JP3421398B2 - Vehicle secondary battery charging control method - Google Patents

Vehicle secondary battery charging control method

Info

Publication number
JP3421398B2
JP3421398B2 JP24379793A JP24379793A JP3421398B2 JP 3421398 B2 JP3421398 B2 JP 3421398B2 JP 24379793 A JP24379793 A JP 24379793A JP 24379793 A JP24379793 A JP 24379793A JP 3421398 B2 JP3421398 B2 JP 3421398B2
Authority
JP
Japan
Prior art keywords
amount
charging
charge
battery
electricity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24379793A
Other languages
Japanese (ja)
Other versions
JPH0773903A (en
Inventor
一広 原
克哉 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP24379793A priority Critical patent/JP3421398B2/en
Publication of JPH0773903A publication Critical patent/JPH0773903A/en
Application granted granted Critical
Publication of JP3421398B2 publication Critical patent/JP3421398B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は二次電池の充電制御方法
に関し、さらに詳しくは、放電電気量とエネルギー効率
(電池の放電エネルギー/充電エネルギー)とを考慮し
た充電制御方法に関する。 【0002】 【従来の技術及び発明が解決しようとする課題】ニッカ
ド電池(Ni−Cd電池)は代表的な二次電池であり、家電
を始めとする種々の分野に広く利用されている。また、
最近では、ニッカド電池よりも高エネルギー密度を達成
することができる二次電池としてニッケル−水素電池が
開発され、一部実用化されている。 【0003】ところで、このような二次電池は電気自動
車にも用いられている。電気自動車用の二次電池の場
合、一回の充電による自動車の走行距離をできるだけ延
ばすのが一般には好ましいので、電池の放電容量の大き
さ(どれだけ多くの電気エネルギーを取り出せるか)が
重要となる。しかし、放電容量だけではなく、どれだけ
効率良く(低い電力コストで)充電を行うことができる
かという点も電気自動車のユーザーにとっては大きな関
心事である。 【0004】二次電池の充電において、なるべく大きな
放電電気量を得るために、充電毎に単純に電池の容量目
一杯に充電を行おうとすると、電池に与えたエネルギー
量(入力電力量)に対して、電池から取り出すエネルギ
ー量(使用電力量)の割合が大きく低下してエネルギー
効率が悪くなり、電力コストが大きく嵩む。 【0005】したがって、本発明の目的は、放電電気量
とエネルギー効率との両方を考慮し、二次電池の利用状
況に合った充電をすることができる充電制御方法を提供
することである。 【0006】 【課題を解決するための手段】上記目的を達成すべく鋭
意研究の結果、本発明者らは、使用電力量と入力電力量
との比で表されるエネルギー効率は、充電電流値又は充
電時間に個別的に依存せず、充電電流値と充電時間の積
である充電量に直接依存することを発見した。またエネ
ルギー効率は、電池容量に比して小さな電気量を充電す
る際にはほぼ一定で高い値をとるが、電池容量と同程度
の電気量を充電する場合には低下し、特に、いわゆる過
充電を行う場合にはその低下の度合いは大きくなること
を発見した。 【0007】そこで、充電電気量が異なる複数の充電モ
ードをあらかじめ設定しておき、二次電池の利用状況に
応じて(所望の放電電気量に適するように)、複数の充
電モードの中から1つを選択し、選択したモードにおけ
る充電電気量を充電する方法を採用すれば、いたづらに
エネルギー効率を低下させることなく、利用目的に応じ
た充電を行うことができることを発見し、本発明を完成
した。 【0008】すなわち、車両用二次電池における本発明
の充電制御方法は、充電電流及び/又は充電時間の相違
により最大容量比が異なる複数の充電モードを設定して
おき、前記車両の予定走行距離に合致する最大容量比を
有する充電モードを前記複数の充電モードの中から選択
、選択した充電モードにおける充電電気量となるよう
に充電することを特徴とする。 【0009】 【実施例】以下、ニッケル−水素電池を例にとり本発明
を詳細に説明するが、本発明はこれに限定されず、他の
二次電池にも適用することができる。 【0010】本発明者らの研究によれば、二次電池にお
いて、以下の式により定義されるエネルギー効率(E
E): EE(%)=〔(放電したクーロン量×放電時の平均電
圧)/(充電したクーロン量×充電時の平均電圧)〕×
100・・・(1) は、充電電流値又は充電時間に個別的に依存せず、実質
的に、充電電流値と充電時間の積である充電電気量(以
下充電量という。)に直接依存する。 【0011】なお、エネルギー効率(EE)は、以下に
示すクーロン効率及び電圧効率: クーロン効率(%)=(放電したクーロン量/充電した
クーロン量)×100 電圧効率(%)=(放電時の作動平均電圧/充電時の作
動平均電圧)×100 を用いて、 EE(%)=〔クーロン効率(%)〕×〔電圧効率
(%)〕×(1/100 ) として求めることもできる。 【0012】充電量に対するエネルギー効率の変化は、
ニッケル−水素電池については図1の曲線Aに示すよう
になる。図1において、横軸の充電量(%)とは、電池
が本来有する容量に対する充電操作で電池に入力された
電気量(充電電流値と充電時間との積で表される)の割
合を百分率で示したものである。したがって、横軸の充
電量(%)が100 %の点においては、電池が本来有する
容量に相当する電気量を充電操作において電池に入力し
たことを意味する。 【0013】図1のエネルギー効率(EE)の変化を示
すグラフ(曲線A)から以下のことが言える。 (a) 充電量が電池の容量未満、特に充電量が60%以下の
場合には、エネルギー効率はほぼ一定の高い値(約90
%)をとる。 (b) 充電量が60%を超して100 %近くになると、エネル
ギー効率は徐々に低くなる。しかしながら、エネルギー
効率は、充電量100 %の点(点d)ではまだ80%を超す
比較的大きな値を有する。 (c) 充電量が100 %を超すとエネルギー効率は大きく低
下する。具体的には、充電量が大きくなるにつれて(点
dと点fとの間の曲線部分で)エネルギー効率はほぼ直
線的に低下していく。すなわちこの領域では、充電操作
において電池に与えた電気量に対する電池から取り出さ
れる電気量の割合が低下する。この傾向は充電量が大き
い場合により顕著となる。 【0014】図1中に、エネルギー効率を表すグラフ
(曲線A)に加えて、充電量と、実際に電池内に蓄積さ
れた電気量との比を表すグラフ(曲線B)を示す。この
グラフ(曲線B)は、充電量150 %のときの電池の電気
量を100 %とし、それに対する各充電量における電池の
電気量の割合を表したものである。以下この割合を最大
容量比(単位は%である)と呼ぶが、最大容量比の算出
において、充電量150 %のときの電気量を基準としたの
は、充電量150 %より大きな充電量としても実際に電池
に蓄積される電気量に実質的に変化はみられず、充電量
が150 %のときの電池容量を最大容量とみなすことがで
きるからである。この最大容量比のスケールは図1右側
の縦軸に示してある。 【0015】最大容量比が大きければ放電電気量(放電
容量)は当然大きくなるので、最大容量比は放電電気量
の大きさの目安となる。 【0016】図1の曲線Bからわかるように、充電量が
60%以下では、最大容量比は充電量の増加にしたがって
ほぼ直線的に増加する。この領域では、曲線Bは上述の
クーロン効率が100 %となるラインにほぼ沿っている。
すなわち、充電量のほとんどを放電電気量として取り出
すことができる。 【0017】また、充電量が60%〜100 %の間では、最
大容量比は充電量の増加にしたがって増加しているが、
曲線Bはクーロン効率100 %のラインからしだいに下方
にずれていく。 【0018】充電量が100 %付近から、最大容量比の増
加の度合いは鈍ってゆき、充電量120 %以上では、実質
的に最大容量比は一定値をとる。 【0019】本発明においては、上記のエネルギー効率
及び最大容量比(すなわち放電電気量の大きさ)の両方
を考慮した充電を行う。具体的には、まず、充電量が異
なる複数の充電モードを設定する。充電量が異なれば、
図1から明らかなようにエネルギー効率及び最大容量比
も異なってくる。次に、設定した複数の充電モードの中
から、使用目的に最も適するエネルギー効率及び最大容
量比を有する充電モードを選択し、そのモードにおける
充電量だけを充電する。 【0020】以下、説明の簡単のために、電気自動車に
搭載した二次電池(ニッケル−水素電池)を例にとり、
エコノミーモード、ノーマルモード及びロングドライブ
モードの3通りの充電モードを設定した場合の充電制御
方法について説明する。しかしながら、本発明の方法
は、電気自動車に搭載した二次電池に限定されないこと
はもちろんであり、また、充電モードの設定も上記した
3通りのモード設定に限定されない。 【0021】エコノミーモード、ノーマルモード及びロ
ングドライブモードの定義及び特徴はそれぞれ以下の通
りである。 エコノミーモード 充電量は、ニッケル−水素電池が本来有する容量の60
%である。このモードは高いエネルギー効率を与える。
図1からわかるようにエネルギー効率はほぼ90%(点
b)となる。ただし、このモードによる充電では充電量
が少なく、最大容量比は小さいので、当然ながら放電電
気量は小さくなる。 【0022】ノーマルモード 充電量を100 %としたモードである。このモードにおい
ては、上述したエコノミーモードの場合よりも多少エネ
ルギー効率が低下するが、その低下の度合いは小さく、
80%以上のエネルギー効率(点d)を得る。また、放電
容量については、最大容量比が90%を超す値を有する
(点c)ので、比較的大きな放電電気量が得られる。 【0023】ロングドライブモード 充電量が140 %を超すような過充電を行うモードであ
る。このモードにおいては、なるべく大きな放電容量を
得るために、容量目一杯の電気量を電池に蓄積する。図
1からわかるように、最大容量比の値(点e)はほぼ10
0 %である。このモードでは、実質的にエネルギー効率
を無視した充電となり、実際にはエネルギー効率は約60
%(点f)となる。 【0024】上述したような充電量の異なる複数の充電
モードをあらかじめ設定しておくことにより、自動車の
利用状況に応じ、放電電気量とエネルギー効率(電力コ
スト)とを考慮した適切な充電を行うことができる。 【0025】たとえば、一回の充電による走行距離が短
くてよい場合には、電池に蓄積する電気量は少なくても
よいので、エネルギー効率(電力コスト)を第一に考
え、エコノミーモードを選択する。 【0026】また、一回の充電で長い距離を走行しなけ
ればならない場合には、電池になるべく多くの電気量を
蓄積しておく必要があるので、エネルギー効率の低下を
覚悟してロングドライブモードを選択する。 【0027】ノーマルモードはエネルギー効率と放電電
気量とのバランスがよい充電モードであり、それほどエ
ネルギー効率を低下させないで、適度な長さの走行距離
を得る場合に選択する。 【0028】上述したように、エネルギー効率は充電電
流値又は充電時間に個別的には依存せず、電池の充電量
に依存する。したがって、実際の充電では、時間一定の
条件、又は電流一定の条件のどちらの条件を採用しても
よい。また、時間と電流の両方を変化させるような充電
方法を採用することもできる。充電量Cは、充電電流を
X(A)、充電時間をY(h)として、下記式: CM =X(A)・Y(h)・・・(2) で表されるが、Cが所定の大きさ(選択された充電モー
ドにおける充電量)となるようにX及び/又はYを設定
する。 【0029】以上の実施例においては、ノーマルモー
ド、エコノミーモード及びロングドライブモードの3種
の充電モードを設定した充電制御方法を示したが、本発
明はこれに限らない。2種の充電モード、または4種以
上の充電モードを設定した充電制御方法としてもよいこ
とはもちろんであり、そのときの各モードの充電量は適
宜設定することができる。 【0030】以上、ニッケル−水素電池を例にとり本発
明を詳細に説明したが、上述の通り、本発明はニッケル
−水素電池のみに限らず、他の二次電池についても適用
することができる。また、電気自動車用の二次電池のみ
ならず、他の用途の二次電池についても同様に適用する
ことができる。 【0031】 【発明の効果】本発明の方法によれば、エネルギー効率
及び放電電気量を考慮した充電操作を行うので、いたづ
らにエネルギー効率を低下させることなく、電池の利用
状況に応じた適切な充電を行うことができる。 【0032】本発明の方法は、ニッケル−水素電池を始
め、各種二次電池に適用することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charge control method for a secondary battery, and more particularly, to a method of controlling the amount of discharged electricity and the energy efficiency (discharge energy / charge energy of the battery). The present invention relates to a charging control method that takes into consideration. 2. Description of the Related Art Nickel batteries (Ni-Cd batteries) are typical secondary batteries and are widely used in various fields including home appliances. Also,
Recently, nickel-hydrogen batteries have been developed as secondary batteries capable of achieving higher energy density than nickel-cadmium batteries, and some of them have been put to practical use. [0003] Such secondary batteries are also used in electric vehicles. In the case of a secondary battery for an electric vehicle, it is generally preferable to extend the mileage of the vehicle by one charge as much as possible, so the magnitude of the battery's discharge capacity (how much electric energy can be extracted) is important. Become. However, not only the discharge capacity, but also how efficient (at low power cost) the charging can be performed is of great concern for electric vehicle users. [0004] In order to obtain as large a discharge amount as possible in charging a secondary battery, if it is simply attempted to charge the battery to its full capacity each time it is charged, the amount of energy (input electric energy) given to the battery is reduced. As a result, the ratio of the amount of energy taken out of the battery (the amount of power used) is greatly reduced, the energy efficiency is reduced, and the power cost is greatly increased. Accordingly, an object of the present invention is to provide a charging control method capable of performing charging in accordance with the usage state of a secondary battery in consideration of both the amount of discharged electricity and energy efficiency. Means for Solving the Problems As a result of earnest studies to achieve the above object, the present inventors have found that the energy efficiency expressed by the ratio of the amount of used electric power to the amount of input electric power is a charging current value. Alternatively, they have found that they do not depend on the charging time individually but directly on the amount of charge, which is the product of the charging current value and the charging time. Energy efficiency is almost constant and high when charging a small amount of electricity compared to the battery capacity, but decreases when charging an amount of electricity equivalent to the battery capacity. It has been found that the degree of the decrease increases when charging is performed. Therefore, a plurality of charging modes having different amounts of charged electricity are set in advance, and one of the plurality of charging modes is selected according to the usage of the secondary battery (to be suitable for a desired amount of discharged electricity). The present inventors have found that if one of the two modes is selected and the method of charging the charged amount of electricity in the selected mode is adopted, it is possible to perform charging according to the purpose of use without any need to lower the energy efficiency. completed. That is, according to the charge control method of the present invention for a vehicular secondary battery, a plurality of charge modes having different maximum capacity ratios due to a difference in charge current and / or charge time are set, and the planned traveling distance of the vehicle is set. The maximum capacity ratio that matches
Select the charging mode to have from among the plurality of charging modes
In addition , the battery is charged so as to have the charged amount of electricity in the selected charging mode. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to a nickel-hydrogen battery as an example, but the present invention is not limited to this and can be applied to other secondary batteries. According to the study of the present inventors, in a secondary battery, the energy efficiency (E) defined by the following equation is obtained.
E): EE (%) = [(discharged coulomb amount × average voltage during discharge) / (charged coulomb amount × average voltage during charging)] ×
100... (1) does not depend on the charging current value or the charging time individually but substantially directly depends on the amount of charging electricity (hereinafter referred to as charging amount) which is the product of the charging current value and the charging time. I do. The energy efficiency (EE) is the following Coulomb efficiency and voltage efficiency: Coulomb efficiency (%) = (discharged coulomb amount / charged coulomb amount) × 100 voltage efficiency (%) = (discharge time) EE (%) = [Coulomb efficiency (%)] × [Voltage efficiency (%)] × (1/100) by using (operation average voltage / operation average voltage during charging) × 100. The change in energy efficiency with respect to the amount of charge is
The curve for the nickel-hydrogen battery is shown in FIG. In FIG. 1, the charge amount (%) on the horizontal axis is a percentage of the amount of electricity (expressed as the product of the charge current value and the charge time) input to the battery in the charge operation with respect to the inherent capacity of the battery. It is shown by. Therefore, when the charged amount (%) on the horizontal axis is 100%, it means that the amount of electricity corresponding to the capacity originally possessed by the battery was input to the battery in the charging operation. The following can be said from the graph (curve A) showing the change in energy efficiency (EE) in FIG. (a) When the charge is less than the capacity of the battery, especially when the charge is 60% or less, the energy efficiency is almost constant (about 90%).
%). (b) When the charge exceeds 60% and approaches 100%, the energy efficiency gradually decreases. However, the energy efficiency at the point of 100% charge (point d) still has a relatively large value of more than 80%. (c) When the charged amount exceeds 100%, the energy efficiency is greatly reduced. Specifically, the energy efficiency decreases almost linearly (at the curve portion between the points d and f) as the charge amount increases. That is, in this region, the ratio of the amount of electricity taken out of the battery to the amount of electricity given to the battery in the charging operation decreases. This tendency becomes more remarkable when the charge amount is large. FIG. 1 shows a graph (curve B) representing the ratio between the amount of charge and the amount of electricity actually stored in the battery, in addition to the graph representing energy efficiency (curve A). This graph (curve B) shows the ratio of the amount of electricity of the battery at each amount of charge to the amount of electricity of the battery when the amount of charge is 150% as 100%. Hereinafter, this ratio is referred to as a maximum capacity ratio (unit is%). In the calculation of the maximum capacity ratio, the amount of electricity at the time of the charge amount of 150% is based on a charge amount larger than the charge amount of 150%. This is because the amount of electricity actually stored in the battery does not substantially change, and the battery capacity when the charged amount is 150% can be regarded as the maximum capacity. The scale of the maximum capacity ratio is shown on the vertical axis on the right side of FIG. If the maximum capacity ratio is large, the amount of discharge electricity (discharge capacity) naturally increases, so the maximum capacity ratio is a measure of the amount of discharge electricity. As can be seen from the curve B in FIG.
Below 60%, the maximum capacity ratio increases almost linearly with increasing charge. In this region, the curve B substantially follows the above-mentioned line where the Coulomb efficiency becomes 100%.
That is, most of the charged amount can be taken out as the discharged amount of electricity. When the charged amount is between 60% and 100%, the maximum capacity ratio increases as the charged amount increases.
Curve B gradually shifts downward from the 100% Coulomb efficiency line. When the charged amount is around 100%, the degree of increase in the maximum capacity ratio becomes slower. When the charged amount is 120% or more, the maximum capacity ratio takes a substantially constant value. In the present invention, charging is performed in consideration of both the above energy efficiency and the maximum capacity ratio (that is, the magnitude of the amount of discharged electricity). Specifically, first, a plurality of charging modes having different charging amounts are set. If the charge amount is different,
As is clear from FIG. 1, the energy efficiency and the maximum capacity ratio also differ. Next, from among the plurality of set charging modes, a charging mode having the energy efficiency and the maximum capacity ratio most suitable for the purpose of use is selected, and only the charging amount in that mode is charged. For the sake of simplicity, a secondary battery (nickel-hydrogen battery) mounted on an electric vehicle will be described below as an example.
A description will be given of a charging control method when three types of charging modes, ie, the economy mode, the normal mode, and the long drive mode are set. However, the method of the present invention is not limited to the secondary battery mounted on the electric vehicle, and the setting of the charging mode is not limited to the above three modes. The definitions and features of the economy mode, normal mode and long drive mode are as follows, respectively. The economy mode charge is 60 times the capacity of the nickel-metal hydride battery.
%. This mode provides high energy efficiency.
As can be seen from FIG. 1, the energy efficiency is approximately 90% (point b). However, in the charging in this mode, the amount of charge is small and the maximum capacity ratio is small, so that the amount of discharged electricity is naturally small. Normal mode This is a mode in which the charge amount is set to 100%. In this mode, the energy efficiency is slightly lower than in the economy mode described above, but the degree of the reduction is small,
An energy efficiency (point d) of 80% or more is obtained. As for the discharge capacity, the maximum capacity ratio has a value exceeding 90% (point c), so that a relatively large amount of discharge electricity can be obtained. Long drive mode This is a mode in which overcharging is performed so that the charged amount exceeds 140%. In this mode, in order to obtain as large a discharge capacity as possible, an amount of electricity of the full capacity is stored in the battery. As can be seen from FIG. 1, the value of the maximum capacity ratio (point e) is approximately 10
0%. In this mode, the charging is practically ignoring the energy efficiency.
% (Point f). By previously setting a plurality of charging modes having different charging amounts as described above, appropriate charging is performed in consideration of the amount of discharged electricity and energy efficiency (power cost) in accordance with the usage status of the vehicle. be able to. For example, when the traveling distance per charge is short, the amount of electricity stored in the battery may be small. Therefore, the economy mode is selected in consideration of energy efficiency (power cost) first. . If the vehicle must travel a long distance with a single charge, it is necessary to store as much electricity as possible in the battery. Select The normal mode is a charging mode in which the energy efficiency and the amount of discharged electricity are well-balanced, and is selected when a moderate traveling distance is obtained without significantly lowering the energy efficiency. As described above, the energy efficiency does not depend on the charging current value or the charging time individually, but on the charge amount of the battery. Therefore, in the actual charging, either a constant time condition or a constant current condition may be employed. Further, a charging method that changes both time and current can be employed. The charge amount C is represented by the following equation, where X (A) is the charge current and Y (h) is the charge time: C M = X (A) · Y (h) (2) X and / or Y is set so that is a predetermined size (the charge amount in the selected charging mode). In the above embodiment, the charge control method in which three types of charge modes, ie, the normal mode, the economy mode and the long drive mode, are set, but the present invention is not limited to this. Needless to say, a charge control method in which two types of charge modes or four or more types of charge modes are set may be used, and the amount of charge in each mode at that time may be appropriately set. Although the present invention has been described in detail by taking a nickel-metal hydride battery as an example, as described above, the present invention can be applied not only to a nickel-metal hydride battery but also to other secondary batteries. In addition, the present invention can be similarly applied not only to a secondary battery for an electric vehicle but also to a secondary battery for other uses. According to the method of the present invention, the charging operation is performed in consideration of the energy efficiency and the amount of discharged electricity. Charging can be performed. The method of the present invention can be applied to various secondary batteries including nickel-metal hydride batteries.

【図面の簡単な説明】 【図1】二次電池の充電量とエネルギー効率との関係、
及び充電量と最大容量比との関係を示すグラフである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a relationship between a charge amount of a secondary battery and energy efficiency,
4 is a graph showing a relationship between a charge amount and a maximum capacity ratio.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 10/42 - 10/48 B60L 11/18 H02J 7/00 - 7/12 H02J 7/34 - 7/36 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 10/42-10/48 B60L 11/18 H02J 7/00-7/12 H02J 7/34-7 / 36

Claims (1)

(57)【特許請求の範囲】 【請求項1】 車両用二次電池の充電制御方法におい
て、充電電流及び/又は充電時間の相違により最大容量
が異なる複数の充電モードを設定しておき、前記車両
の予定走行距離に合致する最大容量比を有する充電モー
ドを前記複数の充電モードの中から選択し、選択した充
電モードにおける充電電気量となるように充電すること
を特徴とする車両用二次電池の充電制御方法。
(57) [Claim 1] In a charging control method for a vehicular secondary battery, a maximum capacity is determined by a difference in charging current and / or charging time.
Ratio may be set a different charge mode, the vehicle
Charging mode with the maximum capacity ratio that matches the planned mileage
A charge control method for a secondary battery for a vehicle, comprising: selecting a charging mode from among the plurality of charging modes ;
JP24379793A 1993-09-03 1993-09-03 Vehicle secondary battery charging control method Expired - Fee Related JP3421398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24379793A JP3421398B2 (en) 1993-09-03 1993-09-03 Vehicle secondary battery charging control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24379793A JP3421398B2 (en) 1993-09-03 1993-09-03 Vehicle secondary battery charging control method

Publications (2)

Publication Number Publication Date
JPH0773903A JPH0773903A (en) 1995-03-17
JP3421398B2 true JP3421398B2 (en) 2003-06-30

Family

ID=17109095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24379793A Expired - Fee Related JP3421398B2 (en) 1993-09-03 1993-09-03 Vehicle secondary battery charging control method

Country Status (1)

Country Link
JP (1) JP3421398B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2363604C (en) * 2001-11-20 2010-04-13 Edison Source Method and apparatus for ameliorating electrolyte stratification during rapid charging
JP2008054442A (en) * 2006-08-25 2008-03-06 Honda Motor Co Ltd Small-sized electric vehicle
EP2642631B1 (en) * 2010-11-15 2019-05-08 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Charging control device for electric vehicle

Also Published As

Publication number Publication date
JPH0773903A (en) 1995-03-17

Similar Documents

Publication Publication Date Title
US6573687B2 (en) Charging/discharging control method for secondary battery
Dhar et al. Nickel/metal hydride technology for consumer and electric vehicle batteries—a review and up-date
CN1071057C (en) Battery charging apparatus
US8084988B2 (en) Power supply system
JP5839210B2 (en) Battery charging apparatus and method
US20080013224A1 (en) Electric Energy Storage Device and Method of Charging and Discharging the Same
CN108023130A (en) A kind of lithium ion battery charging optimization method
CN108141059A (en) Electric power system
JP7159590B2 (en) Charging control device, power storage device, charging control method for power storage element, and computer program
US20070111044A1 (en) Hybrid cell and method of driving the same
CN108140868A (en) Accumulator group
Onar et al. Dynamic modeling and control of a cascaded active battery/ultra-capacitor based vehicular power system
JP3421398B2 (en) Vehicle secondary battery charging control method
CN110112807B (en) Energy storage system multi-battery-pack parallel power distribution method
Jiya et al. Hybridization of battery, supercapacitor and hybrid capacitor for electric vehicles
JP3948421B2 (en) Hybrid electric vehicle with sealed nickel-metal hydride secondary battery
JP3409458B2 (en) Battery pack charging device
JPH08126119A (en) Electric automobile
JP3184308B2 (en) Rechargeable battery charge control method
JP3975801B2 (en) Battery system
Yuan et al. A hybrid fuel cell-battery power system
Chang et al. Rapid partial charging of lead/acid batteries
JPH05111171A (en) Hybrid charger
Vignan et al. Implementation of Variable Duty Ratio Reflex Charging of Li-ion Batteries
CN116526535B (en) Energy storage method and system for electric vehicle charging station

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees