JPH0855710A - Multilater voltage-nonlinear resistor - Google Patents

Multilater voltage-nonlinear resistor

Info

Publication number
JPH0855710A
JPH0855710A JP21199894A JP21199894A JPH0855710A JP H0855710 A JPH0855710 A JP H0855710A JP 21199894 A JP21199894 A JP 21199894A JP 21199894 A JP21199894 A JP 21199894A JP H0855710 A JPH0855710 A JP H0855710A
Authority
JP
Japan
Prior art keywords
laminated
electrodes
voltage
internal electrodes
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21199894A
Other languages
Japanese (ja)
Inventor
Kiyoshi Matsuda
清 松田
Akihito Kondo
昭仁 近藤
Osamu Watabe
修 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP21199894A priority Critical patent/JPH0855710A/en
Publication of JPH0855710A publication Critical patent/JPH0855710A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To provide a multilayer voltage nonlinear resistor of which the actual surge voltage resistance corresponds to a design value and which can be used safely and has high reliability. CONSTITUTION:A multilayer body 3 is constituted by alternately piling up ceramic green sheets 1 and internal electrodes 2 one upon another. The number of internal electrodes 2 used in the multilayer body is set at an even number and the sheets 1 and electrodes 2 are stuck to each other by pressing them against each other so that the lead-out sections 5 of the electrodes 2 can alternately become opposite to each other and the multilayer body is united in one body by sintering. A multilayer voltage-nonlinear resistor is formed by electrically connecting external electrodes 4 in parallel with the electrodes 2. In the first electrode layer 6 of the internal electrode layers having leading-out sections 5 on one side and the second electrode layer 7 on the opposite side, the current densities in the electrodes 2 of the layers 6 and 7 become constant and the layers 6 and 7 have the same surge current resistance, since the layers 6 and 7 have the same numbers of electrodes and leading-out sections. Therefore, a laminated voltage nonlinear resistor the actual surge current rsistance of which corresponds to its design value and which has excellent safety and reliability can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電圧非直線抵抗器に係
り、特に内部電極を積層した積層型の電圧非直線抵抗器
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a voltage non-linear resistor, and more particularly to a laminated type voltage non-linear resistor in which internal electrodes are laminated.

【0002】[0002]

【従来の技術】バリスタと呼ばれる電圧非直線抵抗器
は、電圧が増大すると抵抗が著しく減少して、流れる電
流が増加する素子である。この電圧非直線抵抗器は、機
器の内部・外部より発生するサージ電流から機器又は部
品を保護するため広く用いられている。また、近年の電
子機器に対する小形化の要請に伴い、ディスク型に比べ
小型であり、基板の表面にスペース効率のよい実装がで
きる積層型電圧非直線抵抗器が現在は普及している。
2. Description of the Related Art A voltage non-linear resistor called a varistor is an element in which the resistance significantly decreases as the voltage increases and the flowing current increases. This voltage non-linear resistor is widely used to protect a device or parts from a surge current generated inside or outside the device. In addition, with the recent demand for miniaturization of electronic devices, a laminated voltage non-linear resistor, which is smaller than a disk type and can be mounted on the surface of a substrate in a space-efficient manner, is now in widespread use.

【0003】このような従来の積層型電圧非直線抵抗器
の一例を、以下に説明する。すなわち、図3に示すよう
に、積層型電圧非直線抵抗器は、セラミックグリーンシ
ート1及び内部電極2を交互に複数積層してなる積層体
3と、その外側面に設けられた外部電極4とを備えてい
る。セラミックグリーンシート1は、焼結後にバリスタ
機能を発揮するバリスタ組成材料を用いて長方形のシー
ト状に形成されている。ここで、バリスタ機能とは、電
圧によって抵抗値が非直線的に変化する機能である。
An example of such a conventional laminated type voltage non-linear resistor will be described below. That is, as shown in FIG. 3, the laminated voltage nonlinear resistor includes a laminated body 3 in which a plurality of ceramic green sheets 1 and internal electrodes 2 are alternately laminated, and an external electrode 4 provided on the outer surface thereof. Is equipped with. The ceramic green sheet 1 is formed in a rectangular sheet shape using a varistor composition material that exhibits a varistor function after sintering. Here, the varistor function is a function in which the resistance value changes non-linearly depending on the voltage.

【0004】内部電極2は、長方形状の導電性シートで
あり、その一辺は外部に露出した導出部5となってい
る。また、内部電極2における導出部5以外の三辺の周
囲は、外部に露出しないようにマージン部を設けて、セ
ラミックグリーンシート1が積層されている。そして、
内部電極2の導出部5が交互に反対側になるように複数
の内部電極2及びセラミックグリーンシート1が積層圧
着されて、焼結一体化により積層体3が構成されてい
る。さらに、積層体3には、導出部5の露出した相対す
る2方向の端部に、それぞれ外部電極4が接続されてい
る。この外部電極4によって内部電極2が電気的に並列
に接続されている。
The internal electrode 2 is a rectangular conductive sheet, and one side thereof is a lead-out portion 5 exposed to the outside. Further, around the three sides of the internal electrode 2 other than the lead-out portion 5, a margin portion is provided so as not to be exposed to the outside, and the ceramic green sheet 1 is laminated. And
The plurality of internal electrodes 2 and the ceramic green sheets 1 are laminated and pressure-bonded so that the lead-out portions 5 of the internal electrodes 2 are alternately on opposite sides, and the laminated body 3 is formed by sintering and integration. Further, external electrodes 4 are respectively connected to the exposed end portions of the lead-out portion 5 in the laminated body 3 in two opposite directions. The internal electrodes 2 are electrically connected in parallel by the external electrodes 4.

【0005】[0005]

【発明が解決しようとする課題】以上のような構成を有
する積層型電圧非直線抵抗器は、小型で優れた電流・電
圧特性をもつ。しかし、従来のディスク型電圧非直線抵
抗器における電極は面接続であるのに対し、積層型電圧
非直線抵抗器においては、内部電極2の一層分の厚みが
2〜5μmであるため、外部電極4との接続部分は非常
に細く、線接続に近い状態である。このため、十分な電
流容量を得るためには、内部電極2を複数積層して、接
続長さ(接続有効面積)を確保する必要がある。すなわ
ち、サージ電流耐量は、内部電極と外部電極との接続部
分となる接続有効面積の電流容量によって決定される。
したがって、積層型電圧非直線抵抗器では、サージ電流
耐量を、内部電極の積層数により設計している。
The laminated type voltage non-linear resistor having the above structure is small and has excellent current / voltage characteristics. However, while the electrodes in the conventional disc type voltage non-linear resistor are surface-connected, in the laminated type voltage non-linear resistor, the thickness of one layer of the internal electrode 2 is 2 to 5 μm, so that the external electrode The connection portion with 4 is very thin and is in a state close to a line connection. Therefore, in order to obtain a sufficient current capacity, it is necessary to stack a plurality of internal electrodes 2 to secure a connection length (effective connection area). That is, the surge current withstand capability is determined by the current capacity of the effective connection area that is the connection portion between the internal electrode and the external electrode.
Therefore, in the laminated voltage non-linear resistor, the surge current withstand capability is designed by the number of laminated internal electrodes.

【0006】しかしながら、サージ電流耐量の設計を内
部電極の積層数のみにより行うと、積層数が奇数となる
場合もある。この時は、内部電極の導出部が露出する積
層体の相対する2方向の端部において、導出部数が同数
とならない。ここで、積層体3の一方に露出した導出部
5を有する内部電極層を第1電極層6、反対側に露出し
た導出部5を有する内部電極層を第2電極層7とする
と、第1電極層6と第2電極層7とは、電流容量が等し
いものとなる。このため、導出部数の少ない内部電極層
(図面では、第1電極層6)側は、接続有効面積も少な
いため、内部電極一層当たりの電流密度が高くなる。し
かも、内部電極2と外部電極4との接続部分は非常に細
く線接続に近い状態であるため、場合によっては、サー
ジ電流耐量の設計値に達する前に、導出部数の少ない内
部電極層側の接続部分がサージ電流により破壊される恐
れがある。これでは、電圧非直線抵抗器としての信頼性
が低いものとなってしまう。
However, if the surge current resistance is designed only by the number of laminated internal electrodes, the number of laminated layers may be an odd number. At this time, the number of lead-out portions is not the same at the two opposite end portions of the laminated body where the lead-out portions of the internal electrodes are exposed. Here, when the internal electrode layer having the lead-out portion 5 exposed on one side of the laminated body 3 is the first electrode layer 6 and the internal electrode layer having the lead-out portion 5 exposed on the opposite side is the second electrode layer 7, The electrode layer 6 and the second electrode layer 7 have the same current capacity. Therefore, on the side of the internal electrode layer (first electrode layer 6 in the drawing) where the number of lead-out portions is small, the effective connection area is small, and the current density per one internal electrode layer is high. Moreover, since the connection portion between the internal electrode 2 and the external electrode 4 is very thin and close to a wire connection, in some cases, before reaching the design value of the surge current withstanding capability, the internal electrode layer side with a small number of lead-out portions is provided. The connection part may be damaged by surge current. This results in low reliability as a voltage nonlinear resistor.

【0007】本発明の積層型電圧非直線抵抗器は、以上
のような従来技術の問題を解決するために提案されたも
のであり、その目的は、サージ電流耐量が、実際の使用
時の値が予め設計された値となり、安全に使用すること
のできる信頼性に優れた積層型電圧非直線抵抗器を提供
することである。
The laminated voltage non-linear resistor of the present invention has been proposed in order to solve the problems of the prior art as described above, and its purpose is to obtain a surge current withstand value which is a value during actual use. Is a value designed in advance, and it is to provide a highly reliable laminated voltage nonlinear resistor that can be used safely.

【0008】[0008]

【課題を解決するための手段】上記のような従来技術の
問題点を解決するために、本発明は、バリスタ機能を有
するバリスタ組成材料内に、複数の内部電極を端部が交
互に露出するように積層した積層体と、前記内部電極の
露出する端部に接続された外部電極とを有する積層型電
圧非直線抵抗器において、前記積層体は、内部電極の総
積層数が常に偶数となるように設けられていることを特
徴とする。
In order to solve the above-mentioned problems of the prior art, in the present invention, a plurality of internal electrodes are alternately exposed at their ends in a varistor composition material having a varistor function. In the laminated voltage non-linear resistor having the laminated body thus laminated and the external electrode connected to the exposed end of the internal electrode, the laminated body has a total number of internal electrodes that is always an even number. It is characterized by being provided as follows.

【0009】[0009]

【作用】以上の構成を有する本発明の作用は、以下の通
りである。すなわち、本発明においては、積層型電圧非
直線抵抗器を構成する積層体において、内部電極の総積
層数が偶数となるため、相対する2方向の端部では交互
に露出する導出部が同数となる。これにより、相対する
2つの外部電極には、それぞれ同数の内部電極が接続さ
れることになる。これにより、各外部電極の内部電極と
の接続有効面積は等しいものとなり、内部電極の一層当
たりの電流密度は、全て一定の値となる。したがって、
従来のように電流密度の偏りによってサージ電流耐量が
設計値よりも低い値となる問題は発生せず、設計値に沿
って安全に使用することができ、信頼性の高いものとな
る。
The operation of the present invention having the above construction is as follows. That is, in the present invention, since the total number of laminated internal electrodes is an even number in the laminated body constituting the laminated voltage non-linear resistor, the same number of lead-out portions that are alternately exposed at the opposite end portions in the two directions. Become. As a result, the same number of internal electrodes are connected to the two opposing external electrodes. As a result, the effective connection area of each external electrode with the internal electrode becomes equal, and the current density per layer of the internal electrode becomes a constant value. Therefore,
Unlike the conventional case, there is no problem that the surge current withstand value becomes lower than the design value due to the deviation of the current density, and it is possible to use safely along the design value and the reliability is high.

【0010】[0010]

【実施例】以下、本発明による積層型電圧非直線抵抗器
の一実施例について、図面に基づき具体的に説明する。
なお、従来例と同様の部材は同一の符号を付し、説明を
省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a laminated voltage non-linear resistor according to the present invention will be specifically described below with reference to the drawings.
The same members as those in the conventional example are designated by the same reference numerals, and the description thereof will be omitted.

【0011】図1に示すように、本実施例の積層型電圧
非直線抵抗器においては、セラミックグリーンシート1
及び内部電極2を交互に積層してなる積層体3は、次の
ように構成されている。すなわち、積層体3は、総積層
数が偶数となる内部電極2は、導出部5が交互に反対側
になるように積層圧着され、焼結一体化されて構成され
ている。そして、相対する2方向に露出した各導出部5
には、内部電極2を電気的に並列に接続する外部電極4
が接続されている。
As shown in FIG. 1, in the laminated voltage nonlinear resistor of this embodiment, the ceramic green sheet 1 is used.
The laminated body 3 formed by alternately laminating the internal electrodes 2 and the internal electrodes 2 is configured as follows. That is, in the laminated body 3, the internal electrodes 2 having a total number of laminated layers are laminated and pressure-bonded so that the lead-out portions 5 are alternately opposite sides, and are sintered and integrated. Then, each lead-out portion 5 exposed in two opposite directions
Are external electrodes 4 that electrically connect the internal electrodes 2 in parallel.
Is connected.

【0012】以上のような構成を有する本実施例の作用
・効果は、以下の通りとなる。すなわち、内部電極2の
積層数を偶数とすることにより、第1電極層6と第2電
極層7はそれぞれ同一層数に積層された状態となり、導
出部数は同数となる。したがって、第1電極層6と第2
電極層7は、接続有効面積が等しく、内部電極の一層当
たりの電流密度は全て同一となる。これにより、サージ
電流がサージ電流耐量の設計値以下の場合は、内部電極
2と外部電極4の一方の接続部分がサージ電流により破
壊されることは発生しない。
The operation and effect of this embodiment having the above-mentioned structure are as follows. That is, by setting the number of laminated internal electrodes 2 to be an even number, the first electrode layer 6 and the second electrode layer 7 are laminated in the same number of layers, respectively, and the number of derived portions is the same. Therefore, the first electrode layer 6 and the second electrode layer 6
The electrode layers 7 have the same effective connection area, and the current densities per inner electrode layer are all the same. As a result, when the surge current is less than or equal to the design value of the surge current withstand capability, the connection between one of the inner electrode 2 and the outer electrode 4 is not destroyed by the surge current.

【0013】続いて、実際に前記工程に基づいて、本発
明として内部電極の積層数が偶数となる積層型電圧非直
線抵抗器(本発明品P)を製造すると共に、内部電極の
積層数が奇数となる積層型電圧非直線抵抗器(従来品
Q)を製造した。まず、本発明品P及び従来品Q共に、
その外径寸法は、短辺となる導出部側を2.5mm,長
辺側を3.2mm,厚みを1.3mmとした。また、本
発明品Pにおいては、内部電極の積層数を2,4,6の
3種類とし、従来品Qにおいては、1,3,5の3種類
とした。なお、相対する内部電極間のセラミック層(以
下、有効セラミック層)の厚さを70μmとし、最上部
内部電極の上部、及び最下部の内部電極の下部のセラミ
ック層の厚さを調整することにより、積層型電圧非直線
抵抗器の外径寸法を一致させた。
Subsequently, based on the above-mentioned steps, a laminated voltage non-linear resistor (invention product P) in which the number of laminated internal electrodes is an even number is manufactured according to the present invention, and the number of laminated internal electrodes is increased. An odd-numbered laminated voltage nonlinear resistor (conventional product Q) was manufactured. First, for both the product P of the present invention and the conventional product Q,
The outer diameter was 2.5 mm on the lead-out side, which is the short side, 3.2 mm on the long side, and 1.3 mm in thickness. Further, in the product P of the present invention, the number of stacked internal electrodes was three, 2, 4, and 6, and in the conventional product Q, three, 1, 3, and 5. By setting the thickness of the ceramic layer (hereinafter referred to as an effective ceramic layer) between the opposing internal electrodes to 70 μm, and adjusting the thicknesses of the ceramic layers above the uppermost internal electrode and below the lowermost internal electrode. The outer diameter dimensions of the laminated voltage nonlinear resistors were matched.

【0014】そして、以上のように製造された本発明品
Pと従来品Qについて、内部電極の積層数に対し、衝撃
電流波形が(8×20μsec)のサージ電流耐量を調
べた。その結果は、図2に示すように、内部電極の積層
数が偶数となる本発明品Pは、積層数が奇数となる従来
品Qに比べて、積層数の増加に対するサージ電圧耐量の
増加が大きいものとなっている。これは、積層数2の時
のサージ電圧耐量を基本とすると、本発明品Pでは、積
層数とサージ電流耐量が1:1で対応する正比例となっ
ているが、従来品Qでは、積層数の増加に対し、サージ
電流耐量の増加は低い値となっている。特に、積層数が
4となる本発明品Pのサージ電流耐量は、積層数がこれ
よりも大きい5となる従来品Qと比べて大きい値となっ
ている。
With respect to the product P of the present invention and the product Q of the related art manufactured as described above, the surge current withstanding current waveform (8 × 20 μsec) was examined with respect to the number of laminated internal electrodes. As a result, as shown in FIG. 2, in the product P of the present invention in which the number of laminated internal electrodes is an even number, the surge voltage withstand is increased with respect to the increase in the number of laminated layers as compared with the conventional product Q in which the number of laminated layers is an odd number. It is big. This is based on the surge voltage withstanding number when the number of laminated layers is 2, and in the product P of the present invention, the number of laminated layers and the surge current withstand amount are in a direct proportion of 1: 1. However, the increase in the surge current withstand value is low with respect to the increase. In particular, the surge current withstand value of the product P of the present invention in which the number of laminated layers is 4 is larger than that of the conventional product Q in which the number of laminated layers is 5, which is larger than this.

【0015】このことから、従来品Qは、内部電極の積
層数のみによりサージ電流耐量の設計した場合、この値
よりも低い値で破壊が現れることがわかる。これに対
し、本発明品Pは、内部電極の総積層数が常に偶数とな
るように構成することにより、積層数とサージ電流耐量
が1:1で対応するため、サージ電流耐量を正確に設計
することができると共に、この設計値と実際のサージ電
流耐量が一致する。したがって、設計値を信頼して安全
に使用することができ、信頼性に優れた積層型電圧非直
線抵抗器とすることができる。
From this, it is understood that when the conventional product Q is designed to have a surge current withstanding capacity only by the number of laminated internal electrodes, the breakdown appears at a value lower than this value. On the other hand, in the product P of the present invention, by configuring the total number of laminated internal electrodes to be an even number at all, the number of laminated layers corresponds to the surge current withstand ratio of 1: 1. In addition to being able to achieve this, the designed value and the actual surge current withstand value are in agreement. Therefore, it is possible to use the design value reliably and safely, and it is possible to provide a laminated voltage nonlinear resistor having excellent reliability.

【0016】なお、本発明は、以上のような実施例に限
定されるものではなく、各部材の材質、形状、大きさ等
は適宜変更可能である。例えば、内部電極の形状は、長
方形状に限定されず、マージン部を確保できるものであ
れば、台形や三角形等であってもよい。ただし、内部電
極と外部電極との接続長さを確保するために、内部電極
における外部電極との接続部分の幅は、内部電極におけ
る露出しない側の端部の幅と同一又はそれよりも広く、
且つマージン部を確保する必要があり、この場合、台形
や三角形又は凸形等であってもよい。
The present invention is not limited to the above embodiment, and the material, shape, size, etc. of each member can be appropriately changed. For example, the shape of the internal electrode is not limited to a rectangular shape, and may be a trapezoid, a triangle or the like as long as the margin can be secured. However, in order to secure the connection length between the internal electrode and the external electrode, the width of the connection portion of the internal electrode with the external electrode is the same as or wider than the width of the end of the internal electrode on the side not exposed,
In addition, it is necessary to secure a margin portion, and in this case, a trapezoidal shape, a triangular shape, a convex shape, or the like may be used.

【0017】また、製造過程も上記実施例に示されたも
のに限定されず、本発明と同様に内部電極の総積層数が
偶数となるように構成されているものであれば、どのよ
うに製造されたものであってもよい。
Also, the manufacturing process is not limited to that shown in the above embodiment, but as long as it is configured so that the total number of laminated internal electrodes is an even number as in the present invention, how is it made? It may be manufactured.

【0018】ところで、上述した実施例では、内部電極
に基づき説明したが、内部電極の積層数が偶数となる時
は、相対する内部電極に挟まれた有効セラミック層が奇
数となる時である。したがって、本発明では、有効セラ
ミック層を常に奇数となるように構成することにより、
内部電極の総積層数を偶数とすることと同様となり、同
様の作用・効果となる。
In the above-mentioned embodiments, the explanation has been made based on the internal electrodes, but when the number of laminated internal electrodes is even, the effective ceramic layer sandwiched between the opposing internal electrodes is odd. Therefore, in the present invention, by configuring the effective ceramic layer to always be an odd number,
This is the same as setting the total number of laminated internal electrodes to an even number, and the same operation and effect are obtained.

【0019】[0019]

【発明の効果】以上述べたように、本発明によれば、内
部電極の総積層数を偶数として構成することにより、サ
ージ電流耐量が実際の使用時の値と設計値とが一致する
ため、安全に使用することができ、信頼性に優れた積層
型電圧非直線抵抗器を提供することができる。
As described above, according to the present invention, by configuring the total number of laminated internal electrodes to be an even number, the surge current withstand value matches the value during actual use and the design value. It is possible to provide a laminated voltage nonlinear resistor that can be used safely and has excellent reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の積層型電圧非直線抵抗器の一実施例を
示す側面断面図。
FIG. 1 is a side sectional view showing an embodiment of a laminated voltage nonlinear resistor according to the present invention.

【図2】積層型電圧非直線抵抗器の従来品と本発明品と
のサージ電流耐量を比較した実験データを示すグラフ。
FIG. 2 is a graph showing experimental data comparing the surge current withstand capability of a conventional product and a product of the present invention of a laminated voltage non-linear resistor.

【図3】一般的な積層型電圧非直線抵抗器を示す側面断
面図。
FIG. 3 is a side sectional view showing a general laminated voltage non-linear resistor.

【符号の説明】[Explanation of symbols]

1 セラミックグリーンシート 2 内部電極 3 積層体 4 外部電極 5 導出部 6 第1電極層 7 第2電極層 1 Ceramic Green Sheet 2 Internal Electrode 3 Laminated Body 4 External Electrode 5 Lead-out Part 6 First Electrode Layer 7 Second Electrode Layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 バリスタ機能を有するバリスタ組成材料
内に、複数の内部電極を端部が交互に露出するように積
層した積層体と、前記内部電極の露出する端部に接続さ
れた外部電極とを有する積層型電圧非直線抵抗器におい
て、 前記積層体は、内部電極の総積層数が常に偶数となるよ
うに設けられていることを特徴とする積層型電圧非直線
抵抗器。
1. A laminated body in which a plurality of internal electrodes are laminated in a varistor composition material having a varistor function so that the ends are alternately exposed, and an external electrode connected to the exposed ends of the internal electrodes. In the laminated voltage non-linear resistor having the above-mentioned, the laminated body is provided so that the total number of laminated internal electrodes is always an even number.
JP21199894A 1994-08-12 1994-08-12 Multilater voltage-nonlinear resistor Pending JPH0855710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21199894A JPH0855710A (en) 1994-08-12 1994-08-12 Multilater voltage-nonlinear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21199894A JPH0855710A (en) 1994-08-12 1994-08-12 Multilater voltage-nonlinear resistor

Publications (1)

Publication Number Publication Date
JPH0855710A true JPH0855710A (en) 1996-02-27

Family

ID=16615206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21199894A Pending JPH0855710A (en) 1994-08-12 1994-08-12 Multilater voltage-nonlinear resistor

Country Status (1)

Country Link
JP (1) JPH0855710A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6346871B1 (en) 1998-01-09 2002-02-12 Tdk Corporation Laminate type varistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6346871B1 (en) 1998-01-09 2002-02-12 Tdk Corporation Laminate type varistor

Similar Documents

Publication Publication Date Title
US7864025B2 (en) Component with countermeasure to static electricity
JP7396572B2 (en) Multilayer ceramic capacitor and its manufacturing method
JPH04333295A (en) Electrostrictive effect element and manufacture thereof
JP3440883B2 (en) Chip type negative characteristic thermistor
WO2000024010A1 (en) Ptc chip thermistor
JPH10312933A (en) Laminated ceramic electronic parts
JP2005136131A (en) Laminated capacitor
JP2002260949A (en) Laminated ceramic capacitor
JPH0855710A (en) Multilater voltage-nonlinear resistor
JP2003045741A (en) Multiterminal-type electronic component
JP2005516386A (en) Electroceramic component with internal electrodes
JPS5969902A (en) 3-terminal laminated varistor
JP5437248B2 (en) Electrical multilayer components
JP3008568B2 (en) Chip varistor
JP2013211432A (en) Lamination type piezoelectric element
JP2985444B2 (en) Stacked varistor
JP6966727B2 (en) Laminated piezoelectric element
JP3057968B2 (en) Multilayer piezoelectric element
JP7508366B2 (en) Low Aspect Ratio Varistor
JP3006355B2 (en) Manufacturing method of laminated piezoelectric element
JPH07220908A (en) Laminated nonlinear resistor
JPH02260605A (en) Lamination type varistor
JPS63102218A (en) Laminated multiterminal electronic component
JP2869897B2 (en) Varistor
JP3008575B2 (en) Varistor