオゾン消費成分と反応するに必
要なオゾン量と前記オゾンの自己分解によるオゾン消費
量とを加算して、オゾン注入量を決定することを特徴と
するオゾン注入量算出方法。
8. Ozone is injected into the water to be treated and the ozone-consuming component-removed water after the ozone-consuming component is removed from the water to be treated, and the ozone-consuming component-removed water after the ozone is injected and the ozone-consumed component-removed water. The amount of ozone required to react with the ozone consuming component in the treated water is determined from the difference in the dissolved ozone concentration with the water to be treated, and the dissolved ozone concentration of the removed water is calculated from the amount of ozone injected into the ozone consuming component removed water. And the ozone consumption amount due to the self-decomposition of ozone in the ozone consumption component-removed water is obtained by subtracting the amount of ozone exhausted from the removed water to the gas phase, and it is necessary to react with the ozone consumption component of the treated water. A method for calculating an amount of injected ozone, wherein the amount of injected ozone is determined by adding the amount of ozone and the amount of ozone consumed by self-decomposition of ozone.
【請求項9】オゾン消費成分を含む被処理水にオゾン含
有ガスを接触させるオゾン処理方法において、オゾン注
入量を請求項10に記載の方法で求めて、被処理水へオ
ゾン含有ガスを注入することを特徴とするオゾン処理方
法。
9. An ozone treatment method in which an ozone-containing gas is brought into contact with water to be treated containing an ozone-consuming component, and the ozone injection amount is determined by the method according to claim 10, and the ozone-containing gas is injected into the water to be treated. An ozone treatment method characterized by the above.
【請求項10】オゾン消費成分を含む被処理水にオゾン
含有ガスを注入してオゾン処理を行うにあたり、前記被
処理水中のオゾン消費成分と反応するオゾン量と、前記
被処理水中でのオゾンの自己分解によるオゾン消費量と
を求めてオゾン注入量を決定するようにしたことを特徴
とするオゾン処理方法。
10. When performing ozone treatment by injecting an ozone-containing gas into water to be treated containing ozone consuming components, the amount of ozone that reacts with ozone consuming components in the water to be treated and the amount of ozone in the water to be treated An ozone treatment method, wherein an ozone injection amount is determined by obtaining an ozone consumption amount due to self-decomposition.
【請求項11】被処理水と、前記被処理水中のオゾン消
費成分を除去した後のオゾン消費成分除去水とにそれぞ
れオゾンを注入して、該オゾン注入後の前記オゾン消費
成分除去水と前記被処理水との溶存オゾン濃度差から前
記被処理水中のオゾン消費成分と反応するに必要なオゾ
ン量を求めることを特徴とするオゾン反応量算出方法。
11. Ozone is injected into each of the water to be treated and the ozone-consuming component-removed water after removing the ozone-consuming component from the water-to-be-treated, and the ozone-consuming component-removed water after the ozone injection and the A method for calculating an ozone reaction amount, which comprises obtaining an ozone amount necessary for reacting with an ozone consuming component in the water to be treated from a difference in concentration of dissolved ozone with respect to the water to be treated.
【請求項12】請求項11において、前記オゾン消費成
分除去水の製造を、前記被処理水にオゾンを注入するこ
とによって行うことを特徴とするオゾン反応量算出方
法。
12. The method for calculating an ozone reaction amount according to claim 11, wherein the ozone-consuming component-removed water is produced by injecting ozone into the water to be treated.
【請求項13】請求項11において、前記被処理水中の
オゾン消費成分を吸着除去することによって前記オゾン
消費成分除去水を製造することを特徴とするオゾン反応
量算出方法。
13. The ozone reaction amount calculating method according to claim 11, wherein the ozone consuming component-removed water is produced by adsorbing and removing the ozone consuming component in the water to be treated.
【請求項14】請求項11において、前記オゾン消費成
分除去水の製造を、前記被処理水にオゾンを注入すると
ともに該被処理水中のオゾン消費成分を吸着除去するこ
とによって行うことを特徴とするオゾン反応量算出方
法。
14. The method according to claim 11, wherein the ozone consuming component-removed water is produced by injecting ozone into the water to be treated and adsorbing and removing the ozone consuming component in the water to be treated. Ozone reaction amount calculation method.
【請求項15】被処理水と、前記被処理水にオゾンを注
入して該被処理水中のオゾン消費成分を除去する共にそ
の後エアレ−ションによって溶存オゾンを除去した後の
オゾン消費成分除去水とにそれぞれオゾンを注入して、
該オゾン注入後の前記オゾン消費成分除去水と前記被処
理水との溶存オゾン濃度差から前記被処理水中のオゾン
消費成分と反応するに必要なオゾン量を求めることを特
徴とするオゾン要求量算出方法。
15. Water to be treated, and ozone-consumed component-removed water after injecting ozone into the water to be treated to remove ozone-consuming components in the water to be treated and after removing dissolved ozone by aeration. Inject ozone into
Calculation of required ozone amount, characterized in that the amount of ozone required to react with the ozone consuming component in the water to be treated is calculated from the difference in dissolved ozone concentration between the water for removing the ozone consuming component after the ozone injection and the water to be treated. Method.
【請求項16】被処理水と該被処理水中のオゾン消費成
分を除去した後のオゾン消費成分除去水とにそれぞれオ
ゾンを注入して、該オゾン注入後の前記被処理水と前記
オゾン消費成分除去水との溶存オゾン濃度差から前記被
処理水中のオゾン消費成分と反応するに必要なオゾン量
を求め、このオゾン量にさらに前記被処理水中の溶存オ
ゾン濃度を所定値以上にするためのオゾン量を加えた量
のオゾンを前記被処理水に注入するようにしたことを特
徴とするオゾン注入方法。
16. Injecting ozone into the water to be treated and the ozone consuming component-removed water after removing the ozone consuming component in the water to be treated, respectively, and then the water to be treated after the ozone injection and the ozone consuming component The amount of ozone required to react with the ozone consuming component in the water to be treated is calculated from the difference in the concentration of dissolved ozone with the removed water, and the amount of ozone is further ozone for making the concentration of dissolved ozone in the water to be treated above a predetermined value. A method for injecting ozone, wherein an amount of ozone is added to the water to be treated.
【請求項17】被処理水が導入されるオゾン接触反応槽
にオゾンを注入して前記被処理水中のオゾン消費成分を
除去した後のオゾン消費成分除去水を、前記オゾン接触
反応槽の下流側に位置する溶存オゾン除去槽に導入し、
更に前記溶存オゾン除去槽の下流側に位置するオゾン接
触比較反応槽に溶存オゾンが除去された前記オゾン消費
成分除去水を導入して、前記被処理水と前記オゾン消費
成分除去水とにそれぞれオゾンを注入し、前記オゾン注
入後の被処理水及びオゾン消費成分除去水との溶存オゾ
ン濃度差から前記被処理水中のオゾン消費成分と反応す
るに必要なオゾン量を求めることを特徴とするオゾン要
求量算出方法。
17. The ozone-consumption-component-removed water after the ozone-consumption component in the water-to-be-treated is removed by injecting ozone into the ozone-contact reaction chamber into which the water-to-be-treated is introduced, Introduced into the dissolved ozone removal tank located at
Further, the ozone-consumed component-removed water from which dissolved ozone has been removed is introduced into an ozone contact comparison reaction tank located on the downstream side of the dissolved ozone-removal tank, and ozone is added to the treated water and the ozone-consumed component-removed water, respectively. And the ozone amount required to react with the ozone consuming component in the treated water from the difference in the dissolved ozone concentration between the treated water and the ozone consuming component-removed water after the ozone injection. Quantity calculation method.
【請求項18】被処理水が導入されるオゾン接触反応槽
と、前記被処理水が導入されて該被処理水中のオゾン消
費成分が除去されるオゾン消費成分除去槽とを備え、前
記オゾン消費成分除去槽でオゾン消費成分が除去された
オゾン消費成分除去水と前記被処理水とにオゾンを注入
して、該オゾン注入後の前記被処理水と前記オゾン消費
成分除去水との溶存オゾン濃度差から前記被処理水中の
オゾン消費成分と反応するに必要なオゾン量を求めるこ
とを特徴とするオゾン要求量算出方法。
18. An ozone contact reaction tank into which water to be treated is introduced, and an ozone consuming component removal tank in which the water to be treated is introduced to remove ozone consuming components in the water to be treated are provided. Dissolved ozone concentration of the water to be treated and the ozone-consuming component-removed water after the ozone injection by injecting ozone into the ozone-consuming component-removed water from which the ozone-consuming component has been removed in the component removing tank and the treated water. A method for calculating a required ozone amount, which comprises obtaining the amount of ozone required to react with an ozone consuming component in the water to be treated from the difference.
【請求項19】請求項11において、被処理水及びオゾ
ン消費成分除去水とから気相に排出される排オゾンガス
をオゾン分解処理手段を介して系外に排出することを特
徴とするオゾン反応量算出方法。
19. The ozone reaction amount according to claim 11, wherein the exhaust ozone gas discharged from the water to be treated and the ozone consuming component-removed water to the gas phase is discharged to the outside of the system through the ozone decomposition treatment means. Calculation method.
【請求項20】請求項11において、被処理水及びオゾ
ン消費成分除去水とにオゾンを注入した後の前記被処理
水及びオゾン消費成分除去水中の溶存オゾンを液相から
気相に放出し、前記気相に放出されたオゾンをオゾン分
解処理手段を介して系外に排出することを特徴とするオ
ゾン反応量算出方法。
20. Dissolved ozone in the water to be treated and the ozone consuming component-removed water after injecting ozone into the water to be treated and the ozone consuming component-removed water is released from a liquid phase to a gas phase, A method for calculating an ozone reaction amount, characterized in that the ozone released to the gas phase is discharged to the outside of the system through an ozone decomposition treatment means.
【請求項21】被処理水が導入されるオゾン接触反応槽
とこのオゾン接触反応槽にオゾンを注入するオゾナイザ
及び前記被処理水へのオゾン注入後の溶存オゾン濃度を
測定する溶存オゾン濃度計を備え、さらに前記オゾン接
触反応槽の下流側に配設されて前記オゾン注入後の処理
水が導入される生物活性炭槽とこの生物活性炭槽からの
処理水をサンプリングして、このサンプリング水へのオ
ゾン注入後の溶存オゾン濃度を測定する溶存オゾン濃度
計を備え、前記各溶存オゾン濃度の差分から前記被処理
水中のオゾン消費成分と反応するに必要なオゾン量を求
めることを特徴とするオゾン処理におけるオゾン要求量
算出方法。
21. An ozone contact reaction tank into which water to be treated is introduced, an ozonizer for injecting ozone into the ozone contact reaction tank, and a dissolved ozone concentration meter for measuring the dissolved ozone concentration after ozone injection into the water to be treated. Further, the biological activated carbon tank, which is provided downstream of the ozone contact reaction tank and into which the treated water after the ozone injection is introduced, and the treated water from the biological activated carbon tank are sampled, and ozone to the sampling water is sampled. In an ozone treatment characterized by comprising a dissolved ozone concentration meter for measuring the dissolved ozone concentration after injection, determining the amount of ozone necessary to react with the ozone consuming component in the water to be treated from the difference of each dissolved ozone concentration Ozone demand calculation method.
【請求項22】被処理水が導入されるオゾン接触反応槽
とこのオゾン接触反応槽にオゾンを注入するオゾナイザ
及び前記オゾン接触反応槽の下流側に配設されて前記オ
ゾン注入後の処理水が導入される生物活性炭槽を備え、
前記生物活性炭槽からの処理水と前記被処理水とにオゾ
ンを注入して、該オゾン注入後の前記処理水と被処理水
との溶存オゾン濃度差から前記被処理水中のオゾン消費
成分と反応するに必要なオゾン量を求めることを特徴と
するオゾン反応量算出方法。
22. An ozone contact reaction tank into which water to be treated is introduced, an ozonizer for injecting ozone into the ozone contact reaction tank, and treated water after the ozone injection is disposed downstream of the ozone contact reaction tank. Equipped with a biological activated carbon tank to be introduced,
Injecting ozone into the treated water from the biological activated carbon tank and the treated water, and reacting with ozone consuming components in the treated water from the difference in dissolved ozone concentration between the treated water and the treated water after the ozone injection A method for calculating an ozone reaction amount, characterized in that the ozone amount required to do so is obtained.
【請求項23】オゾン消費成分を含む被処理水へオゾン
含有ガスを注入してオゾン処理を行うにあたり、請求項
11で算出したオゾン量に従って、被処理水が導入され
るオゾン接触反応槽へのオゾン注入量を制御することを
特徴とするオゾン注入制御方法。
23. When performing ozone treatment by injecting an ozone-containing gas into water to be treated containing ozone consuming components, according to the amount of ozone calculated in claim 11, the ozone contact reaction tank into which the water to be treated is introduced An ozone injection control method comprising controlling an ozone injection amount.
【請求項24】被処理水が導入されるオゾン接触反応槽
と、このオゾン接触反応槽からの処理水が導入される生
物活性炭槽とを備え、さらに被処理水と該被処理水中の
オゾン消費成分を除去した後のオゾン消費成分除去水と
にそれぞれオゾンを注入する手段と、該オゾン注入後の
前記オゾン消費成分除去水と前記被処理水との溶存オゾ
ン濃度差から前記被処理水中のオゾン消費成分と反応す
るに必要なオゾン量を求める手段とを備えたことを特徴
とするオゾン処理装置。
24. An ozone contact reaction tank into which treated water is introduced, and a biological activated carbon tank into which treated water from this ozone contact reaction tank is introduced, further comprising the treated water and ozone consumption in the treated water. Means for injecting ozone into the ozone-consuming component-removed water after the components are removed, and ozone in the treated water from the difference in dissolved ozone concentration between the ozone-consuming component-removed water after the ozone injection and the treated water An ozone treatment apparatus comprising: means for determining an amount of ozone required to react with a consumption component.
JP7685194A 1994-04-15 1994-04-15 Method for computing required amount of ozone and controlling ozone injection Pending JPH07284782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7685194A JPH07284782A (en) 1994-04-15 1994-04-15 Method for computing required amount of ozone and controlling ozone injection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7685194A JPH07284782A (en) 1994-04-15 1994-04-15 Method for computing required amount of ozone and controlling ozone injection

Publications (1)

Publication Number Publication Date
JPH07284782A true JPH07284782A (en) 1995-10-31

Family

ID=13617166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7685194A Pending JPH07284782A (en) 1994-04-15 1994-04-15 Method for computing required amount of ozone and controlling ozone injection

Country Status (1)

Country Link
JP (1) JPH07284782A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002017975A1 (en) * 2000-08-30 2002-03-07 Sudhir Chowdhury Method and device for detecting ozone consuming agents
EP1221318A2 (en) * 1998-03-09 2002-07-10 Otre AB Method and apparatus for preparation and use of ozone water
CN113023966A (en) * 2021-03-17 2021-06-25 浙江工商大学 Electro-catalysis-ozone-membrane filtration three-in-one wastewater treatment device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1221318A2 (en) * 1998-03-09 2002-07-10 Otre AB Method and apparatus for preparation and use of ozone water
EP1221318A3 (en) * 1998-03-09 2002-12-18 Otre AB Method and apparatus for preparation and use of ozone water
WO2002017975A1 (en) * 2000-08-30 2002-03-07 Sudhir Chowdhury Method and device for detecting ozone consuming agents
CN113023966A (en) * 2021-03-17 2021-06-25 浙江工商大学 Electro-catalysis-ozone-membrane filtration three-in-one wastewater treatment device
CN113023966B (en) * 2021-03-17 2022-10-04 浙江工商大学 Electro-catalysis-ozone-membrane filtration three-in-one wastewater treatment device

Similar Documents

Publication Publication Date Title
JP6785311B2 (en) Wastewater treatment equipment and wastewater treatment method
US6921476B2 (en) UV-assisted advanced-ozonation water treatment system and advanced-ozonation module
ES8106680A1 (en) Process and apparatus for the biological treatment of aqueous waste in a pure oxygen-activated sludge/ozone system.
JPH06226275A (en) Reactor for optimum ozonization of life service water
JP3184948B2 (en) Ozone injection control method and device
JPH07284782A (en) Method for computing required amount of ozone and controlling ozone injection
JP3321876B2 (en) Ozone treatment apparatus, ozone treatment method, and water purification treatment method
JP3598022B2 (en) Water treatment method using ozone and hydrogen peroxide
JPH091167A (en) High-degree water purification system
JPH09192680A (en) Treatment of water with ozone and device therefor
JPH1043776A (en) Control system of ozone injecting device
JP3782738B2 (en) Wastewater treatment method
JP3708752B2 (en) Nitrate nitrogen biological treatment method and apparatus
JPH09174071A (en) Method for treating organic sewage and apparatus therefor
JPH08108195A (en) Method and apparatus for removing nitrogen in water
JPH06154792A (en) Biomembrane filter
JPH08267077A (en) High degree treating method of waste water
JPH08215690A (en) Optimum ozone injection rate calculation apparatus and ozone injection control apparatus
JPH08299972A (en) Ozone yield controller
JPH08318284A (en) Ozone water treatment apparatus
JPH11138183A (en) Ozone inject control method in water treatment
JPH08229581A (en) Ozone treatment device
JPH08318286A (en) Ozone treating method and apparatus in high-degree water purifying treatment
JPS63162097A (en) Organic waste water treating system
JPH07167850A (en) Measuring device of absorbance of ultraviolet rays of ozone treatment liquid