JP2005324121A - Water treatment method and water treatment apparatus - Google Patents

Water treatment method and water treatment apparatus Download PDF

Info

Publication number
JP2005324121A
JP2005324121A JP2004144590A JP2004144590A JP2005324121A JP 2005324121 A JP2005324121 A JP 2005324121A JP 2004144590 A JP2004144590 A JP 2004144590A JP 2004144590 A JP2004144590 A JP 2004144590A JP 2005324121 A JP2005324121 A JP 2005324121A
Authority
JP
Japan
Prior art keywords
ozone
water
oxidation
concentration
ozone injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004144590A
Other languages
Japanese (ja)
Other versions
JP4542815B2 (en
JP2005324121A5 (en
Inventor
Taku Menju
卓 毛受
Yasuyuki Miyajima
康行 宮島
Chiyouko Kurihara
潮子 栗原
Futoshi Kurokawa
太 黒川
Norimitsu Abe
法光 阿部
Ryoichi Arimura
良一 有村
Kenji Ide
健志 出
Kazuhiko Kimijima
和彦 君島
Katsuya Yokogawa
勝也 横川
Hisaaki Goto
久明 後藤
Seiichi Murayama
清一 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004144590A priority Critical patent/JP4542815B2/en
Publication of JP2005324121A publication Critical patent/JP2005324121A/en
Publication of JP2005324121A5 publication Critical patent/JP2005324121A5/ja
Application granted granted Critical
Publication of JP4542815B2 publication Critical patent/JP4542815B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water treatment method and a water treatment apparatus which can effectively control the generation of oxidative by-products without generation of excess ozone injection by grasping the concentration of the oxidative by-products in treated water after ozonization. <P>SOLUTION: The concentration of the oxidative by-products contained in the ozonized water after ozone injection is measured by a measurement means 2, and an ozone injection amount and an ozone injection rate are controlled by an ozone injection amount control means 16 so that the concentration of the oxidative by-products is adjusted to the preset concentration or lower. Thereby, the amount of the generated oxidative by-products can be monitored and properly controlled. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、浄水処理などに使用され、原水にオゾン処理を施す水処理方法および水処理装置に関する。   The present invention relates to a water treatment method and a water treatment apparatus that are used for water purification treatment and the like and perform ozone treatment on raw water.

従来、浄水場などにおける高度処理工程では、原水を凝集沈澱処理したり、場合によっては砂ろ過処理して縣濁物を除去後、この原水にオゾンを注入して、残存している有機物の酸化分解を行っている(例えば、特許文献1参照)。さらに、後段の生物活性炭で易分解性となった有機物の生物処理を行うことにより、異臭味の低減や、トリハロメタンなどの有害性消毒副生成物の生成を抑制している。   Conventionally, in advanced treatment processes at water purification plants, raw water is coagulated and settled, or in some cases, sand filtration is performed to remove suspended matter, and then ozone is injected into the raw water to oxidize the remaining organic matter. Decomposition is performed (see, for example, Patent Document 1). Furthermore, the biological treatment of the organic matter that has become readily degradable with the biological activated carbon in the latter stage reduces the off-flavor and suppresses the generation of harmful disinfection by-products such as trihalomethanes.

また、オゾンに紫外線照射などの工程を加えた促進酸化処理では、オゾンよりも強力な酸化力を持つOHラジカルなどの生成が起こり、オゾンでは難分解性である複雑な有機物の分解なども行われている。   In addition, in the accelerated oxidation treatment that adds ozone and other processes such as ultraviolet irradiation, OH radicals with a stronger oxidizing power than ozone are generated, and the decomposition of complex organic substances that are difficult to decompose with ozone is also performed. ing.

このように原水にオゾンを注入して処理を行う場合、原水中に臭素が含まれていると、過剰オゾンにより、酸化副生成物として臭素酸が生成する。臭素酸は発ガン性が疑われており、生成抑制が必要となっている。   Thus, when processing is performed by injecting ozone into raw water, if bromine is contained in the raw water, bromic acid is generated as an oxidation byproduct due to excess ozone. Bromic acid is suspected to be carcinogenic and must be suppressed.

そこで、過剰オゾンを分解して臭素酸の生成を抑制することが提案されている(例えば特許文献2および特許文献3参照)。しかし、そもそも過剰オゾンが生じることは、高価なオゾンを無駄に供給していることであり、大規模なオゾン発生装置を必要とし、電力消費量の増大を招いてしまう。   In view of this, it has been proposed to decompose excess ozone to suppress the production of bromic acid (see, for example, Patent Document 2 and Patent Document 3). However, excessive ozone in the first place means that expensive ozone is supplied unnecessarily, which requires a large-scale ozone generator and causes an increase in power consumption.

そこで、過剰オゾンを生じることなく、臭素酸生成を抑制する手法として、溶存オゾン濃度と臭素酸生成濃度との相関を利用して溶存オゾン濃度を管理する方法が考えられている。しかし、この方法は、実際に生成された臭素酸濃度を把握しておらず、あくまで臭素酸生成量を予測した運転管理でしかなかった。
特開2003−88882号公報 特開2002−210462号公報 特開2000−288562号公報
Thus, as a technique for suppressing bromic acid production without generating excess ozone, a method of managing the dissolved ozone concentration using the correlation between the dissolved ozone concentration and the bromic acid production concentration is considered. However, this method does not grasp the concentration of bromic acid actually produced, and is only operation management that predicts the amount of bromic acid produced.
JP 2003-88882 A JP 2002-210462 A JP 2000-288562 A

このように、原水にオゾンを注入して処理を行う水処理では、過剰オゾンにより酸化副生成物が生成するので、この酸化副生成物の生成を如何に抑制できるかが大きな課題であった。   As described above, in the water treatment in which ozone is injected into the raw water, an oxidation by-product is generated due to excess ozone. Thus, how to suppress the generation of the oxidation by-product is a big problem.

本発明の目的は、オゾン処理後の処理水の酸化副生成物濃度を捉えることにより、過剰オゾン注入を生じることなく、酸化副生成物の生成を有効に抑制することが出来る水処理方法および水処理装置を提供することにある。   An object of the present invention is to provide a water treatment method and water capable of effectively suppressing the formation of oxidation by-products without causing excessive ozone injection by capturing the concentration of oxidation by-products in the treated water after ozone treatment. It is to provide a processing apparatus.

本発明による水処理方法は、目標とする注入率で原水にオゾンを注入し、処理を行う水処理方法であって、オゾン注入後における処理水の酸化副生成物濃度を測定し、この測定された酸化副生成物濃度が、予め設定された目標値となるようにオゾン注入率を制御することを特徴とする。   The water treatment method according to the present invention is a water treatment method for performing treatment by injecting ozone into raw water at a target injection rate, and measuring the concentration of oxidized by-products in the treated water after ozone injection. The ozone injection rate is controlled so that the oxidation by-product concentration becomes a preset target value.

また、本発明の水処理方法は、オゾン注入後における処理水の酸化副生成物濃度を測定し、この測定された酸化副生成物濃度が、予め設定された目標値となるようにオゾン注入率を制御すると共に、前記原水の水質を測定し、原水の水質がオゾン注入による酸化副生成物の生成に与える影響を示す予め求められた相関関係により、前記オゾン注入率を補正するようにしてもよい。   Further, the water treatment method of the present invention measures the concentration of oxidation by-products in the treated water after ozone injection, and the ozone injection rate so that the measured concentration of oxidation by-products becomes a preset target value. And controlling the ozone injection rate according to a previously determined correlation indicating the effect of the raw water quality on the formation of oxidation by-products by ozone injection. Good.

本発明による水処理装置は、オゾン注入後における処理水の酸化副生成物濃度を測定する酸化副生成物測定手段と、この酸化副生成物濃度測定手段により測定された酸化副生成物濃度が、予め設定された目標値となるようにオゾン注入率を求めるオゾン注入制御手段とを備えたことを特徴とする。   The water treatment apparatus according to the present invention includes an oxidation by-product measurement unit that measures the concentration of oxidation by-product after treatment of ozone, and an oxidation by-product concentration measured by the oxidation by-product concentration measurement unit. An ozone injection control means for obtaining an ozone injection rate so as to obtain a preset target value is provided.

また、本発明による水処理装置では、オゾン注入後における処理水の酸化副生成物濃度を測定する酸化副生成物測定手段と、原水の水質を測定する水質測定手段と、酸化副生成物測定手段により測定された酸化副生成物濃度が、予め設定された目標値となるようにオゾン注入率を求めると共に、前記原水の水質がオゾン注入による酸化副生成物の生成に与える影響を示す予め求められた相関関係により、前記オゾン注入率を補正するオゾン注入制御手段とを備えた構成でもよい。   Further, in the water treatment apparatus according to the present invention, an oxidation by-product measuring means for measuring the concentration of oxidized by-products in the treated water after ozone injection, a water quality measuring means for measuring the quality of raw water, and an oxidation by-product measuring means The ozone injection rate is determined so that the oxidation by-product concentration measured by the above becomes a preset target value, and the influence of the quality of the raw water on the generation of oxidation by-products by ozone injection is determined in advance. According to the correlation, an ozone injection control unit that corrects the ozone injection rate may be provided.

また、本発明による水処理装置では、酸化副生成物濃度測定手段として、オンライン型の液体クロマトグラフィやオンライン型のイオンクロマトグラフィを用いるとよい。   In the water treatment apparatus according to the present invention, online liquid chromatography or online ion chromatography may be used as the oxidation by-product concentration measuring means.

また、本発明による水処理装置では、水質測定手段として、原水の蛍光強度を測定する蛍光強度計、原水の紫外線吸光度を測定する紫外線吸光度計、原水の全有機炭素濃度を測定する全有機炭素濃度計、原水の過マンガン酸消費量を測定する過マンガン酸消費量計、原水の化学的酸素要求量を測定する化学的酸素要求量計のいずれかを用いればよい。   In the water treatment apparatus according to the present invention, as a water quality measurement means, a fluorescence intensity meter that measures the fluorescence intensity of raw water, an ultraviolet absorbance meter that measures the ultraviolet absorbance of raw water, and a total organic carbon concentration that measures the total organic carbon concentration of raw water A permanganate consumption meter that measures the permanganate consumption of the raw water, or a chemical oxygen demand meter that measures the chemical oxygen demand of the raw water may be used.

本発明によれば、オゾン注入後のオゾン処理水中に含まれる酸化副生成物濃度を測定し、これがあらかじめ設定した濃度、もしくは、あらかじめ設定した濃度以下となるようにオゾン注入量、もしくは、オゾン注入率を制御することによって、酸化副生成物の生成量を監視し、適切に管理することが出来る。また、酸化副生成物濃度を利用した制御を行い、オゾン注入量、または、オゾン注入率を決定することによって、適正量のオゾンを注入することが可能となる。   According to the present invention, the concentration of oxidation by-products contained in the ozone-treated water after ozone injection is measured, and the ozone injection amount or ozone injection so that the concentration is equal to or lower than a preset concentration. By controlling the rate, the amount of oxidized by-product produced can be monitored and managed appropriately. In addition, it is possible to inject an appropriate amount of ozone by performing control using the concentration of oxidation by-products and determining the ozone injection amount or the ozone injection rate.

また、原水の水質を測定し、この原水水質のデータにより、オゾン注入率と酸化副生成物濃度との相関関係を補正して、オゾン注入量、もしくは、オゾン注入率を演算すれば、より適正なオゾンを注入制御が可能となる。   In addition, if the raw water quality is measured and the correlation between the ozone injection rate and the oxidation by-product concentration is corrected based on the raw water quality data, the ozone injection amount or the ozone injection rate is calculated. It is possible to control injection of ozone.

以下、本発明による水処理方法及び水処理装置の一実施の形態について、図面を用いて詳細に説明する。   Hereinafter, an embodiment of a water treatment method and a water treatment apparatus according to the present invention will be described in detail with reference to the drawings.

図1はこの実施の形態における水処理装置の構成を示している。図1において、12はオゾン反応装置で、図示しない着水井に着水した原水を凝集沈澱処理したり、場合によっては砂ろ過処理して縣濁物を除去後、ポンプ13により流量計8を介して導入する。このオゾン反応装置12内には、複数段の反応槽が形成されており、これら各反応槽の底部には散気装置14がそれぞれ設けられている。   FIG. 1 shows the configuration of the water treatment apparatus in this embodiment. In FIG. 1, reference numeral 12 denotes an ozone reaction device, which performs a coagulation sedimentation process on raw water that has landed in a receiving well (not shown) or, in some cases, a sand filtration process to remove suspended matters and then a pump 13 through a flow meter 8. To introduce. A plurality of reaction vessels are formed in the ozone reaction device 12, and an air diffuser 14 is provided at the bottom of each reaction vessel.

10はオゾン発生装置で、乾燥空気または酸素を原料とし、無声放電によりオゾンを生成する。生成されたオゾンは、オゾン濃度測定装置9を有する管路により、ガス流量計7を経てオゾン反応装置12内の散気装置14から、オゾン反応装置12内の原水に注入される。なお、原水と反応し切れなかったオゾンは、オゾン反応装置12の上部空間に滞留し、排オゾン濃度測定装置11により排オゾン濃度を測定された後、図示しない排オゾンガス処理装置に排出される。   An ozone generator 10 generates ozone by silent discharge using dry air or oxygen as a raw material. The generated ozone is injected into the raw water in the ozone reaction device 12 from the air diffuser 14 in the ozone reaction device 12 through the gas flowmeter 7 through a pipe line having the ozone concentration measuring device 9. The ozone that has not completely reacted with the raw water stays in the upper space of the ozone reaction device 12, and after the exhaust ozone concentration is measured by the exhaust ozone concentration measurement device 11, it is discharged to an exhaust ozone gas treatment device (not shown).

また、オゾン反応装置12内でオゾンを注入されたオゾン処理水は、後段の図示しない生物活性炭塔に送出される。このオゾン処理水の送出管には、オゾン処理水の溶存オゾン濃度を測定する溶存オゾン濃度測定手段5と、同じくオゾン処理水の酸化副生物生成濃度測定手段2が設けられている。   Further, the ozone-treated water into which ozone has been injected in the ozone reaction device 12 is sent to a biological activated carbon tower (not shown) in the subsequent stage. The ozone treated water delivery pipe is provided with a dissolved ozone concentration measuring means 5 for measuring the dissolved ozone concentration of the ozone treated water and an oxidation by-product production concentration measuring means 2 for measuring the ozone treated water.

16はオゾン注入制御手段で、オゾン注入設定演算部1と、溶存オゾン一定制御部4と、オゾン注入率一定制御部6とを有し、酸化副生成物濃度測定手段2により測定された酸化副生成物濃度が、予め設定された目標値となるようにオゾン注入率を求め、オゾン発生装置を制御してオゾン反応装置12へのオゾン注入量を制御する。   Reference numeral 16 denotes an ozone injection control means, which has an ozone injection setting calculation unit 1, a dissolved ozone constant control unit 4, and an ozone injection rate constant control unit 6. The ozone injection rate is obtained so that the product concentration becomes a preset target value, and the ozone generator is controlled to control the amount of ozone injected into the ozone reactor 12.

オゾン注入設定演算部1は、酸化副生成物濃度測定手段2から、オゾン処理後におけるオゾン処理水の酸化副生成物濃度を入力すると、以下に説明する演算内容により、オゾン注入設定値を演算する。本例では、オゾン注入設定演算部1での演算値はオゾン処理水に対する目標溶存オゾン濃度であり、演算結果を下位の溶存オゾン一定制御部4に出力する。   When the ozone injection setting calculation unit 1 inputs the oxidation by-product concentration of ozone-treated water after ozone treatment from the oxidation by-product concentration measuring means 2, the ozone injection setting calculation unit 1 calculates the ozone injection setting value according to the calculation contents described below. . In this example, the calculated value in the ozone injection setting calculation unit 1 is the target dissolved ozone concentration with respect to the ozone treated water, and the calculation result is output to the lower dissolved ozone constant control unit 4.

オゾン注入演算部1の演算内容は,酸化副生成物を一定濃度以下に抑える目的で溶存オゾン濃度を算出する。すなわち、酸化副生成物測定装置2によりオンラインで測定した酸化副生成物濃度OBを、予め設定した目標酸化副生成物濃度OB0と比較する。その結果、目標と実測値に差がある場合は、(2)式で示すように、この差分に比例定数Cbを積算して溶存オゾン濃度補正値ΔDOを求め、この補正値ΔDOを用い、(1)式で示すように、前回の溶存オゾン濃度設定値DO(n-1)を補正し、今回の溶存オゾン濃度設定値DOnを求める。   The calculation content of the ozone injection calculation unit 1 calculates the dissolved ozone concentration for the purpose of suppressing the oxidation byproduct to a certain concentration or less. That is, the oxidation by-product concentration OB measured online by the oxidation by-product measuring device 2 is compared with a preset target oxidation by-product concentration OB0. As a result, if there is a difference between the target and the actual measurement value, as shown in the equation (2), the proportional constant Cb is added to this difference to obtain the dissolved ozone concentration correction value ΔDO, and this correction value ΔDO is used ( 1) As shown by the equation, the previous dissolved ozone concentration setting value DO (n-1) is corrected to obtain the current dissolved ozone concentration setting value DOn.

DO(n)=DO(n-1)−ΔDO ・・・(1)
DO:溶存オゾン濃度(mg/L),ΔDO:溶存オゾン濃度補正(mg/L)
ΔDO=Cb×(OB−OB0) ・・・(2)
Cb:比例定数(水源などの特性を表し実験的に求める)
OB:酸化副生成物測定濃度(mg/L),OB0:目標酸化副生成物濃度(mg/L)
溶存オゾン一定制御部4では、オゾン注入設定演算部1で求めた今回の溶存オゾン濃度設定値DOnを目標値とし、溶存オゾン濃度測定手段5からオゾン処理水の溶存オゾン濃度測定値を入力し、これらの偏差から、今回の目標値(溶存オゾン濃度設定値DOn)を実現するためのオゾン注入率をPI制御器によって演算し、下位のオゾン注入率一定制御部6に、オゾン注入率設定値として出力する。
DO (n) = DO (n−1) −ΔDO (1)
DO: dissolved ozone concentration (mg / L), ΔDO: dissolved ozone concentration correction (mg / L)
ΔDO = Cb × (OB−OB0) (2)
Cb: Proportional constant (representing characteristics of water source, etc., experimentally obtained)
OB: Oxidation by-product measured concentration (mg / L), OB0: Target oxidation by-product concentration (mg / L)
In the dissolved ozone constant control unit 4, the dissolved ozone concentration set value DOn obtained by the ozone injection setting calculation unit 1 is set as a target value, and the dissolved ozone concentration measured value of the ozone treated water is input from the dissolved ozone concentration measuring means 5, From these deviations, the ozone injection rate for realizing the current target value (dissolved ozone concentration set value DOn) is calculated by the PI controller, and the lower ozone injection rate constant control unit 6 is used as the ozone injection rate set value. Output.

オゾン注入率一定制御部6は、溶存オゾン一定制御部4からのオゾン注入率設定値を受け、オゾン化ガス量を測定するガス流量計7、原水流量を測定する液流量計8、発生オゾン濃度を測定する発生オゾン濃度測定装置9の各測定値を入力し、以下の(3)式によりオゾン発生装置10に対する制御値を演算し、オゾン発生装置10へ出力する。   The ozone injection rate constant control unit 6 receives the ozone injection rate set value from the dissolved ozone constant control unit 4, receives a gas flow meter 7 that measures the amount of ozonized gas, a liquid flow meter 8 that measures the raw water flow rate, and the generated ozone concentration Each measured value of the generated ozone concentration measuring device 9 that measures the above is input, a control value for the ozone generating device 10 is calculated by the following equation (3), and output to the ozone generating device 10.

発生オゾン濃度=オゾン注入率設定値×処理水量/オゾン化ガス流量・・・(3)
すなわち、オゾン注入率設定値に基づき、液流量計8で測定した原水流量と、オゾン発生装置10からオゾン反応装置12に注入されるオゾン化ガスの流量及びオゾン濃度とから、オゾン発生装置10で発生させるオゾン濃度を演算し、オゾン発生装置10を制御する。オゾン発生装置10では、制御信号を受けオゾン発生電圧などを変えて運転を行い、所定濃度のオゾンを発生し、このオゾン化ガスをオゾン反応装置12へ送る。
Generated ozone concentration = ozone injection rate set value x treated water amount / ozonized gas flow rate (3)
That is, based on the ozone injection rate set value, the ozone generator 10 uses the raw water flow rate measured by the liquid flow meter 8 and the flow rate and ozone concentration of the ozonized gas injected from the ozone generator 10 into the ozone reactor 12. The ozone concentration to be generated is calculated and the ozone generator 10 is controlled. The ozone generator 10 operates by receiving a control signal and changing the ozone generation voltage, etc., generates ozone of a predetermined concentration, and sends this ozonized gas to the ozone reactor 12.

ここで、酸化副生成物測定装置2としては、オンライン型の液体クロマトグラフィや、イオンクロマトグラフィを用いる。このように、酸化副生成物濃度をオンライン型の液体クロマトグラフィによって測定することにより、精度の高い測定値を得ることが出来る。   Here, as the oxidation by-product measuring device 2, online liquid chromatography or ion chromatography is used. Thus, a highly accurate measurement value can be obtained by measuring the oxidation by-product concentration by online liquid chromatography.

また、イオンクロマトグラフィは液体クロマトグラフィの一つであり、特に問題となっている酸化副生成物の臭素酸の測定に優れている。すなわち、イオンクロマトグラフィは、酸化副生成物の中でも臭素酸を測定できる装置であり、生成抑制の対象となる臭素酸の生成量を測定し、オゾン注入設定演算部1にフィードバックすることにより、臭素酸生成抑制を効率的に行うことが出来る。   In addition, ion chromatography is one of liquid chromatography, and is particularly excellent in measuring bromic acid as an oxidation by-product which is a problem. That is, ion chromatography is a device that can measure bromic acid among oxidation by-products. By measuring the amount of bromic acid that is the target of production inhibition and feeding back to the ozone injection setting calculation unit 1, bromic acid is obtained. Generation | occurrence | production suppression can be performed efficiently.

このように、酸化副生成物濃度が目標値以下になるように、溶存オゾン濃度設定値を演算し制御を行うため、処理対象物のオゾン酸化と酸化副生成物の生成抑制を効率よく行うことが出来る。   As described above, the dissolved ozone concentration set value is calculated and controlled so that the oxidation by-product concentration is equal to or less than the target value. I can do it.

次に、図2に示す実施の形態を説明する。この実施の形態では、オゾン反応装置12に原水を送る管路に、原水の水質を測定する原水水質測定手段3を設け、その測定値をオゾン注入設定演算部1に出力している。他の構成は図1で示した実施の形態と同じであり、対応する部分に同一符号を付して説明は省略する。   Next, the embodiment shown in FIG. 2 will be described. In this embodiment, the raw water quality measuring means 3 for measuring the quality of the raw water is provided in the pipeline for sending the raw water to the ozone reactor 12, and the measured value is output to the ozone injection setting calculation unit 1. Other configurations are the same as those of the embodiment shown in FIG. 1, and the corresponding parts are denoted by the same reference numerals and description thereof is omitted.

この実施の形態では、原水水質測定手段3で原水の水質を測定し、この原水水質のデータにより、オゾン注入率と酸化副生成物濃度との相関関係を補正して、オゾン注入量、もしくは、オゾン注入率を演算することで、より適正なオゾンを注入制御が可能となる。   In this embodiment, the raw water quality is measured by the raw water quality measuring means 3, and the correlation between the ozone injection rate and the oxidation by-product concentration is corrected based on the raw water quality data, and the ozone injection amount or By calculating the ozone injection rate, more appropriate ozone injection control can be performed.

ここで、原水水質と、オゾン注入後のオゾン処理水における酸化副生成物との間には、次のような関係が実験により求められている。すなわち、オゾン処理水における酸化副生成物の値を一定とするためには、原水水質の有機物濃度が高くなるに連れて、オゾン処理水の溶存オゾン濃度を低くしなければならないという関係がある。したがって、この関係に基づき、原水水質のデータを用いて、オゾン注入設定演算部1において、前述の式(1)式、(2)式で求められるオゾン注入量、もしくは、オゾン注入率とオンラインで測定した酸化副生成物濃度との相関関係を補正して、オゾン注入量、もしくは、オゾン注入率を演算することによって、より適正なオゾンを注入することが可能となる。   Here, the following relationship is required by experiments between the raw water quality and the oxidation by-product in the ozone-treated water after ozone injection. That is, in order to make the value of the oxidation by-product in the ozone-treated water constant, there is a relationship that the dissolved ozone concentration of the ozone-treated water must be lowered as the organic substance concentration of the raw water quality increases. Therefore, on the basis of this relationship, using the raw water quality data, the ozone injection setting calculation unit 1 is online with the ozone injection amount or the ozone injection rate obtained by the above equations (1) and (2). It is possible to inject more appropriate ozone by correcting the correlation with the measured oxidation by-product concentration and calculating the ozone injection amount or the ozone injection rate.

例えば、原水の水質として全有機炭素濃度についてみると、この全有機炭素濃度が目標溶存オゾン濃度に影響することが実験により判っている。そこで、水質測定手段3として、全有機炭素濃度計を用いる。全有機炭素濃度計は、オゾン処理対象物(この場合は原水)の有機物の濃度を測定する装置であり、オゾン消費量の変化を把握する指標として利用できる。したがって、予め全有機炭素濃度と目標溶存オゾン濃度との相関式を求めておき、原水の全有機炭素濃度が上昇すると目標溶存オゾン濃度を下げるように補正する。すなわち、前記(2)式で求めていたΔDO値を以下の(4)式で示すように、原水水質データである全有機炭素濃度を用いて演算する。   For example, regarding the total organic carbon concentration as the quality of raw water, it has been experimentally found that this total organic carbon concentration affects the target dissolved ozone concentration. Therefore, a total organic carbon concentration meter is used as the water quality measuring means 3. The total organic carbon concentration meter is a device that measures the concentration of an organic substance in an object to be treated with ozone (in this case, raw water) and can be used as an index for grasping a change in ozone consumption. Therefore, a correlation equation between the total organic carbon concentration and the target dissolved ozone concentration is obtained in advance, and the target dissolved ozone concentration is corrected to decrease when the total organic carbon concentration of the raw water increases. That is, as shown by the following equation (4), the ΔDO value obtained by the equation (2) is calculated using the total organic carbon concentration that is the raw water quality data.

ΔDO=Cb×(OB−(OB0×Ct×(TOC−TOC0))) ・・・(4)
TOC:全有機炭素濃度(mg/L),TOC0:標準の全有機炭素濃度(mg/L)
Ct:TOC濃度による溶存オゾン濃度補正係数
また、上記比例定数Cbは原水水質に依存するので、以下の(5)式により求める。
ΔDO = Cb × (OB− (OB0 × Ct × (TOC−TOC0))) (4)
TOC: Total organic carbon concentration (mg / L), TOC0: Standard total organic carbon concentration (mg / L)
Ct: Correction coefficient of dissolved ozone concentration by TOC concentration In addition, since the proportional constant Cb depends on the quality of raw water, the following equation (5) is used.

Cb=Cb0×Cg×(TOC−TOC0) ・・・(5)
Cb0:標準状態の比例定数,Cg:全有機炭素補正係数
このように、オゾン処理前の原水の水質を測定し、原水の水質がオゾン注入による酸化副生成物の生成に与える影響を示す予め求められた相関関係により、オゾン注入率を補正するので、より適正なオゾンを注入することが可能となる。
Cb = Cb0 * Cg * (TOC-TOC0) (5)
Cb0: Proportional constant of standard state, Cg: Total organic carbon correction coefficient In this way, the quality of raw water before ozone treatment is measured, and it is obtained in advance to show the effect of raw water quality on the formation of oxidation by-products by ozone injection Since the ozone injection rate is corrected based on the obtained correlation, more appropriate ozone can be injected.

また、原水水質として、全有機炭素濃度を測定することにより、季節や水源の変化、水源の切り替えによるオゾン消費の変化を、全有機炭素濃度より把握して、オゾン注入設定値の補正を行うことにより、より精度の高い酸化副生成物生成抑制制御を行うことが出来る。   In addition, by measuring the total organic carbon concentration as the raw water quality, it is possible to grasp the change in ozone consumption due to seasons, changes in the water source, and switching of the water source from the total organic carbon concentration, and correct the ozone injection setting value. As a result, it is possible to perform highly accurate oxidation by-product production suppression control.

なお、上記実施の形態では、原水の水質測定手段として全有機炭素濃度計を例示したが、これに限らず、例えば、原水の蛍光強度を測定する蛍光強度計、原水の紫外線吸光度を測定する紫外線吸光度計、原水の過マンガン酸消費量を測定する過マンガン酸消費量計、原水の化学的酸素要求量を測定する化学的酸素要求量計を用いてもよい。これらいずれの測定値も、水中の有機物の指標となるもので、演算方法は同様の式となる。   In the above embodiment, the total organic carbon concentration meter is exemplified as the raw water quality measuring means. However, the present invention is not limited to this, for example, a fluorescence intensity meter for measuring the fluorescence intensity of the raw water, and an ultraviolet ray for measuring the ultraviolet absorbance of the raw water. An absorptiometer, a permanganate consumption meter that measures the permanganate consumption of raw water, and a chemical oxygen demand meter that measures the chemical oxygen demand of raw water may be used. Any of these measured values serves as an indicator of organic substances in water, and the calculation method is similar.

また、上記実施の形態において、原水水質測定手段3は2種類以上の計測を行なってもよく、測定点も沈澱処理や前砂ろ過処理前であっても良い。また、ガス流量計7は、オゾン発生装置10の入り口側の空気、もしくは、酸素の流量を測定しても良い。オゾン発生装置10のオゾン注入点は、直接オゾン反応装置12でなく、別の装置でオゾン水を生成し原水と混合する方法でも良い。前工程、次工程については、図示していないが、原水、オゾン処理水に対して施される処理は様々であり、如何なる工程を採用してもよい。   Moreover, in the said embodiment, the raw | natural water quality measurement means 3 may perform 2 or more types of measurement, and a measurement point may be before a precipitation process or a pre-sand filtration process. Further, the gas flow meter 7 may measure the flow rate of air or oxygen on the inlet side of the ozone generator 10. The ozone injection point of the ozone generator 10 may be a method in which ozone water is generated by another device instead of the direct ozone reactor 12 and mixed with raw water. Although the pre-process and the next process are not shown in the drawing, there are various processes applied to the raw water and the ozone-treated water, and any process may be adopted.

以上、説明したように、酸化副生成物濃度測定装置による測定結果に基づいて、オゾン注入制御を行い、オゾン注入量、または、オゾン注入率を決定することによって、適切なオゾン注入を行うことが出来るオゾン注入制御装置を実現することが出来る。   As described above, the ozone injection control is performed based on the measurement result by the oxidation by-product concentration measuring device, and the ozone injection amount or the ozone injection rate is determined to perform the appropriate ozone injection. A possible ozone injection control device can be realized.

本発明による水処理装置の一実施の形態を示すブロック図である。It is a block diagram which shows one Embodiment of the water treatment apparatus by this invention. 本発明の他の実施の形態を示すブロック図である。It is a block diagram which shows other embodiment of this invention.

符号の説明Explanation of symbols

2 酸化副生成物濃度測定手段
3 原水水質測定手段
5 溶存オゾン濃度測定手段
10 オゾン発生装置
12 オゾン反応装置
16 オゾン注入制御手段
2 Oxidation by-product concentration measuring means 3 Raw water quality measuring means 5 Dissolved ozone concentration measuring means 10 Ozone generator 12 Ozone reactor 16 Ozone injection control means

Claims (11)

目標とする注入率で原水にオゾンを注入し、処理を行う水処理方法であって、
オゾン注入後における処理水の酸化副生成物濃度を測定し、この測定された酸化副生成物濃度が、予め設定された目標値となるようにオゾン注入率を制御する
ことを特徴とする水処理方法。
A water treatment method for performing treatment by injecting ozone into raw water at a target injection rate,
Water treatment characterized by measuring the concentration of oxidized by-products in the treated water after ozone injection and controlling the ozone injection rate so that the measured concentration of oxidized by-products becomes a preset target value Method.
目標とする注入率で原水にオゾンを注入し、処理を行う水処理方法であって、
オゾン注入後における処理水の酸化副生成物濃度を測定し、この測定された酸化副生成物濃度が、予め設定された目標値となるようにオゾン注入率を制御すると共に、
前記原水の水質を測定し、原水の水質がオゾン注入による酸化副生成物の生成に与える影響を示す予め求められた相関関係により、前記オゾン注入率を補正する
ことを特徴とする水処理方法。
A water treatment method for performing treatment by injecting ozone into raw water at a target injection rate,
While measuring the oxidation by-product concentration of treated water after ozone injection, and controlling the ozone injection rate so that the measured oxidation by-product concentration becomes a preset target value,
The water treatment method characterized by measuring the water quality of the raw water and correcting the ozone injection rate based on a correlation obtained in advance showing the influence of the water quality of raw water on the production of oxidation by-products by ozone injection.
目標とする注入率で原水にオゾンを注入し、処理を行う水処理装置であって、
オゾン注入後における処理水の酸化副生成物濃度を測定する酸化副生成物測定手段と、
この酸化副生成物濃度測定手段により測定された酸化副生成物濃度が、予め設定された目標値となるようにオゾン注入率を求めるオゾン注入制御手段と、
を備えたことを特徴とする水処理装置。
A water treatment device that injects ozone into raw water at a target injection rate and performs treatment,
An oxidation by-product measuring means for measuring the concentration of an oxidation by-product in the treated water after ozone injection;
Ozone injection control means for obtaining an ozone injection rate so that the oxidation by-product concentration measured by the oxidation by-product concentration measuring means becomes a preset target value;
A water treatment apparatus comprising:
目標とする注入率で原水にオゾンを注入し、処理を行う水処理装置であって、
オゾン注入後における処理水の酸化副生成物濃度を測定する酸化副生成物測定手段と、
前記原水の水質を測定する水質測定手段と、
前記酸化副生成物測定手段により測定された酸化副生成物濃度が、予め設定された目標値となるようにオゾン注入率を求めると共に、前記原水の水質がオゾン注入による酸化副生成物の生成に与える影響を示す予め求められた相関関係により、前記オゾン注入率を補正するオゾン注入制御手段と、
を備えたことを特徴とする水処理装置。
A water treatment device that injects ozone into raw water at a target injection rate and performs treatment,
An oxidation by-product measuring means for measuring the concentration of an oxidation by-product in the treated water after ozone injection;
Water quality measuring means for measuring the quality of the raw water;
The ozone injection rate is calculated so that the oxidation by-product concentration measured by the oxidation by-product measuring means becomes a preset target value, and the quality of the raw water is used to generate an oxidation by-product by ozone injection. An ozone injection control means for correcting the ozone injection rate according to a correlation obtained in advance showing the influence exerted;
A water treatment apparatus comprising:
酸化副生成物濃度測定手段が、オンライン型の液体クロマトグラフィであることを特徴とする請求項3または請求項4に記載の水処理装置。   The water treatment apparatus according to claim 3 or 4, wherein the oxidation by-product concentration measuring means is an on-line type liquid chromatography. 酸化副生成物濃度測定手段が、オンライン型のイオンクロマトグラフィであることを特徴とする請求項3または請求項4に記載の水処理装置。   The water treatment apparatus according to claim 3 or 4, wherein the oxidation by-product concentration measuring means is an on-line type ion chromatography. 水質測定手段が、原水の蛍光強度を測定する蛍光強度計であることを特徴とする請求項4に記載の水処理装置。   The water treatment apparatus according to claim 4, wherein the water quality measuring means is a fluorescence intensity meter that measures the fluorescence intensity of the raw water. 水質測定手段が、原水の紫外線吸光度を測定する紫外線吸光度計であることを特徴とする請求項4に記載の水処理装置。   The water treatment apparatus according to claim 4, wherein the water quality measuring means is an ultraviolet absorbance meter that measures ultraviolet absorbance of raw water. 水質測定手段が、原水の全有機炭素濃度を測定する全有機炭素濃度計であることを特徴とする請求項4に記載の水処理装置。   The water treatment apparatus according to claim 4, wherein the water quality measuring means is a total organic carbon concentration meter that measures the total organic carbon concentration of raw water. 水質測定手段が、原水の過マンガン酸消費量を測定する過マンガン酸消費量計であることを特徴とする請求項4に記載の水処理装置。   The water treatment apparatus according to claim 4, wherein the water quality measuring means is a permanganate consumption meter for measuring the permanganate consumption of raw water. 水質測定手段が、原水の化学的酸素要求量を測定する化学的酸素要求量計であることを特徴とする請求項4に記載の水処理装置。   The water treatment apparatus according to claim 4, wherein the water quality measuring means is a chemical oxygen demand meter for measuring a chemical oxygen demand of raw water.
JP2004144590A 2004-05-14 2004-05-14 Water treatment equipment Expired - Lifetime JP4542815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004144590A JP4542815B2 (en) 2004-05-14 2004-05-14 Water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004144590A JP4542815B2 (en) 2004-05-14 2004-05-14 Water treatment equipment

Publications (3)

Publication Number Publication Date
JP2005324121A true JP2005324121A (en) 2005-11-24
JP2005324121A5 JP2005324121A5 (en) 2007-05-10
JP4542815B2 JP4542815B2 (en) 2010-09-15

Family

ID=35470891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004144590A Expired - Lifetime JP4542815B2 (en) 2004-05-14 2004-05-14 Water treatment equipment

Country Status (1)

Country Link
JP (1) JP4542815B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015104726A (en) * 2013-12-03 2015-06-08 メタウォーター株式会社 Water treatment control device, and water treatment control method
JP2018158286A (en) * 2017-03-22 2018-10-11 株式会社東芝 Control device of ozone treatment apparatus and method of controlling the same
JP2019152651A (en) * 2018-02-28 2019-09-12 總翔企業股▲ふん▼有限公司Anatek Enterprise Co.,Ltd. Water sample analysis device
CN112710747A (en) * 2020-12-15 2021-04-27 山东省计量科学研究院 Method for setting value of chemical oxygen demand standard solution
JPWO2020161849A1 (en) * 2019-02-07 2021-10-21 株式会社島津製作所 Analytical methods, analyzers and programs

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08308430A (en) * 1995-05-19 1996-11-26 Takaoka Electric Mfg Co Ltd Elimination of ammonia with ozone
JP2001225086A (en) * 2000-02-18 2001-08-21 Fuji Electric Co Ltd Method and apparatus for treating ozone water
JP2001300544A (en) * 2000-04-24 2001-10-30 Ishikawajima Harima Heavy Ind Co Ltd Ozone seawater production device
JP2002096081A (en) * 2000-09-26 2002-04-02 Mitsubishi Electric Corp Disinfecting device for water and method of controlling the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08308430A (en) * 1995-05-19 1996-11-26 Takaoka Electric Mfg Co Ltd Elimination of ammonia with ozone
JP2001225086A (en) * 2000-02-18 2001-08-21 Fuji Electric Co Ltd Method and apparatus for treating ozone water
JP2001300544A (en) * 2000-04-24 2001-10-30 Ishikawajima Harima Heavy Ind Co Ltd Ozone seawater production device
JP2002096081A (en) * 2000-09-26 2002-04-02 Mitsubishi Electric Corp Disinfecting device for water and method of controlling the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015104726A (en) * 2013-12-03 2015-06-08 メタウォーター株式会社 Water treatment control device, and water treatment control method
JP2018158286A (en) * 2017-03-22 2018-10-11 株式会社東芝 Control device of ozone treatment apparatus and method of controlling the same
JP7005155B2 (en) 2017-03-22 2022-01-21 株式会社東芝 Ozone treatment equipment control device and control method
JP2019152651A (en) * 2018-02-28 2019-09-12 總翔企業股▲ふん▼有限公司Anatek Enterprise Co.,Ltd. Water sample analysis device
JPWO2020161849A1 (en) * 2019-02-07 2021-10-21 株式会社島津製作所 Analytical methods, analyzers and programs
JP7259873B2 (en) 2019-02-07 2023-04-18 株式会社島津製作所 Analysis method, analysis device and program
JP7485142B2 (en) 2019-02-07 2024-05-16 株式会社島津製作所 Analysis method
CN112710747A (en) * 2020-12-15 2021-04-27 山东省计量科学研究院 Method for setting value of chemical oxygen demand standard solution
CN112710747B (en) * 2020-12-15 2022-08-02 山东省计量科学研究院 Method for setting value of chemical oxygen demand standard solution

Also Published As

Publication number Publication date
JP4542815B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
JP4673709B2 (en) Water treatment system
WO2016121618A1 (en) Water treatment apparatus and water treatment method
JP2005305328A (en) Water treatment controlling system
JP4542815B2 (en) Water treatment equipment
WO2019198831A1 (en) Accelerated oxidation water treatment system and method
US20080203035A1 (en) Water treatment method and water treatment apparatus
JP2007185610A (en) Device for controlling injection of flocculant
JP2004351326A (en) Water quality monitoring system
JP2007038110A (en) Free radical treatment apparatus
JP6911002B2 (en) Water treatment controller and water treatment system
JP4660211B2 (en) Water treatment control system and water treatment control method
JP2007117849A (en) Ozone treatment system
JP5213601B2 (en) Circulating ozone water generation method and circulating ozone water production apparatus
JP3697933B2 (en) Water treatment method and apparatus using ozone
WO2017175794A1 (en) Accelerated oxidation treatment method and accelerated oxidation treatment device
JP2008012497A (en) Water treatment apparatus and water treatment method
JP4683977B2 (en) Hydrogen peroxide injection control method and apparatus in accelerated oxidation water treatment method
JP2005324124A (en) Ozone gas injection control system
JP2016198697A (en) Organic acid solution decomposition system and organic acid solution decomposition method
JPH0663570A (en) Method for determining and controlling ozone injection quantity and purified water treatment device
JP2007326047A (en) Water treatment control device
JP4116931B2 (en) Ozone treatment method and ozone treatment system
JP2000117274A (en) Water treatment and device therefor
JP4331048B2 (en) Ozone water treatment control system
JP2008155151A (en) Ozone injecting control device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070316

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100628

R151 Written notification of patent or utility model registration

Ref document number: 4542815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3