JPH09127074A - Adjusting device for flow rate of carrier gas at sample injection port for gas chromatograph - Google Patents

Adjusting device for flow rate of carrier gas at sample injection port for gas chromatograph

Info

Publication number
JPH09127074A
JPH09127074A JP28561495A JP28561495A JPH09127074A JP H09127074 A JPH09127074 A JP H09127074A JP 28561495 A JP28561495 A JP 28561495A JP 28561495 A JP28561495 A JP 28561495A JP H09127074 A JPH09127074 A JP H09127074A
Authority
JP
Japan
Prior art keywords
carrier gas
sample
injection port
flow rate
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28561495A
Other languages
Japanese (ja)
Inventor
Shinji Kurita
信二 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Science Systems Ltd
Original Assignee
Hitachi Ltd
Hitachi Science Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Science Systems Ltd filed Critical Hitachi Ltd
Priority to JP28561495A priority Critical patent/JPH09127074A/en
Publication of JPH09127074A publication Critical patent/JPH09127074A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/32Control of physical parameters of the fluid carrier of pressure or speed
    • G01N2030/324Control of physical parameters of the fluid carrier of pressure or speed speed, flow rate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/10Preparation using a splitter

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an adjusting device by which the consumption amount of a carrier gas is saved by providing, in order to control the flow rate of the carrier gas to be supplied to a sample injection port individually, two systems of adjusting parts of the carrier gas. SOLUTION: When a sample is injected in a split injection method, a stop valve 4 is set to an open state, and a three-port solenoid valve 7 is set to a state A. At this time, required carrier gases are supplied to a sample injection port 1 from normal mass-flow controllers 2, 3. At this time, the entrance pressure of a capillary column 9 is controlled by a back-pressure regulator 8, and a carrier gas in a small quantity is introduced into the column. In addition, the carrier gas is discharged through a septum purge flow-rate regulator 6 and the pressure regulator 8. Then, when a sample is injected in a splitless injection method, the valve 4 is set to a closed state, and the solenoid valve 7 is set to a state B. Then, in an analytical operation, the valve 4 is set to a closed state, the solenoid valve 7 is set to the state A, and a carrier gas in a small quantity is introduced into the injection port 1 by the controller 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はガスクロマトグラフ
用試料注入口に係り、特に、キャピラリカラムを用いる
キャリヤガス流量調節器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sample inlet for a gas chromatograph, and more particularly to a carrier gas flow rate controller using a capillary column.

【0002】[0002]

【従来の技術】従来の装置では、スプリット出口から常
時キャリヤガスの大部分を排気しているか、または高価
な電気制御式の流量制御装置を使用している。このため
コストの面で問題があった。なお、この種の装置として
関連するものには例えば特開平4−105062 号公報が挙げ
られる。
2. Description of the Related Art In the conventional apparatus, most of the carrier gas is constantly exhausted from the split outlet, or an expensive electrically controlled flow control device is used. Therefore, there was a problem in terms of cost. A related device of this type is, for example, Japanese Patent Laid-Open No. 4-105062.

【0003】[0003]

【発明が解決しようとする課題】ガスクロマトグラフは
石油,石油化学分野を中心に今や全世界で10万台以上
使用されている分析機器の王様ともいえる装置である。
従って、一社で数百台を使用するところもたくさんあ
り、キャリヤガスなどの消費量は膨大なものに達する。
最近では、特に天然にしかないHeガスをキャリヤガス
として使用するキャピラリカラムを用いるキャピラリガ
スクロマトグラフが主流となってきており、そのランニ
ングコストは大変なものである。また、天然のHeガス
を大量に使用するので、地球環境保護の点からも問題が
ある。本発明はこの点に関し、キャピラリカラム使用
時、分析中に排気しているキャリヤガスの使用を少なく
し、キャリヤガスの消費量の節約をはかったガスクロマ
トグラフ用のキャリヤガス流量調節器を提供する。
The gas chromatograph is a device that can be said to be the king of analytical instruments used in more than 100,000 units worldwide, mainly in the petroleum and petrochemical fields.
Therefore, many companies use hundreds of units, and the consumption of carrier gas and the like reaches a huge amount.
Recently, a capillary gas chromatograph that uses a capillary column that uses He gas, which is only natural, as a carrier gas, has become the mainstream, and the running cost thereof is great. Further, since a large amount of natural He gas is used, there is a problem from the viewpoint of protecting the global environment. In this regard, the present invention provides a carrier gas flow controller for a gas chromatograph which reduces the use of carrier gas exhausted during analysis when using a capillary column and saves the consumption of carrier gas.

【0004】[0004]

【課題を解決するための手段】ガスクロマトグラフの分
析で特にキャピラリカラムを使用するときは、カラムの
分離効率を損なわないようにカラム内のキャリヤガス流
量は数ml/min 程度である。また分析する試料量もキャ
ピラリカラムの分離効率を損なわないようにするため
に、パックドカラムの約1%の量で使用するのが理想的
である。量にすると約0.001〜0.01μlであり、
現存する注入器では採量不可の範囲のものであり、実状
は約0.1〜1μl くらいをマイクロシリンジで採量
し、試料分割器を設け約1%程度に分割し、1%μlく
らいをキャピラリカラムに流し、残りの99/100を
キャリヤガスと共にガスクロマトグラフ外の大気に放出
している。
When a capillary column is used in the analysis of a gas chromatograph, the carrier gas flow rate in the column is about several ml / min so as not to impair the separation efficiency of the column. The amount of sample to be analyzed is ideally used in an amount of about 1% of the packed column so as not to impair the separation efficiency of the capillary column. The volume is about 0.001-0.01 μl,
It is in the range that cannot be collected with existing injectors. Actually, about 0.1 to 1 μl is measured with a microsyringe, a sample divider is provided to divide into about 1%, and about 1% μl is collected. The remaining 99/100 is discharged to the atmosphere outside the gas chromatograph together with the carrier gas by flowing through a capillary column.

【0005】本発明では、この大気中に放出しているキ
ャリヤガスを放出しないように考案した。即ち、試料注
入時にのみ分割のために必要な100ml/min 程度を試
料注入口に供給し、分析時,待機時等は数ml/min 程度
を試料注入口に供給するようにした。また、試料の量や
粘性等の違いにより試料注入口内に停滞する時間が異な
ってくるのでこの流路の切替タイミングを制御できるよ
うにし、キャリヤガスの消費を節約する。
The present invention has been devised so that the carrier gas released into the atmosphere is not released. That is, about 100 ml / min necessary for division is supplied to the sample injection port only when the sample is injected, and about several ml / min is supplied to the sample injection port during analysis and standby. Further, since the time of staying in the sample injection port varies depending on the amount of sample, viscosity, etc., it is possible to control the switching timing of this flow path and save carrier gas consumption.

【0006】上記目的を達成するため、本発明は試料注
入口に供給するキャリヤガスの流路を二系統にし、一方
は試料注入時のために100ml/min 程度のキャリヤガ
スを供給し、もう一方は分析時,待機時のために数ml/
min のキャリヤガスを供給できるようにした。また、カ
ラム内の流量は背圧調圧器によりカラム入口圧を制御で
きるようにし、スプリットレス注入法の際には三ポート
電磁弁で流路の切替えができるようにした。以上により
カラム内のキャリヤガスの流量は常に一定で、しかも必
要最小量だけ試料注入口にキャリヤガスを供給できるの
でキャリヤガスの節約を図ることができる。
In order to achieve the above object, the present invention has two channels of carrier gas to be supplied to a sample injection port, one of which supplies about 100 ml / min of carrier gas for sample injection, and the other one. Is a few ml for analysis and standby
The carrier gas of min can be supplied. The flow rate in the column was controlled by a back pressure regulator to control the column inlet pressure, and the flow path could be switched by a three-port solenoid valve during the splitless injection method. As described above, the flow rate of the carrier gas in the column is always constant, and moreover, the carrier gas can be supplied to the sample injection port by the required minimum amount, so that the carrier gas can be saved.

【0007】[0007]

【発明の実施の形態】以下、本発明の1実施例を図1,
図2により説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will now be described with reference to FIG.
This will be described with reference to FIG.

【0008】図1は本発明によるガスクロマトグラフ用
試料注入口のキャリヤガス流量調節器をスプリット注入
法及びスプリットレス注入法において分析中の流路図で
ある。図2はスプリットレス注入法において試料注入時
の流路図である。
FIG. 1 is a flow path diagram during analysis of a carrier gas flow rate controller for a sample inlet for a gas chromatograph according to the present invention in a split injection method and a splitless injection method. FIG. 2 is a flow path diagram at the time of sample injection in the splitless injection method.

【0009】以下、図1により流量調節器の構成を説明
する。
The structure of the flow controller will be described below with reference to FIG.

【0010】試料注入口1にはマスフローコントローラ
2及びマスフローコントローラ3により調節されたキャ
リヤガスが供給される。マスフローコントローラ2の前
または後(図1ではマスフローコントローラ2の前に記
されているがどちらでも良い)にはストップバルブ4が
取り付けられており、ストップバルブ4を開,閉するこ
とにより、マスフローコントローラ2より供給されるキ
ャリヤガスは制御可能である。ストップバルブ4の制御
はストップバルブ制御部5により行われる。供給される
キャリヤガスは試料注入口1の内部でキャピラリカラム
9に導入されるもの、セプタムパージ流量調節器6及び
背圧調圧器8を通して外部へ排出されるものとに分割さ
れる。尚、キャピラリカラム9に導入されるキャリヤガ
ス流量は背圧調圧器8によりカラム入口圧を制御するこ
とにより調節される。
A carrier gas adjusted by the mass flow controller 2 and the mass flow controller 3 is supplied to the sample inlet 1. A stop valve 4 is attached in front of or after the mass flow controller 2 (indicated in front of the mass flow controller 2 in FIG. 1, but either may be used). By opening and closing the stop valve 4, the mass flow controller 2 is installed. The carrier gas supplied from 2 is controllable. The stop valve 4 is controlled by the stop valve control unit 5. The supplied carrier gas is divided into one introduced into the capillary column 9 inside the sample inlet 1 and one discharged to the outside through the septum purge flow rate controller 6 and the back pressure regulator 8. The flow rate of the carrier gas introduced into the capillary column 9 is adjusted by controlling the column inlet pressure by the back pressure regulator 8.

【0011】以下、試料注入時と分析時,待機時に分け
て動作を説明する。
The operation will be described below separately for sample injection, analysis, and standby.

【0012】まず、スプリット注入法における試料注入
時はストップバルブ4は開状態、三ポート電磁弁は図1
の状態となる。このとき、通常マスフローコントローラ
2からは100ml/min 程度、マスフローコントローラ
3からは数ml/min のキャリヤガスが試料注入口1に供
給される。このとき、キャピラリカラム9の入口圧は背
圧調圧器8により制御され、カラムには数ml/min のキ
ャリヤガスが導入される。また、セプタムパージ流量調
節器6を通して数ml/min 、背圧調圧器8を通して10
0ml/min 程度のキャリヤガスが排出される。従って、
この状態で試料が注入されれば試料全量のうち1%程度
がキャピラリカラム9に導入され分析される。
First, at the time of sample injection in the split injection method, the stop valve 4 is open, and the three-port solenoid valve is shown in FIG.
State. At this time, the carrier gas of about 100 ml / min is normally supplied from the mass flow controller 2 to the sample inlet 1 from the mass flow controller 3 of several ml / min. At this time, the inlet pressure of the capillary column 9 is controlled by the back pressure regulator 8 and a carrier gas of several ml / min is introduced into the column. In addition, several ml / min through the septum purge flow controller 6 and 10 through the back pressure regulator 8.
About 0 ml / min of carrier gas is discharged. Therefore,
If the sample is injected in this state, about 1% of the total amount of the sample is introduced into the capillary column 9 and analyzed.

【0013】次にスプリットレス注入法における試料注
入時はストップバルブ4は閉状態、三ポート電磁弁7は
図2の状態となる。
Next, when the sample is injected in the splitless injection method, the stop valve 4 is closed and the three-port solenoid valve 7 is in the state shown in FIG.

【0014】分析時,待機時(スプリット注入法,スプ
リットレス注入法とも)はストップバルブ4は閉状態、
三ポート電磁弁7は図1の状態となる。このとき、試料
注入口1にはマスフローコントローラ3より供給される
数ml/min のキャリヤガスが導入される。キャピラリカ
ラム9の入口圧は背圧調圧器8により制御されるので試
料注入時と同じ数ml/min のキャリヤガスが導入され
る。この状態では背圧調圧器8より排出されるキャリヤ
ガスはわずかな量でほとんどキャリヤガスは無駄になら
ない。尚、ストップバルブ4を開く時間は1分程度で十
分であるので消費するキャリヤガスの量は数ml/min 程
度である。従って、従来と比較すれば1%程度のキャリ
ヤガスの消費ですむことになる。
The stop valve 4 is closed during analysis and standby (both split injection method and splitless injection method).
The three-port solenoid valve 7 is in the state shown in FIG. At this time, several ml / min of carrier gas supplied from the mass flow controller 3 is introduced into the sample inlet 1. Since the inlet pressure of the capillary column 9 is controlled by the back pressure regulator 8, the same several ml / min of carrier gas as when the sample is injected is introduced. In this state, the carrier gas discharged from the back pressure regulator 8 is small, and the carrier gas is hardly wasted. Since the time for opening the stop valve 4 is about 1 minute, the amount of carrier gas consumed is about several ml / min. Therefore, about 1% of the carrier gas is consumed as compared with the conventional case.

【0015】本実施例によれば、キャリヤガスの消費量
を1%程度にすることができるのでランニングコストが
低減される。
According to this embodiment, the consumption of the carrier gas can be reduced to about 1%, so that the running cost can be reduced.

【0016】[0016]

【発明の効果】本発明によれば、キャリヤガスの消費量
を従来の1%程度に低減できるのでランニングコストが
低減される。
According to the present invention, since the consumption amount of the carrier gas can be reduced to about 1% of the conventional value, the running cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるガスクロマトグラフ用試料注入口
のキャリヤガス流量調節器をスプリット注入法及びスプ
リットレス注入法において分析中の流路の系統図。
FIG. 1 is a system diagram of a flow path during analysis of a carrier gas flow rate controller of a sample injection port for a gas chromatograph according to the present invention in a split injection method and a splitless injection method.

【図2】スプリットレス注入法において試料注入時の流
路の系統図。
FIG. 2 is a systematic diagram of a flow path during sample injection in the splitless injection method.

【符号の説明】[Explanation of symbols]

1…試料注入口、2,3…マスフローコントローラ、4
…ストップバルブ、5…ストップバルブ制御部、6…セ
プタムパージ流量調節器、7…三ポート電磁弁、8…背
圧調圧器、9…キャピラリカラム。
1 ... Sample inlet, 2, 3 ... Mass flow controller, 4
... Stop valve, 5 ... Stop valve control unit, 6 ... Septum purge flow rate controller, 7 ... Three-port solenoid valve, 8 ... Back pressure regulator, 9 ... Capillary column.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】液体試料を気化し、カラムに導入するガス
クロマトグラフ用試料注入口にキャリヤガスを供給する
キャリヤガス流量調節器において、前記キャリヤガスの
消費量を低減するため、試料注入時と通常の分析時で個
々に試料注入口に供給する前記キャリヤガスの流量を制
御するため、二系統のキャリヤガス調節部を設け、スプ
リット注入法とスプリットレス注入法切替えのために三
ポート電磁弁を用いたことを特徴とするガスクロマトグ
ラフ用試料注入口のキャリヤガス流量調節器。
1. A carrier gas flow controller that vaporizes a liquid sample and supplies the carrier gas to a sample inlet for a gas chromatograph, which is introduced into a column, in order to reduce the consumption of the carrier gas, usually during sample injection. In order to control the flow rate of the carrier gas to be supplied to the sample injection port individually during the analysis, a two-system carrier gas control unit is provided, and a 3-port solenoid valve is used to switch between split injection method and splitless injection method A carrier gas flow rate controller for a sample inlet for a gas chromatograph, which is characterized in that
JP28561495A 1995-11-02 1995-11-02 Adjusting device for flow rate of carrier gas at sample injection port for gas chromatograph Pending JPH09127074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28561495A JPH09127074A (en) 1995-11-02 1995-11-02 Adjusting device for flow rate of carrier gas at sample injection port for gas chromatograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28561495A JPH09127074A (en) 1995-11-02 1995-11-02 Adjusting device for flow rate of carrier gas at sample injection port for gas chromatograph

Publications (1)

Publication Number Publication Date
JPH09127074A true JPH09127074A (en) 1997-05-16

Family

ID=17693814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28561495A Pending JPH09127074A (en) 1995-11-02 1995-11-02 Adjusting device for flow rate of carrier gas at sample injection port for gas chromatograph

Country Status (1)

Country Link
JP (1) JPH09127074A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102445498A (en) * 2011-10-10 2012-05-09 上海科油石油仪器制造有限公司 Automatic calibration method of process chromatograph
JP2012093358A (en) * 2010-10-27 2012-05-17 Thermo Finnigan Llc Helium conservation device for gas chromatograph
JP2013044647A (en) * 2011-08-24 2013-03-04 Shimadzu Corp Gas chromatography apparatus
CN105004820A (en) * 2014-04-23 2015-10-28 株式会社岛津制作所 Flow adjusting device and gas chromatograph comprising same
JP2017181173A (en) * 2016-03-29 2017-10-05 日本写真印刷株式会社 Gas chromatography device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012093358A (en) * 2010-10-27 2012-05-17 Thermo Finnigan Llc Helium conservation device for gas chromatograph
CN102539589A (en) * 2010-10-27 2012-07-04 萨莫芬尼根有限责任公司 Helium conservation device for a gas chromatograph
DE102011085316B4 (en) * 2010-10-27 2017-05-24 Thermo Finnigan Llc Helium saving device for a gas chromatograph
JP2013044647A (en) * 2011-08-24 2013-03-04 Shimadzu Corp Gas chromatography apparatus
CN102445498A (en) * 2011-10-10 2012-05-09 上海科油石油仪器制造有限公司 Automatic calibration method of process chromatograph
CN105004820A (en) * 2014-04-23 2015-10-28 株式会社岛津制作所 Flow adjusting device and gas chromatograph comprising same
JP2017181173A (en) * 2016-03-29 2017-10-05 日本写真印刷株式会社 Gas chromatography device

Similar Documents

Publication Publication Date Title
JP3487707B2 (en) Planar manifold assembly and analytical instrument
EP1631811B1 (en) Flow rate control
US20040178133A1 (en) Separation analyzer
JP3472386B2 (en) Apparatus and method for chromatographic separation of sample
JP2000019165A (en) Gas chromatograph
US6074461A (en) Chromatograph having a gas recycling system
US4162689A (en) Time division flow control
JPH09127074A (en) Adjusting device for flow rate of carrier gas at sample injection port for gas chromatograph
JPH05288738A (en) Gas chromatograph apparatus
EP1243922A1 (en) Sample valve with integral sample shut off function for chromatograph
US3368385A (en) Sample system for chromatographic analyzers
GB2391700A (en) Ion mobility spectrometer with GC column and internal regulated gas cycle
JPH10122498A (en) Device for transporting one of plural gases to equipment
US5616827A (en) Flow manifold for high purity analyzers
JPH06273404A (en) Gas chromatography
JPH05307026A (en) Material separating method with super-critical fluid chromatography and device for it
SU940057A1 (en) Preparative liquid chromatograph
JPH04105062A (en) Carrier gas rate-of-flow control method of gas chromatograph
JPH0743651Y2 (en) Gas chromatograph
JPH0712922Y2 (en) Gas chromatograph
JP2870947B2 (en) Gas chromatograph with splitter
JPH0291564A (en) Head space sampler
JP3371628B2 (en) Gas chromatograph
CN218601230U (en) Device for eliminating fluctuation of chromatographic instrument cutting valve base line
JPH04274760A (en) Sample inlet device for gas chromatograph