JPH0850121A - Gas chromatograph - Google Patents

Gas chromatograph

Info

Publication number
JPH0850121A
JPH0850121A JP12936595A JP12936595A JPH0850121A JP H0850121 A JPH0850121 A JP H0850121A JP 12936595 A JP12936595 A JP 12936595A JP 12936595 A JP12936595 A JP 12936595A JP H0850121 A JPH0850121 A JP H0850121A
Authority
JP
Japan
Prior art keywords
carrier gas
analysis
vaporization chamber
sample vaporization
gas supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12936595A
Other languages
Japanese (ja)
Other versions
JP2787765B2 (en
Inventor
Toyoaki Fukushima
豊明 福島
Masanao Shiyouji
雅直 少路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP7129365A priority Critical patent/JP2787765B2/en
Publication of JPH0850121A publication Critical patent/JPH0850121A/en
Application granted granted Critical
Publication of JP2787765B2 publication Critical patent/JP2787765B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/32Control of physical parameters of the fluid carrier of pressure or speed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/32Control of physical parameters of the fluid carrier of pressure or speed
    • G01N2030/324Control of physical parameters of the fluid carrier of pressure or speed speed, flow rate

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To carry out an accurate analysis for accurately controlling the pressure in a sample vaporizing chamber, even in a direct injection analysis or even in a split analysis. CONSTITUTION:A pressure sensor 4 and a bypass flow passage 30 of a low flow resistance that has been connected to a carrier gas supply passage 2 are connected to a changeover valve 28 for changing over the flow passages in accordance with a direct injection analysis or a split analysis. When the changeover valve 28 has been changed over to the flow passage shown by the continuous line to be used for the split analysis, the pressure sensor 4 is connected to a sample vaporizing chamber 3a through the low flow resistance passage. On the other hand, when the changeover valve has been changed over to the flow passage shown by the broken line to be used for the direct injection analysis, the pressure sensor 4 is connected to the carrier gas supply passage 2 through the bypass flow passage 30 of a low flow resistance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は種々の化学物質の分析に
用いられるガスクロマトグラフに関し、特にスプリット
分析用試料気化室とダイレクトインジェクション分析用
試料気化室とを備え、スプリット分析とダイレクトイン
ジェクション分析とを切り換えて実行することのできる
ガスクロマトグラフに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas chromatograph used for the analysis of various chemical substances, and in particular, it is equipped with a sample vaporization chamber for split analysis and a sample vaporization chamber for direct injection analysis. The present invention relates to a gas chromatograph that can be switched and executed.

【0002】[0002]

【従来の技術】スプリット分析とダイレクトインジェク
ション分析とを流路を切り換えて行なえるようにしたガ
スクロマトグラフは、スプリット分析用試料気化室に圧
力調節用キャリアガス排出弁を有する排出流路を有し分
析カラムにつながるスプリット分析用流路と、ダイレク
トインジェクション分析用試料気化室を有し分析カラム
につながるダイレクトインジェクション分析用流路と、
キャリアガス流量を調節するキャリアガス供給弁を有す
るキャリアガス供給流路と、圧力センサと、キャリアガ
ス供給流路をスプリット分析用試料気化室とダイレクト
インジェクション分析用試料気化室とに切り換える流路
切換え手段とを備えている。スプリット分析を行なうと
きは、試料気化室の圧力を調節するために、圧力センサ
の指示に従って排出流路のキャリアガス排出弁を調節
し、一方ダイレクトインジェクション分析を行なうとき
は、圧力センサの指示に従ってキャリアガス供給流路の
キャリアガス供給弁を調節する。
2. Description of the Related Art A gas chromatograph in which a split analysis and a direct injection analysis can be performed by switching the flow passages has a discharge passage having a pressure adjusting carrier gas discharge valve in a sample vaporization chamber for split analysis. A flow path for split analysis connected to a column, and a flow path for direct injection analysis connected to an analysis column having a sample vaporization chamber for direct injection analysis,
A carrier gas supply passage having a carrier gas supply valve for adjusting the carrier gas flow rate, a pressure sensor, and a passage switching means for switching the carrier gas supply passage between the split analysis sample vaporization chamber and the direct injection analysis sample vaporization chamber. It has and. When performing a split analysis, adjust the carrier gas discharge valve in the discharge passage according to the instructions of the pressure sensor to adjust the pressure in the sample vaporization chamber, while when performing direct injection analysis, follow the instructions of the pressure sensor. Adjust the carrier gas supply valve in the gas supply channel.

【0003】従来のガスクロマトグラフは、流路の切換
えを行なうために、図1(A)又は(B)のいずれかの
流路を採用している。(A)ではキャリアガス供給弁1
を備えたキャリアガス供給流路2は切換えバルブ8によ
りスプリット分析用試料気化室3aとダイレクトインジ
ェクション分析用試料気化室3bに切り換えられるよう
になっている。試料気化室3aには排出流路10が設け
られ、排出流路10には試料気化室3aの圧力を調節す
るためのキャリアガス排出弁5が設けられている。試料
気化室3aと3bにはそれぞれ分析カラム6a,6bが
接続されている。7a,7bはそれぞれ分析カラム6
a,6bに接続されたディテクタである。試料気化室3
a,3bの圧力を検出するために、圧力センサ4は切換
えバルブ8によって試料気化室3aの下流又は試料気化
室3bの下流に切り換えて接続されるように設けられて
いる。
A conventional gas chromatograph employs either the flow channel shown in FIG. 1A or 1B in order to switch the flow channel. (A) Carrier gas supply valve 1
The carrier gas supply flow path 2 provided with is switched between a split analysis sample vaporization chamber 3a and a direct injection analysis sample vaporization chamber 3b by a switching valve 8. The sample vaporization chamber 3a is provided with a discharge flow passage 10, and the discharge flow passage 10 is provided with a carrier gas discharge valve 5 for adjusting the pressure of the sample vaporization chamber 3a. Analytical columns 6a and 6b are connected to the sample vaporization chambers 3a and 3b, respectively. 7a and 7b are analytical columns 6 respectively
It is a detector connected to a and 6b. Sample vaporization chamber 3
In order to detect the pressures of a and 3b, the pressure sensor 4 is provided so as to be switched and connected to the downstream of the sample vaporization chamber 3a or the downstream of the sample vaporization chamber 3b by the switching valve 8.

【0004】(A)の流路構成のガスクロマトグラフ
で、スプリット分析を行なうときは、切換えバルブ8は
実線で示される流路に切り換えられる。このときキャリ
アガスは試料気化室3aに入り、排出流路10により一
部が排出され、残りが分析カラム6aに入る。このとき
キャリアガス供給弁1によって供給されるキャリアガス
の一部を排出するために、圧力センサ4の出力によって
キャリアガス排出弁5が制御される。このときは圧力セ
ンサ4とキャリアガス排出弁5の間の流路抵抗は小さい
ので問題は生じない。
When performing split analysis in the gas chromatograph having the flow channel structure of (A), the switching valve 8 is switched to the flow channel shown by the solid line. At this time, the carrier gas enters the sample vaporization chamber 3a, a part of which is discharged through the discharge channel 10, and the rest enters the analysis column 6a. At this time, in order to discharge a part of the carrier gas supplied by the carrier gas supply valve 1, the carrier gas discharge valve 5 is controlled by the output of the pressure sensor 4. At this time, since the flow path resistance between the pressure sensor 4 and the carrier gas discharge valve 5 is small, no problem occurs.

【0005】一方、ダイレクトインジェクション分析を
行なうときは、切換えバルブ8は破線の流路に切り換え
られる。このときはキャリアガス供給弁1によって供給
されるキャリアガスの全てが試料気化室3bから分析カ
ラム6bに流入する。圧力センサ4からの出力によって
キャリアガス供給弁1が制御されるが、このときはキャ
リアガス供給流路2及び流路12の流路抵抗、並びに試
料気化室3bの容量によって、キャリアガス供給弁1の
動きと圧力センサ4の感知する圧力との間に時間的な位
相のずれが生じ、制御が困難となる。
On the other hand, when performing direct injection analysis, the switching valve 8 is switched to the flow path indicated by the broken line. At this time, all of the carrier gas supplied by the carrier gas supply valve 1 flows from the sample vaporization chamber 3b into the analysis column 6b. The carrier gas supply valve 1 is controlled by the output from the pressure sensor 4. At this time, the carrier gas supply valve 1 is controlled by the flow path resistances of the carrier gas supply flow paths 2 and 12, and the capacity of the sample vaporization chamber 3b. , And the pressure sensed by the pressure sensor 4 has a temporal phase shift, which makes control difficult.

【0006】図1(B)は圧力センサ4を上流側に設け
た例である。圧力センサ4はキャリアガス供給弁1と切
換えバルブ18の間のキャリアガス供給流路2に設けら
れている。切換えバルブ18の切換えによりキャリアガ
スがスプリット分析用試料気化室3a又はダイレクトイ
ンジェクション分析用試料気化室3bに流れるように流
路の接続が切り換えられる。
FIG. 1B shows an example in which the pressure sensor 4 is provided on the upstream side. The pressure sensor 4 is provided in the carrier gas supply passage 2 between the carrier gas supply valve 1 and the switching valve 18. By switching the switching valve 18, the connection of the flow paths is switched so that the carrier gas flows into the split analysis sample vaporization chamber 3a or the direct injection analysis sample vaporization chamber 3b.

【0007】図1(B)でダイレクトインジェクション
分析を行なうときは、切換えバルブ18が破線の流路に
切り換えられ、キャリアガスは試料気化室3bを経て全
てがカラム6bへ流れる。このとき、圧力センサ4の出
力によってキャリアガス供給弁1が制御されるので問題
は生じない。一方、スプリット分析を行なうときは切換
えバルブ18が実線の流路に切り換えられる。このとき
は試料気化室3aが使用されることになり、圧力センサ
4の出力によってキャリアガス排出弁5が制御される。
このときは、流路2,14及び10の流路抵抗、並びに
試料気化室3aの容量によってキャリアガス排出弁5の
動きと圧力センサ4の感知する圧力との間に時間的な位
相のずれが生じ、制御が困難となる。
When performing the direct injection analysis in FIG. 1 (B), the switching valve 18 is switched to the flow path indicated by the broken line, and the carrier gas flows through the sample vaporization chamber 3b to the column 6b. At this time, since the carrier gas supply valve 1 is controlled by the output of the pressure sensor 4, no problem occurs. On the other hand, when performing split analysis, the switching valve 18 is switched to the flow path indicated by the solid line. At this time, the sample vaporization chamber 3a is used, and the carrier gas discharge valve 5 is controlled by the output of the pressure sensor 4.
At this time, there is a temporal phase shift between the movement of the carrier gas discharge valve 5 and the pressure sensed by the pressure sensor 4 due to the flow path resistances of the flow paths 2, 14 and 10 and the capacity of the sample vaporization chamber 3a. Occurs and becomes difficult to control.

【0008】従来のガスクロマトグラフにおいては図1
(A)又は(B)のいずれかの流路構成が採られている
ので、ダイレクトインジェクション分析用試料気化室を
使用する際における制御性と、スプリット分析用試料気
化室における制御性及び正確な分析のいずれかを犠牲に
した設計にせざるを得なかった。本発明はダイレクトイ
ンジェクション分析においてもスプリット分析において
も試料気化室の圧力を正しく制御することができ、正確
な分析を行なえるようにすることを目的とするものであ
る。
FIG. 1 shows a conventional gas chromatograph.
Since the flow channel configuration of either (A) or (B) is adopted, the controllability when using the sample injection chamber for direct injection analysis and the controllability and accurate analysis in the sample vaporization chamber for split analysis I had no choice but to sacrifice one of them. An object of the present invention is to enable accurate control of the pressure in the sample vaporization chamber in both direct injection analysis and split analysis, so that accurate analysis can be performed.

【0009】[0009]

【課題を解決するための手段】本発明では、キャリアガ
ス供給流路をスプリット分析用試料気化室に接続したと
きに圧力センサをスプリット分析用試料気化室に流路で
接続し、キャリアガス供給流路をダイレクトインジェク
ション分析用試料気化室に接続したときに圧力センサを
キャリアガス供給流路に流路で接続するように流路を切
り換える流路切換え手段を設ける。
According to the present invention, when a carrier gas supply flow path is connected to a split analysis sample vaporization chamber, a pressure sensor is connected to the split analysis sample vaporization chamber by a flow path, and a carrier gas supply flow is obtained. Flow passage switching means is provided for switching the flow passage so that the pressure sensor is connected to the carrier gas supply flow passage by the flow passage when the passage is connected to the sample vaporization chamber for direct injection analysis.

【0010】[0010]

【作用】スプリット分析を行なうときは圧力センサはス
プリット分析用試料気化室に流路で接続されるので、試
料気化室の圧力を調節するキャリアガス排出弁と圧力セ
ンサの間の流路抵抗が小さく、圧力制御に問題が生じな
い。一方、ダイレクトインジェクション分析を行なうと
きは、圧力センサは流路によりキャリアガス供給流路に
接続されるので、この場合も圧力を調節するキャリアガ
ス供給弁と圧力センサの間の流路抵抗が小さく、圧力制
御に問題が生じない。
When performing split analysis, the pressure sensor is connected to the sample vaporization chamber for split analysis by a flow path, so the flow path resistance between the carrier gas discharge valve for adjusting the pressure in the sample vaporization chamber and the pressure sensor is small. , No problem in pressure control. On the other hand, when performing direct injection analysis, since the pressure sensor is connected to the carrier gas supply passage by the passage, the passage resistance between the carrier gas supply valve for adjusting the pressure and the pressure sensor is also small in this case, No problems with pressure control.

【0011】[0011]

【実施例】図2は本発明の一実施例を表わす。切換えバ
ルブ28に接続されたスプリット分析用試料気化室3a
には分析カラム6aとキャリアガスの一部を排出するた
めの排出流路10が接続され、分析カラム6aの出口に
はディテクタ7b、排出流路10には試料気化室3aの
圧力を調節するキャリアガス排出弁5が接続されてい
る。切換えバルブ28に接続されたダイレクトインジェ
クション分析用試料気化室3bには分析カラム6bが接
続され、分析カラム6bの出口にはディテクタ7bが接
続されている。
FIG. 2 shows an embodiment of the present invention. Sample vaporization chamber 3a for split analysis connected to switching valve 28
Is connected to an analysis column 6a and a discharge channel 10 for discharging a part of the carrier gas, a detector 7b is provided at the outlet of the analysis column 6a, and a carrier for adjusting the pressure of the sample vaporization chamber 3a is provided at the discharge channel 10. The gas discharge valve 5 is connected. An analysis column 6b is connected to the direct injection analysis sample vaporization chamber 3b connected to the switching valve 28, and a detector 7b is connected to the outlet of the analysis column 6b.

【0012】切換えバルブ28にはキャリアガスの供給
流量を調節するキャリアガス供給弁1を有するキャリア
ガス供給流路2が接続されており、切換えバルブ28が
実線の流路に切り換えられたときはキャリアガスがスプ
リット分析用試料気化室3aに流れ、破線の流路に切り
換えられたときはキャリアガスがダイレクトインジェク
ション分析用試料気化室3bに流れるように、これらの
流路が切換えバルブ28に接続されている。
A carrier gas supply passage 2 having a carrier gas supply valve 1 for adjusting the supply flow rate of the carrier gas is connected to the switching valve 28, and when the switching valve 28 is switched to the solid flow passage, the carrier gas is supplied. These flow paths are connected to the switching valve 28 so that the gas flows into the sample vaporization chamber 3a for split analysis and the carrier gas flows into the sample vaporization chamber 3b for direct injection analysis when the flow path is switched to the dashed line. There is.

【0013】切換えバルブ28には更に圧力センサ4
と、キャリアガス供給流路2につながる低流路抵抗のバ
イパス流路30が接続されている。切換えバルブ28が
スプリット分析用の実線の流路に切り換えられたとき、
圧力センサ4が低抵抗流路で試料気化室3aに接続さ
れ、一方破線のダイレクトインジェクション分析用の流
路に切り換えられたときは、圧力センサ4がバイパス流
路30を経てキャリアガス供給流路2に接続されるよう
に、圧力センサ4、バイパス流路30及び試料気化室3
aが切換えバルブ28に接続されている。
The switching valve 28 further includes a pressure sensor 4
Is connected to the bypass channel 30 having a low channel resistance and connected to the carrier gas supply channel 2. When the switching valve 28 is switched to the solid flow path for split analysis,
When the pressure sensor 4 is connected to the sample vaporization chamber 3a through a low resistance flow path and is switched to the flow path for direct injection analysis indicated by the broken line, the pressure sensor 4 passes through the bypass flow path 30 and the carrier gas supply flow path 2 Pressure sensor 4, bypass channel 30 and sample vaporization chamber 3 so as to be connected to
a is connected to the switching valve 28.

【0014】切換えバルブ28としては八方バルブが使
用されており、スプリット分析のための流路が選択され
たときに、バイパス流路30を閉じるために、八方バル
ブの1つのポート9がブラインドとして閉じられてい
る。なお、切換えバルブ28の符号11で示す他のポー
トはシステムに接続されておらず、使っていない。
An eight-way valve is used as the switching valve 28, and one port 9 of the eight-way valve is closed as a blind to close the bypass flow passage 30 when a flow passage for split analysis is selected. Has been. The other port indicated by the numeral 11 of the switching valve 28 is not connected to the system and is not used.

【0015】この実施例において、スプリット分析を行
なうときは切換えバルブ28が実線の流路に切り換えら
れる。このとき、キャリアガス供給流路2が試料気化室
3aに接続され、試料気化室3aの下流が低抵抗の流路
で圧力センサ4に接続され、圧力センサ4の出力によっ
てキャリアガス排出弁5が制御される。このときは、分
析カラム6aの入口近辺又は入口よりも下流の位置で圧
力センサ4により圧力が検出されることになるので、キ
ャリアガス排出弁5の調節に問題が生じない。一方、ダ
イレクトインジェクション分析を行なうときは、切換え
バルブ28が破線の位置に切り換えられる。このときは
キャリアガス供給弁1を経て供給されたキャリアガスが
試料気化室3bに供給され、キャリアガス供給流路2と
圧力センサ4が低抵抗のバイパス流路30で接続され
る。圧力センサ4は分析カラム6bの入口よりも上流の
位置にあるキャリアガス供給流路2の圧力を検出するの
で、圧力調節を行なうキャリアガス供給弁1の制御に問
題は生じない。
In this embodiment, when performing split analysis, the switching valve 28 is switched to the flow path indicated by the solid line. At this time, the carrier gas supply flow channel 2 is connected to the sample vaporization chamber 3a, the downstream of the sample vaporization chamber 3a is connected to the pressure sensor 4 through a low resistance flow channel, and the carrier gas discharge valve 5 is output by the output of the pressure sensor 4. Controlled. At this time, since the pressure is detected by the pressure sensor 4 near the inlet of the analysis column 6a or at a position downstream of the inlet, no problem occurs in adjusting the carrier gas discharge valve 5. On the other hand, when performing the direct injection analysis, the switching valve 28 is switched to the position indicated by the broken line. At this time, the carrier gas supplied through the carrier gas supply valve 1 is supplied to the sample vaporization chamber 3b, and the carrier gas supply channel 2 and the pressure sensor 4 are connected by the low resistance bypass channel 30. Since the pressure sensor 4 detects the pressure in the carrier gas supply flow path 2 located upstream of the inlet of the analysis column 6b, there is no problem in controlling the carrier gas supply valve 1 for pressure adjustment.

【0016】[0016]

【発明の効果】本発明では圧力を制御する試料気化室を
スプリット分析用試料気化室とダイレクトインジェクシ
ョン分析用試料気化室とに切り換える際に、それと同時
に圧力センサがその圧力を検出する位置を分析カラム入
口より下流あるいはカラム入口近辺の位置と、カラム入
口より上流側の位置とに切り換えられるので、スプリッ
ト分析用試料気化室を使用するときには制御が容易にな
り、正確な分析も可能となり、一方ダイレクトインジェ
クション分析用試料気化室を使用するときにも圧力制御
が容易になる。
According to the present invention, when the pressure control sample vaporization chamber is switched between the split analysis sample vaporization chamber and the direct injection analysis sample vaporization chamber, at the same time, the position where the pressure sensor detects the pressure is determined by the analytical column. Since it is possible to switch between a position downstream of the inlet or near the column inlet and a position upstream of the column inlet, control is easy and accurate analysis is possible when using the sample vaporization chamber for split analysis, while direct injection is possible. Pressure control is also facilitated when using a sample vaporization chamber for analysis.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A),(B)はそれぞれ従来のガスクロマト
グラフを示す流路図である。
1A and 1B are flow charts showing a conventional gas chromatograph.

【図2】本発明の一実施例を示す流路図である。FIG. 2 is a flow chart showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 キャリアガス供給弁 2 キャリアガス供給流路 3a スプリット分析用試料気化室 3b ダイレクトインジェクション分析用試料気化室 4 圧力センサ 5 キャリアガス排出弁 6a,6b 分析カラム 7a,7b ディテクタ 10 キャリアガス排出流路 28 切換えバルブ 30 バイパス流路 1 Carrier Gas Supply Valve 2 Carrier Gas Supply Flow Path 3a Split Analysis Sample Vaporization Room 3b Direct Injection Analysis Sample Vaporization Room 4 Pressure Sensor 5 Carrier Gas Discharge Valve 6a, 6b Analysis Column 7a, 7b Detector 10 Carrier Gas Discharge Flow Path 28 Switching valve 30 Bypass flow path

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 スプリット分析用試料気化室に圧力調節
用キャリアガス排出弁を有する排出流路を有し分析カラ
ムにつながるスプリット分析用流路と、 ダイレクトインジェクション分析用試料気化室を有し分
析カラムにつながるダイレクトインジェクション分析用
流路と、 キャリアガス流量を調節するキャリアガス供給弁を有す
るキャリアガス供給流路と、 圧力センサと、 前記キャリアガス供給流路を前記スプリット分析用試料
気化室に接続したときに前記圧力センサを前記スプリッ
ト分析用試料気化室に流路で接続し、前記キャリアガス
供給流路を前記ダイレクトインジェクション分析用試料
気化室に接続したときに前記圧力センサを前記キャリア
ガス供給流路に流路で接続するように流路を切り換える
流路切換え手段と、を備えたことを特徴とするガスクロ
マトグラフ。
1. A split analysis sample vaporization chamber having a discharge flow channel having a pressure control carrier gas discharge valve and a split analysis flow channel connected to an analysis column, and a direct injection analysis sample vaporization chamber having an analysis column. For direct injection analysis, a carrier gas supply channel having a carrier gas supply valve for adjusting the carrier gas flow rate, a pressure sensor, and the carrier gas supply channel connected to the split analysis sample vaporization chamber When the pressure sensor is connected to the split analysis sample vaporization chamber by a channel, and the carrier gas supply channel is connected to the direct injection analysis sample vaporization chamber, the pressure sensor is used as the carrier gas supply channel. And a flow path switching means for switching the flow paths so that they are connected to each other by a flow path. Gas chromatograph, characterized.
JP7129365A 1994-05-31 1995-04-28 Gas chromatograph Expired - Fee Related JP2787765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7129365A JP2787765B2 (en) 1994-05-31 1995-04-28 Gas chromatograph

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-142322 1994-05-31
JP14232294 1994-05-31
JP7129365A JP2787765B2 (en) 1994-05-31 1995-04-28 Gas chromatograph

Publications (2)

Publication Number Publication Date
JPH0850121A true JPH0850121A (en) 1996-02-20
JP2787765B2 JP2787765B2 (en) 1998-08-20

Family

ID=26464787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7129365A Expired - Fee Related JP2787765B2 (en) 1994-05-31 1995-04-28 Gas chromatograph

Country Status (1)

Country Link
JP (1) JP2787765B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014134392A (en) * 2013-01-08 2014-07-24 Shimadzu Corp Gas chromatograph device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014134392A (en) * 2013-01-08 2014-07-24 Shimadzu Corp Gas chromatograph device

Also Published As

Publication number Publication date
JP2787765B2 (en) 1998-08-20

Similar Documents

Publication Publication Date Title
CA2536888C (en) Oxygen concentration apparatus
JP2004354126A (en) Gas chromatograph
JP2787765B2 (en) Gas chromatograph
JP2527645B2 (en) Carrier gas pressure control device for gas chromatograph
US8499615B2 (en) Gas chromatograph comprising a controllable switching device
JP2005283403A (en) Gas chromatograph
JP4179189B2 (en) Gas chromatograph
JPH04105062A (en) Carrier gas rate-of-flow control method of gas chromatograph
JPH09127074A (en) Adjusting device for flow rate of carrier gas at sample injection port for gas chromatograph
US20230324348A1 (en) Thermal conductivity detector
JPH08101176A (en) Gas chromatograph
JPH0740175Y2 (en) Flow controller
JP3048018B2 (en) Capillary column gas chromatograph
JPH08101177A (en) Capillary gas chromatograph
JPH07141032A (en) Flow rate controller
JPH03115972A (en) Gas chromatograph having splitter
JPS60248950A (en) Hot water supplying device
JP3541558B2 (en) Gas chromatograph sample introduction device
JPH07294504A (en) Gas chromatograph and carrier gas flow rate control method thereof
JPWO2018207295A1 (en) Liquid feeding device and liquid chromatograph provided with the liquid feeding device
JP3123043B2 (en) Process gas chromatograph
JP3234662B2 (en) Gas chromatograph flow path
JPH0251061A (en) Gas chromatograph
JP2862120B2 (en) Gas chromatograph
JPH0712922Y2 (en) Gas chromatograph

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080605

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090605

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100605

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100605

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110605

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110605

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140605

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees