JPH0850924A - Charging method for lead-acid battery - Google Patents

Charging method for lead-acid battery

Info

Publication number
JPH0850924A
JPH0850924A JP6202893A JP20289394A JPH0850924A JP H0850924 A JPH0850924 A JP H0850924A JP 6202893 A JP6202893 A JP 6202893A JP 20289394 A JP20289394 A JP 20289394A JP H0850924 A JPH0850924 A JP H0850924A
Authority
JP
Japan
Prior art keywords
charging
constant current
time
voltage
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6202893A
Other languages
Japanese (ja)
Inventor
Kunio Yonezu
邦雄 米津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP6202893A priority Critical patent/JPH0850924A/en
Publication of JPH0850924A publication Critical patent/JPH0850924A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To control the positive electrode potential to be within a specified range during charging, and enhance life performance with a positive plate suppressed in elongation by dividing the charging area into four areas, and thereby specifying a relation between each terminal voltage and charging time in each divided area. CONSTITUTION:The charging of a lead storage battery employing a lattice made of a lead-calcium alloy as a positive plate is carried out by dividing its charging area into four areas A through D. In the area A, charging is carried out at constant current or semi-constant current, and the terminal voltage is increased as time elapses. In the area B, charging is carried out at constant current or semi-constant current, and specified voltage V1 is kept constant for the specified period of time T1. In the area C, charging is carried out at constant current or semi-constant current, and specified voltage V2 is kept constant for the specified period of time T2. A relation between each terminal voltage and the period of time for charging in the areas A through C is set to be V1<V2, and T1<T2. By this consttution, positive electrode potential is controlled to be less than a definite limit, a positive plate is made small in elongation, and life performance is thereby enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は鉛蓄電池の充電方法に関
するもので、特に鉛−カルシウム系合金格子を正極板に
用いた鉛蓄電池の正極板の伸びを抑制し鉛蓄電池の寿命
性能を改善するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for charging a lead acid battery, and more particularly to suppressing the elongation of the positive electrode plate of a lead acid battery using a lead-calcium alloy grid as the positive electrode plate and improving the life performance of the lead acid battery. It is a thing.

【0002】[0002]

【従来の技術とその課題】鉛蓄電池は、無保守化の要求
に伴って正極板に鉛−カルシウム系合金格子を用いる密
閉形電池が多くなっている。この正極板の問題点は、従
来の鉛−アンチモン系合金と異なって、電池使用中に格
子の伸びが大きく、格子と活物質との接合が悪くなって
早期に容量低下することである。
2. Description of the Related Art Lead-acid batteries, in which lead-acid batteries use a lead-calcium alloy lattice as a positive electrode plate, are increasing in number due to the need for maintenance-free batteries. The problem with this positive electrode plate is that, unlike the conventional lead-antimony-based alloy, the lattice expands greatly during use of the battery, the bond between the lattice and the active material deteriorates, and the capacity decreases early.

【0003】鉛−カルシウム合金を正極板に用いた鉛蓄
電池、特に密閉形電池の充電は、定電流−定電圧充電が
最も一般的である。鉛蓄電池は深い放電後には充電受入
れ性が良好であって、定電圧充電では初期に大電流が流
れる。そこで所定の電圧に達するまでは定電流で充電
し、所定電圧に達した後は定電圧で充電するわけであ
る。
Constant-current-constant-voltage charging is the most common method for charging lead-acid batteries using a lead-calcium alloy for the positive electrode plate, especially sealed batteries. Lead-acid batteries have good charge acceptance after deep discharge, and a large current initially flows during constant-voltage charging. Therefore, the battery is charged with a constant current until it reaches a predetermined voltage, and is charged with a constant voltage after reaching the predetermined voltage.

【0004】この定電流−定電圧充電のほかに、これを
一部分だけ修正して、定電圧充電に移行した直後に電流
を大きくして端子電圧をある期間だけ高くする充電方法
が提案されている。これは、所定の端子電圧に上昇して
もある時間は端子電圧を高くして充電するものである。
また、定電圧充電の末期の短い時間だけ、再び定電流充
電して電池電圧を高くする充電方法も提案されている。
In addition to the constant current-constant voltage charging, there has been proposed a charging method in which the current is increased and the terminal voltage is increased for a certain period just after shifting to constant voltage charging. . This is to charge by increasing the terminal voltage for a certain period of time even if the voltage rises to a predetermined terminal voltage.
Also, a charging method has been proposed in which the battery voltage is increased by performing constant-current charging again only for a short period at the end of constant-voltage charging.

【0005】これらの定電流−定電圧充電およびそれを
一部修正した方法では、電池のサイクル寿命は正極格子
の伸びのために短く、とくにに浅い放電が頻繁に入る用
途で短寿命であった。
In these constant current-constant voltage charging and the method in which the constant current is partially modified, the cycle life of the battery is short due to the elongation of the positive electrode grid, and the life is short especially in applications where shallow discharge frequently occurs. .

【0006】本発明は放電後の鉛蓄電池の充電特性を、
正極板と負極板とに分けて詳細に測定するとともに、長
時間の定電圧充電における充電電圧と正極格子の伸びと
の関係を明らかにして、電池使用中に生じる正極格子の
伸びを小さくすること、すなわち長寿命化を図る充電方
法を見出したものである。
The present invention shows the charging characteristics of a lead-acid battery after discharging,
Measure the details separately for the positive electrode plate and the negative electrode plate and clarify the relationship between the charging voltage and the expansion of the positive electrode grid during long-term constant voltage charging to reduce the expansion of the positive electrode grid that occurs during battery use. That is, the present invention has found a charging method for extending the life.

【0007】[0007]

【課題を解決するための手段】本発明は、鉛−カルシウ
ム合金格子を正極板に用いた鉛蓄電池の充電方法に関す
るものであり、電池の端子電圧が時間とともに上昇す
る、定電流または準定電流の充電領域Aと、所定端子電
圧V1 を所定時間T1 維持する、定電圧充電領域Bと、
再び端子電圧が時間とともに上昇する、定電流または準
定電流の充電領域Cと、所定端子電圧V2 を所定時間T
2 以上維持する、定電圧充電領域Dとからなり、V1
2 であり、T1 <T2 であることを特徴とするもので
ある。
The present invention relates to a method for charging a lead storage battery using a lead-calcium alloy lattice as a positive electrode plate, which has a constant current or quasi-constant current in which the terminal voltage of the battery rises with time. Charging area A, and a constant voltage charging area B for maintaining a predetermined terminal voltage V 1 for a predetermined time T 1 ;
A constant current or quasi-constant current charging area C where the terminal voltage rises again with time and a predetermined terminal voltage V 2 for a predetermined time T
The constant voltage charging region D is maintained for 2 or more, and V 1 <
V 2 and T 1 <T 2 .

【0008】[0008]

【作用】本発明充電方法によれば、充電中の正極電位が
一定限度以下に効果的に抑制されるので、正極板の伸び
が抑制され鉛蓄電池の寿命性能が改善されることにな
る。
According to the charging method of the present invention, the positive electrode potential during charging is effectively suppressed below a certain limit, so that the elongation of the positive electrode plate is suppressed and the life performance of the lead storage battery is improved.

【0009】[0009]

【実施例】まず、鉛−カルシウム合金格子を用いた密閉
形鉛蓄電池を6ケ月間、45℃で、定電圧充電して、正
極板の格子の伸びを調べた結果を図1に示す。なお、正
および負極板の単極電位は、カドミウム電極に対する値
であり、また破線は推定である。この実験は長期間にわ
たって定電圧をかけたので、正極板の電位は図2の10
時間以降の安定した電位になっている。格子の伸びは充
電電圧と密接な関係があった。充電電圧が高いほど、す
なわち、正極板の電位が高いほど格子の伸びは大きかっ
た。
EXAMPLE First, a sealed lead-acid battery using a lead-calcium alloy lattice was charged at a constant voltage at 45 ° C. for 6 months, and the lattice expansion of the positive electrode plate was examined. The results are shown in FIG. The unipolar potentials of the positive and negative plates are the values for the cadmium electrode, and the broken line is an estimate. Since a constant voltage was applied for a long period of time in this experiment, the potential of the positive electrode plate was 10 in FIG.
It has a stable potential after time. The lattice stretch was closely related to the charging voltage. The higher the charging voltage, that is, the higher the potential of the positive electrode plate, the greater the elongation of the lattice.

【0010】この実験結果から、充電時間が一定であれ
ば、充電電圧は低くするほど+板の電位は低くなって、
+板の伸びは少なくなって長寿命となることが判る。
From the results of this experiment, if the charging time is constant, the lower the charging voltage, the lower the potential of the + plate,
It can be seen that the + plate stretches less and has a longer life.

【0011】つぎに鉛蓄電池の定電流−定電圧充電時の
特性を図2に示す。ここで、電池は100Ah(5hR) の
密閉形鉛蓄電池で、定電流充電の電流は20A(5hR電
流)、定電圧充電の電位は2.5V/セルである。時間
領域Xでは端子電圧は時間経過とともに上昇し、定電流
で充電される。時間領域Yでは端子電圧は一定で、充電
電流は時間経過とともに急激に減少する。このときの正
極板の電位は、領域Xでは上昇し、領域Yに入ると低下
した後一定値を示す。負極板の電位は領域Xでは低下す
るがその程度は正極板の上昇よりは少ない。領域Yに入
ると、負極板の電位は低下した後一定値を示し、それは
正極板の電位の変化と同じである。これは、領域Yが定
電圧であって、正極板と負極板との電位差が一定である
ためである。このように、従来の標準的な充電方法であ
る定電流−定電圧充電では、正極板の電位は、定電流領
域から定電圧領域に移る前後で、すなわち、図2で矢印
で示した部分で一時的に高くなることが、鉛蓄電池の特
性であることが判った。
Next, FIG. 2 shows the characteristics of the lead storage battery during constant current-constant voltage charging. Here, the battery is a sealed lead-acid battery of 100 Ah (5 hR), the constant current charging current is 20 A (5 hR current), and the constant voltage charging potential is 2.5 V / cell. In the time region X, the terminal voltage rises with the lapse of time and is charged with a constant current. In the time region Y, the terminal voltage is constant, and the charging current sharply decreases with time. At this time, the potential of the positive electrode plate rises in the region X, decreases in the region Y, and then shows a constant value. The potential of the negative electrode plate decreases in the region X, but to a lesser extent than that of the positive electrode plate. In the region Y, the potential of the negative electrode plate decreases and then shows a constant value, which is the same as the change in the potential of the positive electrode plate. This is because the region Y has a constant voltage and the potential difference between the positive electrode plate and the negative electrode plate is constant. Thus, in constant current-constant voltage charging, which is a conventional standard charging method, the potential of the positive electrode plate is before and after moving from the constant current region to the constant voltage region, that is, at the portion indicated by the arrow in FIG. It has been found that the temporary increase in temperature is a characteristic of the lead storage battery.

【0012】なお、正極板の伸びは端子電圧ではなく
て、正極板の電位によって定まることは明らかである。
したがって、正極板の伸びを小さくするには、充電中に
正極板の電位をできるだけ低く保てば良いこと、すなわ
ち正極板の電位を高くしないことが重要である。
It is obvious that the elongation of the positive electrode plate is determined not by the terminal voltage but by the potential of the positive electrode plate.
Therefore, in order to reduce the elongation of the positive electrode plate, it is important to keep the potential of the positive electrode plate as low as possible during charging, that is, not increase the potential of the positive electrode plate.

【0013】従来の定電流−定電圧充電において、正極
板の電位が高くなるのは、定電流から定電圧に変わる前
後の短い時間だけであることに着目し、その時だけ、電
池に印加する電圧を低く抑えて正極板の電位を低くし、
その後の長い充電時間においては所定の値の電圧で充電
すれば、正極板の伸びが著しい高い電圧を避けて電池を
充電することが可能となる。
In the conventional constant current-constant voltage charging, it is noted that the potential of the positive electrode plate becomes high only for a short time before and after the constant current is changed to the constant voltage, and only at that time, the voltage applied to the battery is increased. To lower the potential of the positive electrode plate,
If the battery is charged with a voltage of a predetermined value during a long charging time thereafter, it becomes possible to charge the battery while avoiding a voltage at which the positive electrode plate stretches significantly.

【0014】つぎに、5時間率放電容量100アンペア
・アワー(Ah )の密閉形鉛蓄電池について、最大電流
20Aの定電流充電と、V1 =2.35Vの定電圧充電
を約2h、V2 =2.5Vの定電圧充電を14h行った
ときの、本発明になる方法による充電特性を図3に示
す。+板の電位は従来の方法と比較すると、約0.1V
低く抑えることができる。充電電気量が前回放電の10
5〜110%となれば充電はほぼ完了するが、従来方法
では約10h、本発明方法でもほぼ同じ時間で充電がで
き、充電時間の延長はほとんどない。なお、2.35V
の定電圧充電では約15hを必要とする。
Next, for a sealed lead-acid battery with a discharge capacity of 5 hours of 100 ampere hour (Ah), constant current charging with a maximum current of 20 A and constant voltage charging with V 1 = 2.35 V were performed for about 2 h and V 2. FIG. 3 shows the charging characteristics according to the method of the present invention when a constant voltage of 2.5 V was charged for 14 hours. Compared with the conventional method, the potential of the + plate is about 0.1V
It can be kept low. The amount of charge is 10 of the previous discharge
When the ratio is 5 to 110%, the charging is almost completed, but the conventional method can perform the charging in about 10 hours, and the method of the present invention can perform the charging in almost the same time, and the charging time is hardly extended. In addition, 2.35V
It takes about 15 hours for constant voltage charging.

【0015】さらに、放電は20Aで1h、充電は上記
の2種類の方法で行った浅い充放電サイクルによる寿命
試験結果を図4に示す。ただし充電時間は、試験の都合
上から11hとした。すなわち、この場合のV1 =2.
35V、V2 =2.5V、T1 =2h、T2 =5〜6h
である。200サイクル後に解体して正極板の伸びを調
べた結果、本発明になる方法で充電した電池では幅方向
で3.4%、高さ方向で2.1%であったが、従来方法
による電池では、幅方向で4.7%、高さ方向で2.9
%であり、本発明による方法で充電した電池の格子の伸
びの約5割増しであった。
Further, FIG. 4 shows the result of the life test by the shallow charge / discharge cycle in which the discharge was carried out at 20 A for 1 hour and the charge was carried out by the above two kinds of methods. However, the charging time was set to 11 hours for the convenience of the test. That is, V 1 = 2.
35V, V 2 = 2.5V, T 1 = 2h, T 2 = 5~6h
Is. As a result of disassembling after 200 cycles and examining the elongation of the positive electrode plate, the battery charged by the method according to the present invention was 3.4% in the width direction and 2.1% in the height direction. Then, 4.7% in the width direction and 2.9 in the height direction.
%, Which was about 50% of the elongation of the lattice of the battery charged by the method according to the present invention.

【0016】[0016]

【発明の効果】本発明充電方法によれば正極板の伸びが
抑制されるので、電池の寿命性能が改善され、その工業
的価値は甚だ大なるものである。
According to the charging method of the present invention, since the elongation of the positive electrode plate is suppressed, the life performance of the battery is improved, and its industrial value is enormous.

【図面の簡単な説明】[Brief description of drawings]

【図1】正極板の電位と伸びの関係を示した図FIG. 1 is a diagram showing the relationship between the potential of a positive electrode plate and elongation.

【図2】定電流−定電圧充電特性図[Fig. 2] Constant current-constant voltage charging characteristic diagram

【図3】本発明充電方法による充電特性図FIG. 3 is a charging characteristic diagram according to the charging method of the present invention.

【図4】寿命試験結果を比較した図FIG. 4 is a diagram comparing life test results.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電池の端子電圧が時間とともに上昇す
る、定電流または準定電流の充電領域Aと、所定端子電
圧V1 を所定時間T1 維持する、定電圧充電領域Bと、
再び端子電圧が時間とともに上昇する、定電流または準
定電流の充電領域Cと、所定端子電圧V2 を所定時間T
2 以上維持する、定電圧充電領域Dとからなり、V1
2 であり、T1 <T2 であることを特徴とする鉛−カ
ルシウム系合金格子を正極板に用いた鉛蓄電池の充電方
法。
1. A constant current or quasi-constant current charging region A in which the terminal voltage of the battery rises with time, and a constant voltage charging region B in which a predetermined terminal voltage V 1 is maintained for a predetermined time T 1 .
A constant current or quasi-constant current charging area C where the terminal voltage rises again with time and a predetermined terminal voltage V 2 for a predetermined time T
The constant voltage charging region D is maintained for 2 or more, and V 1 <
A method of charging a lead storage battery using a lead-calcium alloy lattice as a positive electrode plate, wherein V 2 and T 1 <T 2 .
JP6202893A 1994-08-04 1994-08-04 Charging method for lead-acid battery Pending JPH0850924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6202893A JPH0850924A (en) 1994-08-04 1994-08-04 Charging method for lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6202893A JPH0850924A (en) 1994-08-04 1994-08-04 Charging method for lead-acid battery

Publications (1)

Publication Number Publication Date
JPH0850924A true JPH0850924A (en) 1996-02-20

Family

ID=16464952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6202893A Pending JPH0850924A (en) 1994-08-04 1994-08-04 Charging method for lead-acid battery

Country Status (1)

Country Link
JP (1) JPH0850924A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104104134A (en) * 2014-06-27 2014-10-15 联想(北京)有限公司 Charging control method and electronic equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104104134A (en) * 2014-06-27 2014-10-15 联想(北京)有限公司 Charging control method and electronic equipment

Similar Documents

Publication Publication Date Title
CN108767909A (en) A kind of charging curve and charging method of standard
CN109515251B (en) Lithium battery pack balance control method for hybrid power
WO2021077273A1 (en) Charging method, electronic device and storage medium
JP2009212038A (en) Formation method of battery case for lead storage battery
JPH0850924A (en) Charging method for lead-acid battery
WO2023004645A1 (en) Charging method and apparatus, vehicle, and computer readable storage medium
CN216016483U (en) Improved generation lithium iron phosphate battery charging line
JP4331473B2 (en) Charge / discharge control device and charge / discharge control method for lead-acid battery
JP4081698B2 (en) Lead-acid battery charging method
KR20180021789A (en) Rapid formation of electrodes
JP4411729B2 (en) Lead-acid battery charging method
KR100329885B1 (en) Lead acid bettery
JP3184308B2 (en) Rechargeable battery charge control method
WO2023185148A1 (en) Electrochemical apparatus and control method therefor, and electronic device and storage medium
JPH08329988A (en) Method for charging sealed lead-acid battery
JP4120084B2 (en) Lead-acid battery charging method
JP2003223935A (en) Charging method of control valve lead storage battery
JPH06349486A (en) Negative electrode plate for lead-acid battery
JP4557372B2 (en) Battery life evaluation method
JPH10241746A (en) Charging method of sealed-type lead storage battery
JPH10189057A (en) Charging method for lead-acid battery
JP4213263B2 (en) Nonaqueous electrolyte secondary battery discharge capacity measurement method
JPH07111164A (en) Life increasing method for lead-acid battery
JP2001126771A (en) Charging method of sealed lead-acid battery
JP2000243456A (en) Method for charging lead-acid battery