JP3184308B2 - Rechargeable battery charge control method - Google Patents

Rechargeable battery charge control method

Info

Publication number
JP3184308B2
JP3184308B2 JP18189992A JP18189992A JP3184308B2 JP 3184308 B2 JP3184308 B2 JP 3184308B2 JP 18189992 A JP18189992 A JP 18189992A JP 18189992 A JP18189992 A JP 18189992A JP 3184308 B2 JP3184308 B2 JP 3184308B2
Authority
JP
Japan
Prior art keywords
battery
amount
charge
charging
energy efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18189992A
Other languages
Japanese (ja)
Other versions
JPH065310A (en
Inventor
登 佐藤
一広 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP18189992A priority Critical patent/JP3184308B2/en
Publication of JPH065310A publication Critical patent/JPH065310A/en
Application granted granted Critical
Publication of JP3184308B2 publication Critical patent/JP3184308B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は二次電池の充電制御方法
に関し、さらに詳しくは、エネルギー効率(電池の放電
エネルギー/充電エネルギー)を考慮し、これが小さく
ならないように配慮した充電制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charge control method for a secondary battery, and more particularly, to a charge control method in which energy efficiency (battery discharge energy / charge energy) is taken into consideration so as not to be reduced.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】ニッカ
ド電池(Ni−Cd電池)は代表的な二次電池であり、家電
を始めとする種々の分野に広く利用されている。また、
最近では、ニッカド電池よりも高エネルギー密度を達成
することができる二次電池としてニッケル−水素電池が
開発され、一部実用化されている。
2. Description of the Related Art Nickel batteries (Ni-Cd batteries) are typical secondary batteries, and are widely used in various fields including home appliances. Also,
Recently, nickel-hydrogen batteries have been developed as secondary batteries capable of achieving higher energy density than nickel-cadmium batteries, and some of them have been put to practical use.

【0003】従来、このような二次電池を充電する場
合、電池容量の150 %以上にもおよぶ電気量を充電する
(50%以上の過充電を行う)のが一般的であり、場合に
よっては、70〜100 %程度の過充電(電池容量の170 〜
200 %程度の充電)を行うこともあった。すなわち、従
来の充電操作においては、上記した程度の過充電を行う
ことによって、電池容量いっぱいに充電することが目指
されていた。
Conventionally, when charging such a secondary battery, it is general to charge an amount of electricity that exceeds 150% of the battery capacity (perform overcharging of 50% or more). , 70 ~ 100% overcharging (battery capacity 170 ~
(200% charge). That is, in the conventional charging operation, it has been aimed to charge the battery to its full capacity by performing the above-described overcharging.

【0004】ところが、充電量が電池容量の120 %程度
またはそれを超えるような比較的大きな度合いの過充電
を行うと、上述の通りほぼ電池容量いっぱいに充電を行
うことはできるが、エネルギー効率は小さくなる。ここ
で、エネルギー効率(EE)とは、 EE=〔(放電したクーロン量×放電時の平均電圧)/
(充電したクーロン量×充電時の平均電圧)〕×100
(%) により定義されるものであり、充電において電池に与え
たエネルギー量(入力電力量)に対する電池から取り出
されるエネルギー量(使用電力量)の割合を意味する。
したがって、エネルギー効率が小さいということは、使
用電力量が入力電力量に比して小さいことであり、経済
的ではない。
However, when overcharging is performed at a relatively large degree such that the charged amount is about 120% or more of the battery capacity, the battery can be charged to almost the full battery capacity as described above, but the energy efficiency is reduced. Become smaller. Here, the energy efficiency (EE) is: EE = [(discharged coulomb amount × average voltage at discharge) /
(Amount of charged coulomb x average voltage at charging)] x 100
(%), And means the ratio of the amount of energy (power consumption) extracted from the battery to the amount of energy (input power) given to the battery during charging.
Therefore, low energy efficiency means that the amount of power used is small compared to the amount of input power, which is not economical.

【0005】一方、実質的に過充電を行わず、電池の所
定容量以下(電池容量の100 %以下)の充電量とする
と、上記したエネルギー効率を高くすることはできる
が、電池が本来有する容量よりも少ないエネルギー量し
か電池内に蓄積することができない。これでは、電池容
量をフルに利用しているとは言えず、電池から取り出せ
るエネルギーの絶対量が少なくなる。
On the other hand, if the battery is charged substantially below a predetermined capacity (100% or less of the battery capacity) without substantially overcharging, the above-mentioned energy efficiency can be increased, but the capacity inherent in the battery can be improved. Only a smaller amount of energy can be stored in the battery. In this case, it cannot be said that the battery capacity is fully utilized, and the absolute amount of energy that can be extracted from the battery is reduced.

【0006】なお、実際に行われている二次電池の充電
制御方法の一つに、いわゆる「−ΔV検知方式」といわ
れる充電方法がある。この方法は、電池の端子間の電位
差をあるインターバル(時間)をおいて測定しながら充
電を行い、1つのインターバルの前後の端子間の電位差
の変化ΔVがプラス(+)である場合は充電を続け、こ
の電位差の変化ΔVがゼロ又はマイナス(−)に転じた
ら、充電を終了する方法である。
[0006] As one of the methods for actually controlling the charging of the secondary battery, there is a charging method called a so-called "-ΔV detection method". In this method, charging is performed while measuring the potential difference between the terminals of the battery at a certain interval (time), and when the change ΔV in the potential difference between the terminals before and after one interval is plus (+), the charging is performed. Subsequently, when the change ΔV of the potential difference turns to zero or minus (−), charging is terminated.

【0007】しかしながら、この方法では過大な過充電
をしやすく、エネルギー効率が小さくなる。
However, in this method, excessive overcharging is easily performed, and energy efficiency is reduced.

【0008】したがって、本発明の目的は、高いエネル
ギー効率で二次電池を充電する方法を提供することであ
る。
Therefore, an object of the present invention is to provide a method for charging a secondary battery with high energy efficiency.

【0009】[0009]

【課題を解決するための手段】上記目的を達成すべく二
次電池の充放電操作について鋭意研究の結果、本発明者
らは、上述したエネルギー効率(EE)は充電電流値又
は充電時間に個別的に依存せず、充電電流値と充電時間
の積である充電量に直接依存することを発見した。そし
て、このエネルギー効率は、電池容量より小さな充電量
ではほぼ一定で高い値をとるが、電池容量と同程度又は
それ以上の充電量においては、充電量が大きくなるにつ
れて、一次式で近似できるような減少傾向を示すことを
発見した。
As a result of intensive studies on the charging and discharging operations of a secondary battery to achieve the above object, the present inventors have found that the above-mentioned energy efficiency (EE) is individually determined by the charging current value or charging time. It has been found that it does not depend on the charge but directly depends on the charge amount which is the product of the charge current value and the charge time. The energy efficiency is almost constant and high at a charge amount smaller than the battery capacity, but can be approximated by a linear equation as the charge amount increases at a charge amount equal to or larger than the battery capacity. It has been found that it shows a significant downward trend.

【0010】そこで、なるべく電池容量をフルに活用で
き、エネルギー効率(EE)の値が特定の値以上となる
ような充電目標値を設定し、この充電目標値から充電直
前の電池の残存容量を差し引いた量を充電すれば、エネ
ルギー効率的に無駄の少ない充電を行うことができるこ
とを発見し、本発明を完成した。
Therefore, a charging target value is set so that the battery capacity can be fully utilized as much as possible and the value of the energy efficiency (EE) is equal to or more than a specific value, and the remaining capacity of the battery immediately before charging is determined from the charging target value. The inventor has found that charging the deducted amount enables energy-efficient charging with less waste, and completed the present invention.

【0011】すなわち、二次電池における本発明の充電
制御方法は、(a) 前記電池について、充電量と以下の式
により定義されるエネルギー効率(EE): EE(%)=〔(放電したクーロン量×放電時の平均電圧)/(充電したクーロ ン量×充電時の平均電圧)〕×100との関係式を求め、(b) 前記エネルギー効率(EE)が
定値以上となるような充電量を充電目標値として設定
し、(c) 前記電池の残存容量を測定し、(d) 前記関係式
を求めるのに用いたのと同じ条件で、前記充電目標値か
ら前記残存容量を差し引いた分を充電することを特徴と
する。
[0011] That is, the charge control method of the present invention for a secondary battery comprises: (a) for the battery, the charge amount and energy efficiency (EE) defined by the following equation: EE (%) = [(discharged coulomb) average voltage) / (seek relationship between the average voltage)] × 100 of coulomb amount × charging of charging at an amount × discharge, (b) the energy efficiency (EE) is Tokoro
It sets the charge amount such that more value as a charging target value, to measure the remaining capacity of the (c) said battery, (d) the relationship
Under the same conditions as those used to obtain the remaining charge, a charge obtained by subtracting the remaining capacity from the charge target value is charged.

【0012】以下、本発明を詳細に説明する。本発明で
は、対象となる二次電池について、以下の式により定義
されるエネルギー効率(EE): EE(%)=〔(放電したクーロン量×放電時の平均電圧)/(充電したクー ロン量×充電時の平均電圧)〕×100・・・(1) が所定値(例えば80%)以上となるような充電量を充
電目標値として設定する。
Hereinafter, the present invention will be described in detail. In the present invention, the energy efficiency (EE) of the target secondary battery is defined by the following equation: EE (%) = [(discharged coulomb amount × discharged average voltage) / (charged coulomb amount) × Average voltage at the time of charge)] × 100 (1) A charge amount is set as a charge target value that is equal to or more than a predetermined value (eg, 80%) .

【0013】なお、エネルギー効率(EE)は、以下に
示すクーロン効率及び電圧効率: クーロン効率(%)=(放電したクーロン量/充電した
クーロン量)×100 電圧効率(%)=(放電時の作動平均電圧/充電時の作
動平均電圧)×100 を用いて、 EE(%)=〔クーロン効率(%)〕×〔電圧効率
(%)〕×(1/100 ) として求めることもできる。
The energy efficiency (EE) is the following coulomb efficiency and voltage efficiency: Coulomb efficiency (%) = (discharged coulomb amount / charged coulomb amount) × 100 voltage efficiency (%) = (discharge time) EE (%) = [Coulomb efficiency (%)] × [Voltage efficiency (%)] × (1/100) by using (operation average voltage / operation average voltage during charging) × 100.

【0014】まず、充電目標値について、ニッケル−水
素電池の場合を例にとり詳細に説明する。
First, the charge target value will be described in detail by taking a nickel-hydrogen battery as an example.

【0015】本発明者等の研究によれば、上記(1) 式で
表されるエネルギー効率(EE)は、実質的に充電電流
値又は充電時間に依存せず、電池の充電量に依存する。
充電量に対するエネルギー効率(EE)の変化は、ニッ
ケル−水素電池については図1の曲線Aに示すようにな
る。
According to the study of the present inventors, the energy efficiency (EE) represented by the above equation (1) does not substantially depend on the charging current value or the charging time, but depends on the charge amount of the battery. .
The change in the energy efficiency (EE) with respect to the charged amount is as shown by the curve A in FIG. 1 for the nickel-metal hydride battery.

【0016】図1において、横軸の充電量(%)とは、
電池が本来有する容量に対する充電操作で電池に入力さ
れた電気量(充電電流値と充電時間との積で表される)
の割合を百分率で示したものであり、横軸の充電量
(%)が100 %である点においては、電池が本来有する
容量に相当する電気量を充電操作において電池に入力し
たことを意味する。
In FIG. 1, the charge amount (%) on the horizontal axis is
Electricity input to the battery during the charging operation for the battery's intrinsic capacity (expressed as the product of the charging current value and the charging time)
Is shown as a percentage, and the point that the charged amount (%) on the horizontal axis is 100% means that the amount of electricity corresponding to the capacity originally possessed by the battery was input to the battery in the charging operation. .

【0017】図1のエネルギー効率(EE)の変化を示
すグラフ(曲線A)から以下のことが言える。 (a) 充電量が電池の容量未満である場合(横軸にとった
充電量が100 %未満の場合)、エネルギー効率(EE)
はほぼ一定の高い値をとる。すなわち、この場合には、
充電した電気量のほとんど(90%程度)を放電電気量と
して得ることができる。 (b) 充電量が電池容量程度又はそれを超す値であると
(充電量が100 %以上となると)、充電量が大きくなる
につれてエネルギー効率はほぼ直線的に低下していく。
すなわち、この場合には、充電操作において電池に与え
た電気量に対する電池から取り出される電気量の割合が
低下する。この傾向は充電量を大きくすればするほど大
きくなる。
The following can be said from the graph (curve A) showing the change in energy efficiency (EE) in FIG. (a) Energy efficiency (EE) when the charge is less than the capacity of the battery (when the charge on the horizontal axis is less than 100%)
Takes an almost constant high value. That is, in this case,
Most (about 90%) of the charged electricity can be obtained as the discharged electricity. (b) When the charged amount is about or exceeds the battery capacity (when the charged amount becomes 100% or more), the energy efficiency decreases almost linearly as the charged amount increases.
That is, in this case, the ratio of the amount of electricity taken out of the battery to the amount of electricity given to the battery in the charging operation decreases. This tendency increases as the charge amount increases.

【0018】したがって、本発明においては、上記した
式(1) により定義されるエネルギー効率(EE)が所定
の高い値(例えば80%以上)となるような充電量を充
電目標値とし、この充電目標値を超さないように充電を
行う。このような充電目標値を導入することにより、エ
ネルギー効率のよい充電が可能となる。
Therefore, in the present invention, the energy efficiency (EE) defined by the above-mentioned equation (1) is determined to be a predetermined value.
And a high value (e.g. 80% or more) charge target value of charge such that the to charge so as not to exceed the charge target value. By introducing such a charging target value, charging with high energy efficiency becomes possible.

【0019】ところで、電池を有効に利用するには、当
然のことながらより多くのエネルギーを電池内に蓄積す
るのが好ましい。したがって、単純にエネルギー効率の
みを考えて充電を行うだけでは不十分であり、実際に電
池に蓄えられるエネルギーの絶対量を考慮して充電する
ことが好ましい。
By the way, in order to use the battery effectively, it is naturally preferable to store more energy in the battery. Therefore, it is not sufficient to simply perform charging only considering energy efficiency, and it is preferable to perform charging in consideration of the absolute amount of energy actually stored in the battery.

【0020】充電量を電池容量に比して小さくした場合
(充電量が100 %未満の場合)、エネルギー効率は前述
の通り高い値を示すが、実際に電池に蓄積されるエネル
ギー量(実際に電池に充電される電気量)は少なくな
る。すなわち、電池が本来保有している容量を十分活用
せず、少量のエネルギーしか蓄積しないことになる。
When the charge amount is smaller than the battery capacity (when the charge amount is less than 100%), the energy efficiency shows a high value as described above, but the energy amount actually stored in the battery (actually, The amount of electricity charged to the battery). In other words, the capacity inherent in the battery is not fully utilized, and only a small amount of energy is stored.

【0021】一方、充電量が電池容量以上となる過充電
を行った場合(充電量が100 %以上の場合)、エネルギ
ー効率(EE)は低下するが、実際に電池に蓄積される
エネルギー量(実際に電池に充電される電気量)は電池
が有する容量に近づく。
On the other hand, when overcharging is performed so that the charged amount exceeds the battery capacity (when the charged amount is 100% or more), the energy efficiency (EE) decreases, but the energy amount actually stored in the battery (EE) is reduced. The amount of electricity actually charged in the battery) approaches the capacity of the battery.

【0022】図1中に、エネルギー効率を表すグラフ
(曲線A)に加えて、充電量(充電操作において電池に
入力された電気量)と、実際に電池内に蓄積された電気
量との関係を定性的に表すグラフ(曲線B)を示す。こ
のグラフ(曲線B)は、充電量150 %のときの電池の電
気量を100 %とし、それに対する各充電量における電池
の電気量の割合を表したものである。以下この割合を最
大容量比(単位は%である)と呼ぶ。なお、最大容量比
の算出において、充電量150 %のときの電気量を基準と
したのは、これより大きな充電量としても、実際に電池
に蓄積される電気量に実質的に変化はみられず、充電量
が150 %のときの電池容量を最大容量とみなすことがで
きるからである。この最大容量比のスケールは図1右側
の縦軸に示してある。
In FIG. 1, in addition to the graph (curve A) representing energy efficiency, the relationship between the amount of charge (the amount of electricity input to the battery in the charging operation) and the amount of electricity actually stored in the battery Is qualitatively shown (curve B). This graph (curve B) shows the ratio of the amount of electricity of the battery at each amount of charge to the amount of electricity of the battery when the amount of charge is 150% as 100%. Hereinafter, this ratio is referred to as a maximum capacity ratio (unit is%). In calculating the maximum capacity ratio, the amount of electricity when the charged amount is 150% is used as a reference. Even if the charged amount is larger than this, there is substantially no change in the amount of electricity actually stored in the battery. That is, the battery capacity when the charged amount is 150% can be regarded as the maximum capacity. The scale of the maximum capacity ratio is shown on the vertical axis on the right side of FIG.

【0023】図1の曲線Bからわかるように、最大容量
比は、充電量が100 %未満では、充電量の増加にしたが
ってほぼ直線的に増加するが、充電量100 %付近から最
大容量比の増加率は鈍ってゆき、充電量120 %以上で
は、実質的に最大容量比の増加はみられない。
As can be seen from the curve B in FIG. 1, the maximum capacity ratio increases almost linearly with an increase in the charge amount when the charge amount is less than 100%. The rate of increase slows down, and the maximum capacity ratio does not substantially increase when the charge amount is 120% or more.

【0024】本発明では、この最大容量比を参照して、
上述したエネルギー効率(EE)のみならず、実際に電
池に蓄えられる電気量も考慮して充電目標値を設定する
のが好ましい。具体的には、充電量が電池容量の80%
以上となるような充電目標値を設定するのが好ましい。
このような充電目標値とすると良好なエネルギー効率
で、十分な電気量を電池に蓄積することができる。
In the present invention, referring to this maximum capacity ratio,
It is preferable to set the charging target value in consideration of not only the energy efficiency (EE) described above but also the amount of electricity actually stored in the battery. Specifically, the charge amount is 80% of the battery capacity
It is preferable to set such a charge target value as described above.
With such a charge target value, a sufficient amount of electricity can be stored in the battery with good energy efficiency.

【0025】以上をまとめると、本発明の好ましい態様
では、図1に示す2つのグラフ(曲線A及びB)がとも
に高い値をとるような充電量を充電目標値として設定す
る。エネルギー効率、及び最大容量比(実際に電池に蓄
えられる電気量の大きさ)のどちらか一方が低くなるよ
うな充電目標値の設定は避けるのが好ましい。図1に示
すようなエネルギー効率及び最大容量比を有するニッケ
ル−水素電池の場合には、充電目標値は充電量105 ±15
%程度とするのが好ましい。
In summary, in a preferred embodiment of the present invention, a charge amount at which both of the two graphs (curves A and B) shown in FIG. 1 take a high value is set as a charge target value. It is preferable to avoid setting a charging target value such that one of the energy efficiency and the maximum capacity ratio (the amount of electricity actually stored in the battery) becomes low. In the case of a nickel-metal hydride battery having energy efficiency and maximum capacity ratio as shown in FIG.
% Is preferable.

【0026】以上に説明した条件を満たす充電目標値を
設定したら、以下に示す手順で二次電池の充電を行う。
After setting the charge target value satisfying the above-described conditions, the secondary battery is charged in the following procedure.

【0027】まず電池の残存容量を求める。次に、上記
した充電目標値とこの残存容量との差分を計算し、この
差分を充足するだけの充電を行う。なお、残存容量の測
定は、公知の方法により行うことができる。
First, the remaining capacity of the battery is determined. Next, a difference between the above-described charge target value and the remaining capacity is calculated, and charging is performed to satisfy the difference. The measurement of the remaining capacity can be performed by a known method.

【0028】図2を参照して上述の手順をさらに説明す
ると、充電目標値CM を設定した後、電池の残存容量C
X を測定し、次に充電目標値CM と残存容量CX との差
(CM −CX )分を求め、この差分を充電する。なお、
図2において、C0 は対象となる電池の容量がゼロであ
る点を示しており、また、C100 は電池の本来有する容
量(容量100 %)を示している。
[0028] With referring to FIG. 2 further illustrate the above procedure, after setting the charging target value C M, the remaining capacity C of the batteries
X is measured, and then a difference (C M -C X ) between the charge target value C M and the remaining capacity C X is obtained, and this difference is charged. In addition,
In FIG. 2, C 0 indicates that the capacity of the battery in question is zero, and C 100 indicates the original capacity (capacity 100%) of the battery.

【0029】上述したように、エネルギー効率(EE)
は実質的に充電電流値又は充電時間に依存せず、電池の
充電量に依存する。したがって、実際の充電では、時間
一定の条件、又は電流一定の条件のどちらの条件を採用
してもよく、また時間と電流の両方を変化させてもよ
い。ただし、充電電流をX(A)、充電時間をY(h)
として、下記式: (CM −CX )=X(A)・Y(h)・・・(2) を満足するようにX及びYを適宜設定する。
As described above, the energy efficiency (EE)
Does not substantially depend on the charging current value or charging time, but on the charge amount of the battery. Therefore, in actual charging, either a constant time condition or a constant current condition may be employed, and both the time and the current may be changed. Here, the charging current is X (A) and the charging time is Y (h).
X and Y are appropriately set so as to satisfy the following formula: (C M −C X ) = X (A) · Y (h) (2)

【0030】充電操作で電池に与えるべき充電量〔Cv
=X(A)・Y(h)〕は、エネルギー効率を所定の値
例えば80%以上)にセットすれば、図1に示す曲線
Aの回帰線から求めることができる。たとえば、充電量
100 %以上の領域においては、エネルギー効率(EE)
を充電量(Cv)の一次関数として近似することができ
るが、その近似式(回帰直線): EE=a・Cv+b・・・(3) を参照すれば、設定したエネルギー効率の値に対応する
充電量Cvを得ることができる。そして、この充電量C
vに合うように、充電操作を行えばよい。
The charge amount [Cv] to be given to the battery in the charging operation
= X (A) .Y (h)] can be obtained from the regression line of the curve A shown in FIG. 1 if the energy efficiency is set to a predetermined value ( for example, 80% or more). For example, charge
Energy efficiency (EE) in the region above 100%
Can be approximated as a linear function of the amount of charge (Cv). The approximate equation (regression line): EE = a · Cv + b (3) The charge amount Cv can be obtained. And this charge amount C
What is necessary is just to perform a charging operation so that it may match with v.

【0031】本発明を以下の具体的実施例により更に詳
細に説明する。実施例1 正極材としてニッケル塩類を用い、また負極材として水
素吸蔵合金を用い、電解質として水酸化カリウムを用い
てニッケル−水素電池を構成した。
The present invention will be described in more detail with reference to the following specific examples. Example 1 A nickel-hydrogen battery was constructed using nickel salts as a positive electrode material, a hydrogen storage alloy as a negative electrode material, and potassium hydroxide as an electrolyte.

【0032】このニッケル−水素電池について、充電時
間を8時間と一定とし、充電電流値を3.1 〜5.0 アンペ
アの範囲で変化させ、充電量が91〜148 %となる複数回
の充電操作を行った。そして、各充電操作の後に放電を
行い、それぞれの放電における放電容量、平均放電電圧
を測定した。
With respect to this nickel-hydrogen battery, the charging time was fixed at 8 hours, the charging current value was changed in the range of 3.1 to 5.0 amps, and a plurality of charging operations were performed so that the charging amount was 91 to 148%. . Then, after each charging operation, discharging was performed, and a discharging capacity and an average discharging voltage in each discharging were measured.

【0033】各充電操作におけるパラメータ(充電電
流、充電時間、平均電圧)及び放電におけるパラメータ
から、それぞれクーロン効率、電圧効率、及びエネルギ
ー効率を計算した。結果を表1に示す。
Coulomb efficiency, voltage efficiency, and energy efficiency were calculated from the parameters (charging current, charging time, average voltage) and discharging parameters in each charging operation. Table 1 shows the results.

【0034】 表1 充電量 充電電流 放電容量 クーロン効率 電圧効率 エネルギー効率(%) (A) (Ah) (%) (%) (%) 91.9 3.1 22.8 91.9 91.1 83.7 100.7 3.4 25.3 93.0 92.0 85.6 103.7 3.5 26.0 92.9 91.1 84.6 109.6 3.7 26.7 90.0 90.5 81.5 112.6 3.8 27.6 90.6 88.6 80.3 118.5 4.0 27.4 85.6 88.9 76.1 148.1 5.0 27.9 69.8 88.3 61.6 Table 1 Charge amount Charge current Discharge capacity Coulomb efficiency Voltage efficiency Energy efficiency (%) (A) (Ah) (%) (%) (%) 91.9 3.1 22.8 91.9 91.1 83.7 100.7 3.4 25.3 93.0 92.0 85.6 103.7 3.5 26.0 92.9 91.1 84.6 109.6 3.7 26.7 90.0 90.5 81.5 112.6 3.8 27.6 90.6 88.6 80.3 118.5 4.0 27.4 85.6 88.9 76.1 148.1 5.0 27.9 69.8 88.3 61.6

【0035】表1からわかるように、実施例1のニッケ
ル−水素電池では、充電量を110 %以下にした場合に、
エネルギー効率が80%以上となる。
As can be seen from Table 1, in the case of the nickel-hydrogen battery of Example 1, when the charge amount was 110% or less,
Energy efficiency is 80% or more.

【0036】また、表1に示すエネルギー効率の値を充
電量に対してプロットし、回帰直線Cを求めた。結果を
図3に示す。なお、回帰直線Cは充電量をCvとして以
下の式で表される。 EE=−0.528 Cv+137.22
Further, the values of the energy efficiency shown in Table 1 were plotted against the charged amount, and a regression line C was obtained. The results are shown in FIG. Note that the regression line C is represented by the following equation, where the charge amount is Cv. EE = -0.528 Cv + 137.22

【0037】図3に示す回帰直線Cを用いれば、どれぐ
らいの充電量でどれぐらいのエネルギー効率を得ること
ができるかという情報を得ることができる。この回帰直
線Cによれば、エネルギー効率を80%にするには、充
電量を108 %にすればよいのがわかる。
Using the regression line C shown in FIG. 3, it is possible to obtain information on how much energy efficiency can be obtained with how much charge amount. According to the regression line C, in order to make the energy efficiency 80%, the charge amount should be made 108%.

【0038】実施例2 実施例1と同一のニッケル−水素電池を用い、こんどは
充電電流を2.5 アンペアと一定として充電時間を8〜1
6時間で変化させ、充電量を74〜148 %とした充電操作
を行った。そして、各充電操作におけるパラメータ及び
放電におけるパラメータから、実施例1と同様に、それ
ぞれクーロン効率、電圧効率、及びエネルギー効率を計
算した。結果を表2に示す。
Example 2 The same nickel-hydrogen battery as in Example 1 was used, and the charging current was constant at 2.5 amps and the charging time was 8 to 1
The charging operation was performed by changing the charging amount in 6 hours and setting the charging amount to 74 to 148%. Then, Coulomb efficiency, voltage efficiency, and energy efficiency were calculated from the parameters in each charging operation and the parameters in discharging, respectively, as in Example 1. Table 2 shows the results.

【0039】 表2 充電量 充電時間 放電容量 クーロン効率 電圧効率 エネルギー効率(%) (hr) (Ah) (%) (%) (%) 74.1 8 19.5 97.5 91.5 89.2 101.9 11 26.0 94.5 91.2 86.2 120.4 13 28.55 87.8 90.5 79.5 134.3 14.5 28.8 79.4 90.0 71.5 148.1 16.0 28.8 72.0 89.5 64.4 Table 2 Charge amount Charge time Discharge capacity Coulomb efficiency Voltage efficiency Energy efficiency (%) (hr) (Ah) (%) (%) (%) 74.1 8 19.5 97.5 91.5 89.2 101.9 11 26.0 94.5 91.2 86.2 120.4 13 28.55 87.8 90.5 79.5 134.3 14.5 28.8 79.4 90.0 71.5 148.1 16.0 28.8 72.0 89.5 64.4

【0040】表2からわかるように、充電量が101.9 %
以下において、エネルギー効率が86%以上となる。ま
た、表2に示すエネルギー効率の値を充電量に対してプ
ロットし、回帰直線Dを求めた。結果を図3に合わせて
示す。なお、回帰直線Dは充電量をCvとして以下の式
で表される。 EE=−0.478 Cv+135.69
As can be seen from Table 2, the charge amount was 101.9%.
In the following, the energy efficiency becomes 86% or more. In addition, the values of the energy efficiency shown in Table 2 were plotted with respect to the charged amount, and a regression line D was obtained. The results are shown in FIG. Note that the regression line D is represented by the following equation, where the charge amount is Cv. EE = -0.478 Cv + 135.69

【0041】回帰直線Dによっても、どれぐらいの充電
量でどれぐらいのエネルギー効率を得ることができるか
という情報を得ることができる。回帰直線Dによれば、
エネルギー効率を80%とするには、充電量を116 %と
すればよいのがわかる。
The regression line D can also provide information on how much energy efficiency can be obtained with how much charge. According to the regression line D,
It can be seen that in order to achieve an energy efficiency of 80%, the charge amount should be 116%.

【0042】なお、回帰直線Cと回帰直線Dとは近接し
ているので、回帰直線Cによっても、また回帰直線Dに
よっても、同様の充電制御をすることができる。
Since the regression line C and the regression line D are close to each other, the same charge control can be performed by using the regression line C and the regression line D.

【0043】[0043]

【発明の効果】上記の通り、本発明の方法によれば、エ
ネルギー効率を考慮した充電操作を行うので、無駄な過
充電を確実に防止することができる。
As described above, according to the method of the present invention, since the charging operation is performed in consideration of the energy efficiency, useless overcharging can be reliably prevented.

【0044】本発明の方法は、ニッケル−水素電池を始
め、各種二次電池に適用することができる。
The method of the present invention can be applied to various secondary batteries including nickel-hydrogen batteries.

【図面の簡単な説明】[Brief description of the drawings]

【図1】二次電池の充電量とエネルギー効率との関係、
及び充電量と最大容量比との関係を示すグラフである。
FIG. 1 shows the relationship between the amount of charge of a secondary battery and energy efficiency,
4 is a graph showing a relationship between a charge amount and a maximum capacity ratio.

【図2】二次電池の充電を行う場合の制御システムを説
明するための模式図である。
FIG. 2 is a schematic diagram for explaining a control system when charging a secondary battery.

【図3】実施例1及び実施例2における充電量とエネル
ギー効率との関係をプロットしたグラフであり、各例の
結果から得られる回帰直線を合わせて示している。
FIG. 3 is a graph in which the relationship between the charged amount and the energy efficiency in Examples 1 and 2 is plotted, and also shows regression lines obtained from the results of each example.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 10/42 - 10/48 H02J 7/00 - 7/36 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 10/42-10/48 H02J 7 /00-7/36

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 二次電池の充電制御方法であって、 (a) 前記電池について、充電量と以下の式により定義さ
れるエネルギー効率(EE): EE(%)=〔(放電したクーロン量×放電時の平均電圧)/(充電したクーロ ン量×充電時の平均電圧)〕×100との関係式を求め、 (b) 前記エネルギー効率(EE)が所定値以上となるよう
な充電量を充電目標値として設定し、(c) 前記電池の残存容量を測定し、(d) 前記関係式を求めるのに用いたのと同じ条件で、
記充電目標値から前記残存容量を差し引いた分を充電す
ることを特徴とする二次電池の充電制御方法。
1. A charge control method for a secondary battery, comprising: (a) a charge amount and an energy efficiency (EE) defined by the following formula for the battery : EE (%) = [(discharged coulomb amount) × average voltage) / (seek relationship between the average voltage)] × 100 of coulomb amount × charging of charging during discharge, (b) the energy efficiency (EE) is the charge amount as equal to or greater than a predetermined value (C) measuring the remaining capacity of the battery, and (d) under the same conditions as those used for obtaining the relational expression , subtracting the remaining capacity from the charging target value. And charging control of the secondary battery.
【請求項2】 請求項1に記載の方法において、前記EE
の所定値を80%とし、前記充電目標値前記電池の容量
の80%以上とすることを特徴とする二次電池の充電制御
方法。
2. The method of claim 1, wherein said EE
The predetermined value is 80%, the charging control method for a secondary battery, characterized in that the said charge target value more than 80% of the capacity of the battery.
【請求項3】 請求項2に記載の方法において、前記二
次電池がニッケル−水素電池であり、前記充電目標値を
前記電池の容量の105±15%とすることを特徴とする二
次電池の充電制御方法。
3. The method according to claim 2, wherein the secondary battery is a nickel-metal hydride battery, and the charge target value is set at 105 ± 15% of the capacity of the battery. Charge control method.
JP18189992A 1992-06-16 1992-06-16 Rechargeable battery charge control method Expired - Fee Related JP3184308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18189992A JP3184308B2 (en) 1992-06-16 1992-06-16 Rechargeable battery charge control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18189992A JP3184308B2 (en) 1992-06-16 1992-06-16 Rechargeable battery charge control method

Publications (2)

Publication Number Publication Date
JPH065310A JPH065310A (en) 1994-01-14
JP3184308B2 true JP3184308B2 (en) 2001-07-09

Family

ID=16108833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18189992A Expired - Fee Related JP3184308B2 (en) 1992-06-16 1992-06-16 Rechargeable battery charge control method

Country Status (1)

Country Link
JP (1) JP3184308B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101016899B1 (en) 2008-06-03 2011-02-22 삼성에스디아이 주식회사 Battery pack and method of charge thereof
US8945735B2 (en) 2009-02-23 2015-02-03 Samsung Sdi Co., Ltd. Built-in charge circuit for secondary battery and secondary battery with the built-in charge circuit
JP5620423B2 (en) * 2012-03-06 2014-11-05 Necプラットフォームズ株式会社 Electronic device and battery charging method for electronic device

Also Published As

Publication number Publication date
JPH065310A (en) 1994-01-14

Similar Documents

Publication Publication Date Title
US5604418A (en) Method of charging a lithium storage cell having a carbone anode
JP2021083300A (en) Battery device and control method thereof
JP2000270491A (en) Lithium ion battery charging method and lithium ion battery charger
JP3184308B2 (en) Rechargeable battery charge control method
EP0921620B1 (en) Method for temperature dependent charging of a back-up power source which is subject to self-discharging
JP3107407B2 (en) How to charge the battery pack
WO2023070323A1 (en) Electrochemical apparatus management method, system, electrochemical apparatus and electronic device
JP3678045B2 (en) Battery charging method
Chang et al. Rapid partial charging of lead/acid batteries
JP3421398B2 (en) Vehicle secondary battery charging control method
JPH1174001A (en) Charging method for lead-acid battery
JPH09163624A (en) Secondary battery charging method
JP3340504B2 (en) Deterioration judgment method of lead storage battery
CN114636943B (en) Battery device, detection method thereof, screening method and screening device of battery unit
JPH06349486A (en) Negative electrode plate for lead-acid battery
JPS5814473A (en) Charging of sealed lead storage battery
Hartley et al. Optimal battery charging for damage mitigation
JP2001126771A (en) Charging method of sealed lead-acid battery
CN116031515A (en) Quick charging method for high-energy-density battery
JP4120084B2 (en) Lead-acid battery charging method
JP2003223935A (en) Charging method of control valve lead storage battery
JP2006147224A (en) Capacity estimation method of nickel-hydrogen storage battery
JPH11297364A (en) Charging method for lead-acid battery
JPH11297365A (en) Charging method for lead-acid battery
JP2946979B2 (en) Rechargeable battery charge control method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080427

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090427

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090427

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees