JPH05111171A - Hybrid charger - Google Patents

Hybrid charger

Info

Publication number
JPH05111171A
JPH05111171A JP3295174A JP29517491A JPH05111171A JP H05111171 A JPH05111171 A JP H05111171A JP 3295174 A JP3295174 A JP 3295174A JP 29517491 A JP29517491 A JP 29517491A JP H05111171 A JPH05111171 A JP H05111171A
Authority
JP
Japan
Prior art keywords
storage battery
charging
charged
built
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3295174A
Other languages
Japanese (ja)
Inventor
Akifumi Tanaka
昌文 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP3295174A priority Critical patent/JPH05111171A/en
Publication of JPH05111171A publication Critical patent/JPH05111171A/en
Pending legal-status Critical Current

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PURPOSE:To provide an inexpensive quick charger having high capacity efficiency. CONSTITUTION:A built-in battery 1 having voltage higher by 10-40% than that of a battery 6 to be charged is connected in parallel with a charging power supply means 2 through a circuit interrupting means 3 which functions based on the voltage difference between the batteries 1 and 6. Quick charging is realized by means of the buit-in battery 1 resulting in an inexpensive quick charger having high capacity efficiency requiring no high capacity charging power supply means.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はハイブリッド充電器に関
するものであり、特に蓄電池の急速充電に使用されるも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hybrid battery charger, and more particularly to a battery charger used for rapid charging of a storage battery.

【0002】[0002]

【従来の技術】蓄電池の充電は、一部用途のものを除
き、夜間数時間かけて行われるのが一般的である。例え
ば、電気車用や電気自動車用など容量の大きい蓄電池で
は、夜間に10時間以上もかけて充電が行われている。
というのも、これらの蓄電池は夜間中に充電が完了すれ
ばよく、急速充電の必要性が全くないためである。
2. Description of the Related Art A storage battery is generally charged for several hours at night except for some uses. For example, a large-capacity storage battery for an electric car or an electric car is charged for 10 hours or more at night.
This is because these storage batteries only need to be charged during the night and there is no need for quick charging.

【0003】[0003]

【発明が解決しようとする課題】しかし、電気車や電気
自動車の稼動率を向上させるためには、どうしても急速
充電が必要となる。例えば、1時間の休憩時間に50%
の容量が回復できたら、稼動率は50%も上昇する。
又、電気自動車が普及した場合、充電スタントで20〜
30分の急速充電が必要になってくる。
However, in order to improve the operating rate of electric vehicles and electric vehicles, rapid charging is absolutely necessary. For example, 50% for 1 hour break
If the capacity can be recovered, the operating rate will rise by 50%.
Also, if electric vehicles become popular, 20-
30 minutes of rapid charging is needed.

【0004】大容量の蓄電池を急速充電しようとする場
合、充電時間を1/2あるいは1/4にするためには、
充電器出力電流を2倍、4倍というふうに増強しなけれ
ばならない。必然的にトランスや整流素子なども大きく
なり、充電器のコストが高くなる。また、急速充電装置
自身の汎用性も低下する。さらに、充電出力を増すため
には、当然入力電源の容量も大きくする必要がある。入
力電流容量が30〜50A以上になると、充電器設置の
ための特別の配線工事が必要となる。このような直接コ
ストとともに、長時間に渡って深夜電力を利用すると電
気代が割安となるという稼動コストからも、これら用途
の急速充電に感心が払われておらず、あえて2〜3時間
で充電が完了するような急速充電装置があまり必要とさ
れていないのである。しかし、前述したように、電気車
あるいは電気自動車の稼動率向上の必要性増大と共に、
これらの用途に合った急速充電器が必要となってくる。
In order to rapidly charge a large-capacity storage battery, in order to reduce the charging time to 1/2 or 1/4,
The charger output current must be increased by a factor of 2, 4, etc. Inevitably, the size of the transformer and rectifier will increase, and the cost of the charger will increase. Also, the versatility of the quick charging device itself is reduced. Further, in order to increase the charging output, it is necessary to increase the capacity of the input power source. When the input current capacity is 30 to 50 A or more, special wiring work for installing the charger is required. In addition to such direct costs, we are not impressed with the rapid charging of these applications because of the operating cost that electricity costs are cheap when using late night electricity for a long time, so we dare to charge in 2-3 hours. There is not much need for a quick charging device to complete the above. However, as mentioned above, with the increasing need to improve the operating rate of electric vehicles or electric vehicles,
A rapid charger suitable for these applications will be needed.

【0005】この発明は上記のような課題を解決するた
めに成されたものであり、その目的とするところは、同
一性能の従来の充電器と比較して、コスト面及び容積面
でより優れた急速充電器を提供することにある。
The present invention has been made in order to solve the above problems, and its object is to be more excellent in terms of cost and volume than a conventional charger having the same performance. It is to provide a quick charger.

【0006】[0006]

【課題を解決するための手段】そこで、本発明は、上記
課題を解決するための手段として、内蔵蓄電池と充電電
力供給手段と回路遮蔽手段を備えてなり、内蔵蓄電池
は、被充電蓄電池よりも10〜40%電圧が高いもので
あると共に、回路遮蔽手段を介して充電電力供給手段に
並列に接続されたものであって、被充電蓄電池を急速充
電するためのものであり、回路遮蔽手段は、被充電蓄電
池と内蔵蓄電池との電圧差が等しくなったとき内蔵蓄電
池の回路を遮蔽するためのものであり、充電電力供給手
段は内蔵蓄電池と被充電蓄電池とを充電するためのもの
であるハイブリッド充電器を採用した。
Therefore, as a means for solving the above problems, the present invention comprises a built-in storage battery, a charging power supply means, and a circuit shielding means, and the built-in storage battery is better than the storage battery to be charged. The voltage is high by 10 to 40%, and is connected in parallel to the charging power supply means through the circuit shielding means for rapidly charging the battery to be charged. A hybrid for shielding the circuit of the built-in storage battery when the voltage difference between the charged storage battery and the built-in storage battery becomes equal, and the charging power supply means for charging the built-in storage battery and the charged storage battery. Adopted a charger.

【0007】[0007]

【実施例】以下、本発明を具体的実施例により詳述す
る。図1は本発明に係るハイブリッド充電器の1実施例
を示したものである。図中、1点鎖線部はハイブリッド
充電器を示す。1はこの充電装置に内蔵された蓄電池
(以下内蔵蓄電池という)、2は蓄電池を充電するため
の充電電力供給手段、3は回路遮蔽手段、4は電圧検出
手段、5は被充電蓄電池を接続するための接続プラグ、
6は被充電蓄電池、7はAC電源接続用コンセントであ
る。内蔵蓄電池1は、回路遮蔽手段3を介して充電電力
供給手段2に並列に接続されている。回路遮蔽手段3
は、被充電蓄電池6と内蔵蓄電池1との電圧差が等しく
なったとき、内蔵蓄電池1の回路を遮蔽するためのもの
である。充電電力供給手段2は、トランスのリーケジを
応用した準定電圧特性が得られるように構成されてい
る。この方式の特長は、充電時の蓄電池電圧が低いとき
は大きな充電電流が流せ、充電により蓄電池電圧が上昇
するに従って充電電流を減少させられることである。内
蔵蓄電池1は被充電蓄電池6を急速充電するためのもの
であり、被充電蓄電池6よりも高電圧であることが要求
される。被充電蓄電池6が6セルの鉛蓄電池の場合、内
蔵蓄電池1は7〜8セルの鉛蓄電池が適当である。10
0V系48セル鉛蓄電池の場合には、54〜60セル鉛
蓄電池が適当となる。本実施例では、被充電蓄電池とし
て一般的な6セル鉛蓄電池と、内蔵蓄電池1として7セ
ル鉛蓄電池とより構成されている。
EXAMPLES The present invention will be described in detail below with reference to specific examples. FIG. 1 shows one embodiment of a hybrid charger according to the present invention. In the figure, the one-dot chain line shows the hybrid charger. 1 is a storage battery built in this charging device (hereinafter referred to as built-in storage battery), 2 is charging power supply means for charging the storage battery, 3 is circuit shielding means, 4 is voltage detection means, and 5 is a storage battery to be charged. Connection plug for,
Reference numeral 6 is a rechargeable storage battery, and 7 is an AC power connection outlet. The built-in storage battery 1 is connected in parallel to the charging power supply means 2 via the circuit shielding means 3. Circuit shielding means 3
Is for shielding the circuit of the built-in storage battery 1 when the voltage difference between the charged storage battery 6 and the built-in storage battery 1 becomes equal. The charging power supply means 2 is configured to obtain a quasi-constant voltage characteristic applying a leakage of a transformer. The feature of this system is that a large charging current can flow when the storage battery voltage during charging is low, and the charging current can be reduced as the storage battery voltage increases due to charging. The built-in storage battery 1 is for rapidly charging the charged storage battery 6, and is required to have a higher voltage than the charged storage battery 6. When the rechargeable storage battery 6 is a lead storage battery having 6 cells, the built-in storage battery 1 is preferably a lead storage battery having 7 to 8 cells. 10
In the case of a 0V 48-cell lead-acid battery, a 54-60-cell lead-acid battery is suitable. In this embodiment, a general 6-cell lead storage battery is used as the battery to be charged and a 7-cell lead storage battery is used as the built-in storage battery 1.

【0008】尚、本発明の目的を達成するためには、内
蔵蓄電池1が被充電蓄電池6よりも高電圧を有していな
ければならない。少なくとも10%以上高ければ、良好
に被充電蓄電池6を充電することができる。但し、あま
り高くしても費用対効果の点から無駄が生ずるだけであ
り、上限40%が適当である。
In order to achieve the object of the present invention, the built-in storage battery 1 must have a higher voltage than the charged storage battery 6. If it is at least 10% or more, the rechargeable storage battery 6 can be charged well. However, even if it is set too high, waste is generated from the viewpoint of cost efficiency, and the upper limit of 40% is appropriate.

【0009】図2は、上記実施例において、完全充電状
態にある内蔵蓄電池1と放電状態にある被充電蓄電池6
との場合における充電特性を示す図である。接続プラグ
5を被充電蓄電池6に接続すると、被充電蓄電池6は放
電状態であるため、その電圧は内蔵蓄電池1の電圧より
低い。従って、回路遮蔽手段3はON状態であり、両者
間の電圧差により、内蔵蓄電池1から被充電蓄電池6に
むかって電流IBが流れ、被充電蓄電池6の充電が開始
される。このとき、内蔵蓄電池1に並列接続された充電
電力供給手段2からも被充電蓄電池6に充電電流ICが
流れる。今、仮りに内蔵蓄電池1の開路電圧をEA,内
部抵抗をRA、被充電蓄電池6の開路電圧をEB、内部
抵抗をRBとすると、接続プラグ5を被充電蓄電池6に
接合した直後の電圧VAは次式で与えられる。 VA=EA−IB×RA=EB+(IB+IC)×RB+△V △Vは安定時における内蔵蓄電池1と被充電蓄電池6と
の差電圧である。この時点で流れる被充電蓄電池6の充
電電流は、おおよそつぎのようになる。 (IB+IC)=IC+(EA−EB)/(RA+RB) RA+RBの内部抵抗は非常に小さいため、内蔵蓄電池
1と被充電蓄電池6の容量を500Ah相当に設定した
場合、上記の過渡電流は300〜400Aとなる。これ
は図2のX点で示されるが、1〜2秒以下で、内蔵蓄電
池1には放電分極が、被充電蓄電池6には充電分極が生
じ、過渡電流はVA点まで降下し、内蔵蓄電池と被充電
蓄電池6との差電圧△VでIB電流が流れる。△Vの減
少に従いIB電流も減少し、VC点で△V=0となりI
B電流も0となる。電圧検出手段4で検出したこの電圧
により回路遮蔽手段3がOFFとなり、充電電流ICが
分流して内蔵蓄電池1に流れ込むことはない。これは被
充電蓄電池6の充電電圧が内蔵蓄電池1の開路電圧に達
し、両者の差電圧が0になったことを示す。VC点より
VD点までは、充電電力供給手段2のIC電流による充
電電圧の上昇で、この間の充電により被充電蓄電池6を
完全に充電することができる。本実施例では、充電電力
供給手段2の出力電流を小さく設定しているため、比較
的長時間要する。
FIG. 2 shows a built-in storage battery 1 in a fully charged state and a charged storage battery 6 in a discharged state in the above embodiment.
It is a figure which shows the charging characteristic in the case of. When the connection plug 5 is connected to the storage battery 6 to be charged, the voltage of the storage battery 6 to be charged is lower than the voltage of the internal storage battery 1 because the storage battery 6 to be charged is in a discharged state. Therefore, the circuit shielding means 3 is in the ON state, and due to the voltage difference between the two, a current IB flows from the built-in storage battery 1 toward the charged storage battery 6, and charging of the charged storage battery 6 is started. At this time, the charging current IC also flows from the charging power supply means 2 connected in parallel to the built-in storage battery 1 to the storage battery 6 to be charged. Now, assuming that the open circuit voltage of the built-in storage battery 1 is EA, the internal resistance is RA, the open circuit voltage of the charged storage battery 6 is EB, and the internal resistance is RB, the voltage VA immediately after the connection plug 5 is joined to the charged storage battery 6 Is given by VA = EA-IB * RA = EB + (IB + IC) * RB + [Delta] V [Delta] V is the difference voltage between the built-in storage battery 1 and the rechargeable storage battery 6 when stable. The charging current of the rechargeable storage battery 6 flowing at this time is approximately as follows. (IB + IC) = IC + (EA−EB) / (RA + RB) Since the internal resistance of RA + RB is very small, when the capacity of the built-in storage battery 1 and the rechargeable storage battery 6 is set to 500 Ah, the transient current is 300 to 400 A. Becomes This is indicated by the point X in FIG. 2, but within 1-2 seconds, discharge polarization occurs in the built-in storage battery 1 and charge polarization occurs in the charged storage battery 6, and the transient current drops to point VA, and the built-in storage battery The IB current flows at a voltage difference ΔV between the storage battery 6 to be charged. The IB current also decreases as ΔV decreases, and ΔV = 0 at the VC point, and I
The B current also becomes zero. The circuit shielding means 3 is turned off by this voltage detected by the voltage detecting means 4, and the charging current IC is not shunted to flow into the built-in storage battery 1. This indicates that the charging voltage of the rechargeable storage battery 6 has reached the open circuit voltage of the built-in storage battery 1 and the voltage difference between the two has become zero. From the point VC to the point VD, the charging voltage increases due to the IC current of the charging power supply means 2, and the rechargeable storage battery 6 can be completely charged by charging during this period. In this embodiment, since the output current of the charging power supply means 2 is set small, it takes a relatively long time.

【0010】図2のSBは内蔵蓄電池1により充電され
た電気量を示し、SCは充電電力供給手段2により充電
された電気量を示す。この電気量は内蔵蓄電池1及び被
充電蓄電池6の容量あるいはセル数の差により変るが、
前記と同様両蓄電池の容量を50Ah相当とした場合、
内蔵蓄電池1:被充電蓄電池6は約4:1となり、VC
点までの充電時間が1/5に短縮されることが判る。V
C点の電圧はセル当り2.35Vあり、普通この程度の
充電電圧に達すると被充電蓄電池6の容量が90%まで
回復している。この状態で充電回路を遮断すれば、定格
容量の50%回復に30分弱の時間での充電が可能とな
る。
SB in FIG. 2 indicates the quantity of electricity charged by the built-in storage battery 1, and SC indicates the quantity of electricity charged by the charging power supply means 2. This amount of electricity varies depending on the capacity of the built-in storage battery 1 and the charged storage battery 6 or the difference in the number of cells,
Similar to the above, when the capacity of both storage batteries is equivalent to 50 Ah,
Built-in storage battery 1: Charged storage battery 6 becomes about 4: 1 and VC
It can be seen that the charging time to the point is reduced to 1/5. V
The voltage at the point C is 2.35 V per cell, and normally when the charging voltage reaches this level, the capacity of the rechargeable storage battery 6 has recovered to 90%. If the charging circuit is cut off in this state, it is possible to charge the battery in a time less than 30 minutes to recover 50% of the rated capacity.

【0011】被充電蓄電池6が接続されていない場合、
内蔵蓄電池1は充電電力供給手段2により充電される。
この場合、たとえ充電電力供給手段2の容量が小さくて
も時間をかければ必らず充電できるため、夜間長時間を
かけて充電を行う用途などでは、充電電力供給手段2の
容量を内蔵蓄電池1の容量の1/10程度まで小さくするこ
とができる。したがって、50Ah蓄電池の場合、5A
出力の充電電力供給手段2でよいことになる。100A
出力の充電器のサイズは50×50×50cm程の大き
さ一般的であるのに対し、5A出力のものであれば10
×10×10cm程になり、コスト及びスペ−スの面で
非常にメリットが出てくる。
When the storage battery 6 to be charged is not connected,
The built-in storage battery 1 is charged by the charging power supply means 2.
In this case, even if the capacity of the charging power supply means 2 is small, it can be charged without delay if it takes time. Therefore, in the case of charging for a long time at night, the capacity of the charging power supply means 2 is set to the internal storage battery 1 It can be reduced to about 1/10 of the capacity. Therefore, in the case of a 50Ah storage battery, 5A
The output charging power supply means 2 is sufficient. 100A
The size of the output charger is generally about 50 x 50 x 50 cm, while the output of 5 A is 10
It becomes about 10 × 10 cm, which is very advantageous in terms of cost and space.

【0012】図3は図2の特性図の表現をかえて表わし
たものであり、充電レギュレーションは充電電力供給手
段2の出力特性を示したものである。図中のVA点は、
接続プラグ5を介して内蔵蓄電池1と被充電蓄電池6と
を接線し1〜2秒の過渡状態を経過した後の比較的安定
な状態を示す。即、充電開始初期の被充電蓄電池6には
約100Aの電流が流れ、その時の電圧が13Vであ
る。この時の充電電流の分担はICが約8A、IBが約
92Aということになる。充電の進行に伴いVB、VC
と移行し、VCでIBが0となり、VCとVD間は充電
部の充電レギュレーションに沿って被充電蓄電池6が充
電される。
FIG. 3 is a modification of the expression of the characteristic diagram of FIG. 2, and the charging regulation shows the output characteristic of the charging power supply means 2. The VA point in the figure is
The internal storage battery 1 and the to-be-charged storage battery 6 are tangentially connected via the connection plug 5, and a comparatively stable state is shown after a transient state of 1 to 2 seconds has passed. Immediately, a current of about 100 A flows through the rechargeable storage battery 6 at the beginning of charging, and the voltage at that time is 13V. At this time, the sharing of the charging current is about 8A for IC and about 92A for IB. VB, VC as charging progresses
Then, IB becomes 0 at VC, and the charged storage battery 6 is charged between VC and VD in accordance with the charging regulation of the charging section.

【0013】[0013]

【発明の効果】本発明に係るハイブリッド充電器は、同
一性能の従来の充電器に比較し、コスト面及び容積面で
非常に優れたものであり、電気自動車や各種電気動力車
の普及に大きく寄与貢献するものである。
The hybrid charger according to the present invention is very excellent in cost and volume compared with the conventional charger having the same performance, and is widely used in electric vehicles and various electric power vehicles. Contribution Contribute.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例を示す図である。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】本発明の1実施例における特性図である。FIG. 2 is a characteristic diagram in one example of the present invention.

【図3】本発明の1実施例における特性図である。FIG. 3 is a characteristic diagram in one example of the present invention.

【符号の説明】[Explanation of symbols]

1 内蔵蓄電池 2 充電電力供給手段 3 回路遮蔽手段 4 電圧検出手段 5 接続プラグ 6 被充電蓄電池 1 Built-in storage battery 2 Charging power supply means 3 Circuit shielding means 4 Voltage detection means 5 Connection plug 6 Charged storage battery

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内蔵蓄電池1と充電電力供給手段2と回
路遮蔽手段3を備えてなり、 内蔵蓄電池1は、被充電蓄電池6よりも10〜40%電
圧が高いものであると共に、回路遮蔽手段3を介して充
電電力供給手段2に並列に接続されたものであって、被
充電蓄電池6を急速充電するためのものであり、 回路遮蔽手段3は、被充電蓄電池6と内蔵蓄電池1との
電圧差が等しくなったとき内蔵蓄電池1の回路を遮蔽す
るためのものであり、 充電電力供給手段2は内蔵蓄電池1と被充電蓄電池6と
を充電するためのものである、 ハイブリッド充電器。
1. A built-in storage battery 1, a charging power supply means 2, and a circuit shielding means 3 are provided, and the built-in storage battery 1 has a voltage higher than that of a charged storage battery 6 by 10 to 40% and a circuit shielding means. It is connected in parallel to the charging power supply means 2 via 3 and is for rapidly charging the charged storage battery 6, and the circuit shielding means 3 connects the charged storage battery 6 and the built-in storage battery 1. A hybrid charger for shielding the circuit of the built-in storage battery 1 when the voltage difference becomes equal, and for charging power supply means 2 for charging the built-in storage battery 1 and the charged storage battery 6.
JP3295174A 1991-10-14 1991-10-14 Hybrid charger Pending JPH05111171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3295174A JPH05111171A (en) 1991-10-14 1991-10-14 Hybrid charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3295174A JPH05111171A (en) 1991-10-14 1991-10-14 Hybrid charger

Publications (1)

Publication Number Publication Date
JPH05111171A true JPH05111171A (en) 1993-04-30

Family

ID=17817190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3295174A Pending JPH05111171A (en) 1991-10-14 1991-10-14 Hybrid charger

Country Status (1)

Country Link
JP (1) JPH05111171A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008154434A (en) * 2006-12-20 2008-07-03 Denso Wave Inc Charger for portable terminal
JP2010523074A (en) * 2007-03-26 2010-07-08 ザ ジレット カンパニー Small super high speed battery charger
JP2011223736A (en) * 2010-04-09 2011-11-04 Ihi Corp Quick charging apparatus and method of using quick charging apparatus
JP2012019602A (en) * 2010-07-07 2012-01-26 Jfe Engineering Corp Method of quick charging and quick charger
JP2012050291A (en) * 2010-08-30 2012-03-08 Terrara Code Research Institute Inc Power feeding stand
WO2013010270A1 (en) 2011-07-15 2013-01-24 HYDRO-QUéBEC Rapid multi-level recharge system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008154434A (en) * 2006-12-20 2008-07-03 Denso Wave Inc Charger for portable terminal
JP2010523074A (en) * 2007-03-26 2010-07-08 ザ ジレット カンパニー Small super high speed battery charger
JP2011223736A (en) * 2010-04-09 2011-11-04 Ihi Corp Quick charging apparatus and method of using quick charging apparatus
JP2012019602A (en) * 2010-07-07 2012-01-26 Jfe Engineering Corp Method of quick charging and quick charger
JP2012050291A (en) * 2010-08-30 2012-03-08 Terrara Code Research Institute Inc Power feeding stand
WO2013010270A1 (en) 2011-07-15 2013-01-24 HYDRO-QUéBEC Rapid multi-level recharge system
CN103733469A (en) * 2011-07-15 2014-04-16 魁北克水电公司 Rapid multi-level recharge system
EP2732530A1 (en) * 2011-07-15 2014-05-21 Hydro-Quebec Rapid multi-level recharge system
JP2014521301A (en) * 2011-07-15 2014-08-25 ハイドロ−ケベック Multistage fast charging system
EP2732530A4 (en) * 2011-07-15 2015-04-01 Hydro Quebec Rapid multi-level recharge system
US9673654B2 (en) 2011-07-15 2017-06-06 HYDRO-QUéBEC Multi-stage quick charging system
CN103733469B (en) * 2011-07-15 2018-04-24 魁北克水电公司 Rapid multi-level recharge system

Similar Documents

Publication Publication Date Title
CN103038974B (en) Senior rechargeable battery system
WO2010091583A1 (en) Self-adjusting hybrid battery composed of lead acid batteries and lithium iron phosphate batteries
CN101165963A (en) Battery management system (BMS) and driving method thereof
WO2013051863A2 (en) Apparatus and method for charging a battery
CN101826745A (en) Lithium ion power battery lossless charger
CN217882916U (en) Double-battery balance management circuit, double-battery parallel charging and discharging module and mobile terminal
JP2003079059A (en) On vehicle battery pack control device
CN110884364A (en) Power tracking-based electric vehicle hybrid power supply control method
JP2000134805A (en) Battery assembly charge/discharge state deciding method and battery assembly charge/discharge state deciding device
CN109038754B (en) Battery pack balancing system and method for applying battery pack balancing system
JP3419115B2 (en) Battery charge / discharge protection device
JPH05111171A (en) Hybrid charger
JP3378293B2 (en) Equipment system
JP3473193B2 (en) Battery charging control device
CN212137356U (en) Charger system with battery capacity test function
JP2003339124A (en) Power supply unit for vehicle
Yuan et al. A hybrid fuel cell-battery power system
JPH0738130A (en) Battery controlling method of solar cell power supply system
Jung et al. Grid-connected electric vehicles charger station based on lithium polymer battery energy storage system
CN204809910U (en) Energy storage battery charging outfit and removal battery charging outfit
CN220273360U (en) Battery pack compatible with multiple charging modes
CN219204128U (en) Charging system based on intelligent lithium battery BMS protection board
CN218449574U (en) Battery management system
JP3177721B2 (en) Battery remaining capacity measurement method for uninterruptible power supply
CN208226594U (en) A kind of power battery charging system