JPH07141032A - Flow rate controller - Google Patents

Flow rate controller

Info

Publication number
JPH07141032A
JPH07141032A JP5287890A JP28789093A JPH07141032A JP H07141032 A JPH07141032 A JP H07141032A JP 5287890 A JP5287890 A JP 5287890A JP 28789093 A JP28789093 A JP 28789093A JP H07141032 A JPH07141032 A JP H07141032A
Authority
JP
Japan
Prior art keywords
flow rate
gas
pipe
flow
branch pipes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5287890A
Other languages
Japanese (ja)
Other versions
JP2546520B2 (en
Inventor
Akira Okada
晶 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5287890A priority Critical patent/JP2546520B2/en
Publication of JPH07141032A publication Critical patent/JPH07141032A/en
Application granted granted Critical
Publication of JP2546520B2 publication Critical patent/JP2546520B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • G05D7/0641Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means
    • G05D7/0652Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means the plurality of throttling means being arranged in parallel

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Measuring Volume Flow (AREA)
  • Flow Control (AREA)

Abstract

PURPOSE:To precisely control a flow rate over a wide range, to more miniaturize the device and to reduce the price of added piping or wiring concerning the flow rate controller for controlling a gas flow rate. CONSTITUTION:The middle of one pipe provided with lead-in exhause ports on both sides is separated into plural branch pipes 5a, 5b and 5c, these branch pipes 5a, 5b and 5c are respectively provided with sensor parts 2a, 2b and 2c and all the branch pipes 5b and 5c excepting for one branch pipe 5a are provided with open/close valves 6a and 6b and flow rate control valves 7 for controlling the flow rate of gas to flow from the exhaust ports, and the flow rate is precisely controlled over the wide range from a small flow rate to a large flow rate. On the other hand, since one pipe is separated into the branch pipes 5a, 5b and 5c, the structure is integrated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はガス供給装置より一定の
流量で送られるガスの流量を広範囲に調節して導出でき
る流量制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow rate control device capable of adjusting the flow rate of a gas sent from a gas supply device at a constant flow rate in a wide range and delivering the gas.

【0002】[0002]

【従来の技術】近年、半導体装置の製造工程には、半導
体基板に薄膜を形成したり、この薄膜を選択的にエッチ
ングしたりする工程が多々含んでおり、これら工程で使
用される設備にはCVD装置あるいはドライエッチング
装置などがある。これら設備にはそれぞれガスを処理室
に供給するガス供給装置が付設され、種々のガスが使用
されていた。また、条件によっては一種類のガスでも1
〜100cc/minのようにガス流量が小さいものか
ら、300cc/minといった大きな流量を必要とす
る処理条件もあった。しかも、これらガス流量の精度も
プラスマイナス1パーセントに制御しなければならなか
った。
2. Description of the Related Art In recent years, semiconductor device manufacturing processes include many processes for forming a thin film on a semiconductor substrate and selectively etching the thin film. There is a CVD device or a dry etching device. A gas supply device for supplying gas to each processing chamber was attached to each of these facilities, and various gases were used. Also, depending on the conditions, even one kind of gas is 1
There was also a processing condition that required a large flow rate of 300 cc / min from a gas flow rate as small as -100 cc / min. Moreover, the accuracy of these gas flow rates had to be controlled within plus or minus 1%.

【0003】図3は従来の流量制御装置の一例を説明す
るためのガス供給システムの構成を示す模式図、図4は
図3のマスフローコントローラの構造を示す模式図であ
る。従来、この種の流量制御装置は、例えば、図4に示
すように、ガスボンベ20から供給されるガスを導入し
独立に流量を制御し流量調節範囲が異なる複数の流量制
御装置であるマスフローコントローラ13a,13b,
13cを並列に繋ぎ、マスフローコントローラ13a,
13b,13cのそれぞれの後段に開閉バルブ14を取
付けた構造である。そして、これらバルブ14を任意に
開閉してマスフローコントローラ13a,13b,13
cの一系統か二系統かあるいは三系統にするかで流量範
囲を設定し、設定された流量範囲で制御しガスを処理室
21に供給する。
FIG. 3 is a schematic diagram showing the structure of a gas supply system for explaining an example of a conventional flow rate control device, and FIG. 4 is a schematic diagram showing the structure of the mass flow controller of FIG. Conventionally, this type of flow rate control device is, for example, as shown in FIG. 4, a mass flow controller 13a that is a plurality of flow rate control devices that introduce gas supplied from a gas cylinder 20 and independently control the flow rate and have different flow rate adjustment ranges. , 13b,
13c are connected in parallel, and the mass flow controller 13a,
This is a structure in which an opening / closing valve 14 is attached at the subsequent stage of each of 13b and 13c. Then, the valves 14 are arbitrarily opened and closed to mass flow controllers 13a, 13b, 13
The flow rate range is set depending on whether the system is one system, two systems, or three systems, and gas is supplied to the processing chamber 21 by controlling within the set flow range.

【0004】独立した一つの流量制御装置であるマスフ
ローコントローラは、図4に示すように、内部に流量抵
抗をもつ主配管4と、この主配管4から分岐されるバイ
パス配管3と、このバイパス配管の上流側と下流側との
外周囲に巻き付けられる二つのヒータ8で構成されるセ
ンサ部2と、ヒータ8の抵抗と基準抵抗とでブリッジに
結線するブリッジ回路18と、主配管4の下流側に取付
けられた流量制御バルブ7と、ブリッジ回路18の出力
を入力し流量制御バルブ7の開度を制御する制御・電源
部とから構成されている。
As shown in FIG. 4, a mass flow controller, which is an independent flow control device, has a main pipe 4 having a flow resistance inside, a bypass pipe 3 branched from this main pipe 4, and this bypass pipe. Sensor part 2 composed of two heaters 8 wound around the outer circumferences of the upstream side and the downstream side, a bridge circuit 18 connected to the bridge by the resistance of the heater 8 and the reference resistance, and the downstream side of the main pipe 4. And a control / power supply unit that inputs the output of the bridge circuit 18 and controls the opening of the flow control valve 7.

【0005】このマスフローコントローラ13a〜13
cの動作は、主配管4より導入されたガスの一部はバイ
パス配管3に流れ込み、センサ部2で流量を検知し、ブ
リッジ回路18より信号を制御・電源部22a〜22c
に出力し設定値と比較し流量制御バルブ7の開度を制御
し全流量を設定する。センサ部2は、ガスが流れること
によって生じる二つのヒータ8の温度差を電気抵抗の変
化とし、ブリッジ回路18を用い電気信号に変換する。
また、合流するガスの流量を換算できるように、バイパ
ス配管3と主配管4の流量比(主配管の流量/バイパス
配管の流量)、すなわち分流比は固定されている。
The mass flow controllers 13a to 13
In the operation of c, a part of the gas introduced from the main pipe 4 flows into the bypass pipe 3, the sensor unit 2 detects the flow rate, and the bridge circuit 18 controls the signal / power supply units 22a to 22c.
Is output to control the opening of the flow control valve 7 to set the total flow rate. The sensor unit 2 uses the temperature difference between the two heaters 8 caused by the flow of gas as a change in electric resistance and converts it into an electric signal using the bridge circuit 18.
Further, the flow rate ratio between the bypass pipe 3 and the main pipe 4 (flow rate of the main pipe / flow rate of the bypass pipe), that is, the diversion ratio is fixed so that the flow rate of the combined gas can be converted.

【0006】この分流比は大きくしないことが精度を保
つために必要となるが、センサ部の構造から数cc/m
in〜10cc/minしかガスが流せないため、おの
ずから分流比を小さく抑えるには限界がある。従って、
全流量の最大値が大きい方が小さいものに比べ低流量側
での精度が悪くなる。通常、精度は最大流量値の±1%
程度である。ここで、仮に、流量範囲を1〜300cc
/min流すとすると、最大流量値が300cc/mi
nの流量制御装置の一台で流す場合は、1±3〜300
±3cc/minとなり、低流量側の精度が悪くなる。
It is necessary to keep the diversion ratio large in order to keep the accuracy, but it is several cc / m due to the structure of the sensor section.
Since the gas can flow only in the range of 10 to 10 cc / min, there is a limit in suppressing the diversion ratio. Therefore,
The larger the maximum value of the total flow rate, the lower the accuracy on the low flow rate side as compared with the smaller value. Usually, accuracy is ± 1% of maximum flow rate
It is a degree. Here, if the flow rate range is 1 to 300 cc
/ Min, the maximum flow rate is 300cc / mi
n ± 1 to 300 when using a single flow controller
It becomes ± 3 cc / min, and the accuracy on the low flow rate side deteriorates.

【0007】そこで、より高い精度の流量を得るため
に、最大流量値100cc/minと最大流量値200
cc/minと最大流量値300cc/minの流量制
御装置の3台用い、図3に示すように、制御範囲1〜1
00cc/minでは最大流量値100cc/minの
マスフローコントローラ13aとバルブ14を開にし一
系統の流量制御装置を使用し、制御範囲101〜200
cc/minではマスフローコントローラ13aを最大
流量値に設定し、これに並列のマスフローコントローラ
13bとバルブ14の系統を加え制御する。さらに制御
範囲201〜300cc/minでは、マスフローコン
トローラ13aおよびマスフローコントローラ13bの
系統を最大流量値に設定し、マスフローコトローラ13
cと開かれたバルブ14の系統で流量を制御する。
Therefore, in order to obtain a flow rate with higher accuracy, a maximum flow rate value of 100 cc / min and a maximum flow rate value of 200
As shown in FIG. 3, control range of 1 to 1 is used by using three units of flow rate control device having cc / min and maximum flow rate value of 300 cc / min.
At 00 cc / min, the mass flow controller 13a having a maximum flow rate of 100 cc / min and the valve 14 are opened, and a single-system flow rate control device is used.
In cc / min, the mass flow controller 13a is set to the maximum flow rate value, and the system of the parallel mass flow controller 13b and the valve 14 is added to this and controlled. Further, in the control range 201 to 300 cc / min, the system of the mass flow controller 13a and the mass flow controller 13b is set to the maximum flow rate value, and the mass flow controller 13 is set.
The flow rate is controlled by the system of c and the opened valve 14.

【0008】このように従来の流量制御装置では、マス
フローコントローラ13a,13b,13cを並列に繋
ぎバルブ14の開閉によって、一系統から三系統へと切
替えて流量制御を行なえば、低流領域の流量精度を落す
ことなく広範囲の流量制御ができることを特徴としてい
た。ちなみに、この流量精度は、1±1〜100±1c
c/min、101±2〜200±2cc/minおよ
び201±3〜300±3cc/minであった。
As described above, in the conventional flow rate control device, if the mass flow controllers 13a, 13b and 13c are connected in parallel and the valve 14 is opened / closed to switch the flow rate from one system to three systems to control the flow rate, the flow rate in the low flow region is reduced. It was characterized by the ability to control a wide range of flow rates without sacrificing accuracy. By the way, this flow rate accuracy is 1 ± 1 ± 100 ± 1c
c / min, 101 ± 2 to 200 ± 2 cc / min, and 201 ± 3 to 300 ± 3 cc / min.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上述し
た従来の流量制御装置では、精度良く流量制御範囲を広
くするために、流量制御装置の複数台を並列に繋げなけ
ればならない。このためガス供給装置とマスフローコン
トローラとの接続にマニホールドを必要となり、これら
への配管の本数および継手が台数に応じて増える。この
ため配管の継手などのガスのリーク事故の発生率が上り
製品の歩留りを低下させる問題がある。また、遠隔制御
および電源への配線も長くなりその分抵抗値が増え正確
に制御が困難になる。さらに、配管や配線が長くなるこ
とやマニホールドの付設などにより装置の周辺にその分
スペースが必要になり小型化が図れないという問題があ
る。そして、このマスフローコントローラの台数増加に
伴なう配管および配線の資材および施工コストが上昇す
るといった欠点がある。
However, in the above-described conventional flow control device, a plurality of flow control devices must be connected in parallel in order to accurately widen the flow control range. For this reason, a manifold is required for connecting the gas supply device and the mass flow controller, and the number of pipes and joints to these manifolds increases according to the number. For this reason, there is a problem in that the rate of occurrence of gas leak accidents at pipe joints and the like increases and the product yield decreases. In addition, the length of the wiring to the remote control and the power supply becomes long, and the resistance value increases correspondingly, making accurate control difficult. Further, there is a problem in that it becomes impossible to achieve miniaturization because a space is required around the device due to the lengthening of piping and wiring and the attachment of a manifold. Then, there is a drawback that materials and construction cost of piping and wiring increase with the increase in the number of mass flow controllers.

【0010】従って、本発明の目的は、広範囲に精密に
流量制御でき、より小型化が図れるとともに付帯の配管
や配線を安価にする流量制御装置を提供することであ
る。
Therefore, it is an object of the present invention to provide a flow rate control device capable of precisely controlling the flow rate in a wide range, achieving a more compact size, and reducing the cost of associated piping and wiring.

【0011】[0011]

【課題を解決するための手段】本発明の特徴は、ガス供
給装置より供給されるガスを導入するガス導入主配管
と、この主配管から複数本に分岐される分岐配管と、複
数の前記分岐配管の内一本を残しそれ以外の該分岐配管
に取付けられる開閉弁と、それぞれの該分岐配管から分
岐されるバイパス配管に取付けられる流量センサと、こ
れら分岐配管を集合し該ガスを排出するガス排出主配管
と、このガス排出主配管に取付けられる流量調節弁とを
備え、前記開閉弁を任意に開き該ガスが流れる前記分岐
配管の本数を変えるとともに前記流量調節弁の開度を変
えることによって前記ガス排出主配管から導出される該
ガスの流量を調節する流量制御装置である。
The features of the present invention include a gas introduction main pipe for introducing gas supplied from a gas supply device, a branch pipe branched from the main pipe into a plurality of pipes, and a plurality of the branch pipes. An on-off valve that leaves one of the pipes and is attached to the other branch pipes, a flow sensor that is attached to a bypass pipe branched from each of the branch pipes, and a gas that collects these branch pipes and discharges the gas. A main discharge pipe and a flow control valve attached to the main gas discharge pipe are provided, and the opening / closing valve is arbitrarily opened to change the number of the branch pipes through which the gas flows and the opening degree of the flow control valve. It is a flow rate control device that adjusts the flow rate of the gas led out from the gas discharge main pipe.

【0012】[0012]

【実施例】次に、本発明について図面を参照して説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings.

【0013】図1は本発明の流量制御装置の一実施例を
示す模式図である。この流量制御装置は、図1に示すよ
うに、ガスボンベより供給されるガスを導入する導入主
配管1と、この導入主配管1から複数本に分岐される分
岐配管5a,5b,5cと、これら分岐配管5a,5
b,5cの内一本を残しそれ以外の分岐配管5b,5c
に取付けられる開閉バルブ6a,6bと、それぞれの分
岐配管5a,5b,5cから分岐されるバイパス配管3
a,3b,3cに取付けられるセンサ部2a,2b,2
cと、これら分岐配管5a,5b,5cを集合しガスを
排出する排出主配管9と、この排出主配管9に取付けら
れる流量制御バルブ7とを備えている。
FIG. 1 is a schematic view showing an embodiment of the flow rate control device of the present invention. As shown in FIG. 1, this flow rate control device includes an introduction main pipe 1 for introducing a gas supplied from a gas cylinder, and branch pipes 5a, 5b, 5c branched from the introduction main pipe 1 into a plurality of pipes. Branch pipes 5a, 5
Branch pipes 5b and 5c except one of b and 5c
Open / close valves 6a and 6b attached to the pipes and bypass pipes 3 branched from the respective branch pipes 5a, 5b and 5c
Sensor parts 2a, 2b, 2 attached to a, 3b, 3c
c, a discharge main pipe 9 that collects the branch pipes 5a, 5b, and 5c to discharge the gas, and a flow control valve 7 attached to the discharge main pipe 9.

【0014】ここで、センサ部2a,2b,2cのある
バイパス配管3a,3b,3cは10cc/minのガ
スが流れるように設計し、それぞれの分岐配管5a,5
b,5cとの分流比を9とする。従って、分岐配管5
a,5b,5cの最大流量を100cc/minにな
る。また、分流比が総べて等しいので、センサ部2a,
2b,2cのヒータ8a,8b,8cは一つのブリッジ
回路に組込むことができ、当然、ブリッジ回路の出力を
入力しバルブを制御するリモート用の制御・電源部も一
つにまとめ装置の制御部に組込むことができる。
Here, the bypass pipes 3a, 3b and 3c having the sensor portions 2a, 2b and 2c are designed so that a gas of 10 cc / min flows, and the respective branch pipes 5a and 5c.
The diversion ratio with b and 5c is 9. Therefore, the branch pipe 5
The maximum flow rate of a, 5b, 5c becomes 100 cc / min. Further, since the diversion ratios are all equal, the sensor unit 2a,
The heaters 8a, 8b and 8c of 2b and 2c can be incorporated in one bridge circuit, and of course, the remote control / power supply unit for inputting the output of the bridge circuit and controlling the valve is also integrated into one control unit of the device. Can be incorporated into.

【0015】次に、この流量制御装置の動作を説明す
る。まず、制御範囲1〜100cc/minで制御する
場合は、開閉バルブ6a,6bを閉じ、分岐配管5aの
みで流すようにする。そしてセンサ部2aで流量を検知
し流量制御バルブ7の開度を制御し流量を設定する。
Next, the operation of this flow control device will be described. First, in the case of controlling in the control range of 1 to 100 cc / min, the opening / closing valves 6a and 6b are closed, and the flow is made to flow only through the branch pipe 5a. Then, the sensor section 2a detects the flow rate and controls the opening of the flow rate control valve 7 to set the flow rate.

【0016】次に、制御範囲101〜200cc/mi
nで制御する場合は、開閉バルブ6aを開け開閉バルブ
6bを閉じたままにし、分岐配管5a,5bにガスを流
す。センサ2a,2cのヒータ8a,8bは上流側と下
流側とでそれぞれシリーズに接続されているので、分岐
配管5aと分岐配管5bとに流れるガスの総和流量を検
知することになり、流量制御バルブ7で上記制御範囲で
流量を設定できる。また、制御範囲201〜300で制
御する場合は、開閉バルブ6a,6bを開け、分岐配管
5a,5b,5cの総べてにガスを流し、流量制御バル
ブ7を制御し流量を設定する。
Next, the control range 101 to 200 cc / mi
In the case of controlling by n, the opening / closing valve 6a is opened and the opening / closing valve 6b is kept closed, and the gas is allowed to flow through the branch pipes 5a, 5b. Since the heaters 8a and 8b of the sensors 2a and 2c are connected in series on the upstream side and the downstream side, respectively, the total flow rate of the gas flowing through the branch pipes 5a and 5b is detected, and the flow rate control valve is detected. With 7, the flow rate can be set within the above control range. Further, when controlling in the control range 201 to 300, the opening / closing valves 6a and 6b are opened, gas is caused to flow in all of the branch pipes 5a, 5b and 5c, and the flow rate control valve 7 is controlled to set the flow rate.

【0017】このように一つの導入主配管を分岐させ複
数のガス供給系統にし再び集合させ一つの排出配管とす
る構造にすることで一体化し易く、その分、従来、付帯
されていた配管が無くなり、それに伴なって継手やマニ
ホールド等も不要になる。
In this way, one introduction main pipe is branched so that a plurality of gas supply systems are reassembled to form one discharge pipe, so that it is easy to integrate, and accordingly, the pipes conventionally attached are eliminated. As a result, no joints or manifolds are needed.

【0018】図2は図1の流量制御装置を処理装置に適
用した例を示す模式図である。例えば、図2に示すよう
に、ドライエッチング装置のような処理装置に適用した
場合、流量制御装置10の排出配管を直接処理室21に
接続することができるし、継手が必要が無くなる。ま
た、入力側もガスボンベ20に直接接続できるし、従来
のようにマニホールドや配管支え等が必要が無くなる。
さらに、リモートコントロール用の制御・電源部22も
一つのラックに纏めることができ装置の制御部に収納で
きる。そして制御部を処理室21に隣接して配置すれ
ば、配線も短くて済み従来のように抵抗分の増加など無
くなり正確に制御できる。
FIG. 2 is a schematic diagram showing an example in which the flow rate control device of FIG. 1 is applied to a processing device. For example, as shown in FIG. 2, when applied to a processing apparatus such as a dry etching apparatus, the discharge pipe of the flow rate control apparatus 10 can be directly connected to the processing chamber 21, and a joint is not necessary. Also, the input side can be directly connected to the gas cylinder 20, and the need for a manifold, a pipe support, etc. as in the conventional case is eliminated.
Furthermore, the control / power supply unit 22 for remote control can also be integrated into one rack and stored in the control unit of the apparatus. By disposing the control unit adjacent to the processing chamber 21, the wiring can be shortened and the increase in the resistance component is eliminated as in the conventional case, and accurate control can be performed.

【0019】[0019]

【発明の効果】以上説明したように本発明は、両側に導
入排出口をもつ一つの配管の途中を複数の分岐配管に分
離させ、これら分岐配管のそれぞれに流量センサを設
け、一つの分岐配管を除く総べての分岐配管に開閉バル
ブを、排出口から流れるガス流量を制御する流量制御バ
ルブとを具備させ、開閉バルブを任意に順次開けること
によって、小さな流量から大きい流量まで広い範囲で流
量を精密に設定できるという効果がある。また、導入排
出口を両側にもつ一本の配管から枝別れさせて分岐配管
を形成させることができることから、一体化構造にし易
く小型化が図れるとともに一体化構造にすることにより
直接処理室やガス供給装置に接続できることから、従
来、必要としていた長い配管廻しや配線廻しなどが無く
なり付帯部品コストの低減およびそれに伴なう工事費も
節約できるという効果がある。
As described above, according to the present invention, one pipe having an inlet / outlet on both sides is divided into a plurality of branch pipes, and a flow sensor is provided in each of these branch pipes. All branch pipes except for are equipped with open / close valves, and flow control valves that control the flow rate of gas flowing from the exhaust port, and open / close valves arbitrarily in sequence to provide a wide range of flow rates from small to large. The effect is that the can be set precisely. In addition, since it is possible to form a branch pipe by branching from a single pipe having an inlet / outlet on both sides, it is easy to make an integrated structure and downsizing is possible. Since it can be connected to the supply device, there is an effect that the conventionally required long piping and wiring, etc. are eliminated, and the cost of incidental parts can be reduced and the construction cost associated therewith can be saved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の流量制御装置の一実施例を示す模式図
である。
FIG. 1 is a schematic view showing an embodiment of a flow rate control device of the present invention.

【図2】図1の流量制御装置を処理装置に適用した例を
示す模式図である。
FIG. 2 is a schematic diagram showing an example in which the flow rate control device of FIG. 1 is applied to a processing device.

【図3】従来の流量制御装置の一例を説明するためのガ
ス供給システムの構成を示す模式図である。
FIG. 3 is a schematic diagram showing a configuration of a gas supply system for explaining an example of a conventional flow rate control device.

【図4】図3のマスフローコントローラの構造を示す模
式図である。
FIG. 4 is a schematic diagram showing the structure of the mass flow controller of FIG.

【符号の説明】 1 導入主配管 2,2a,2b,2c センサ部 3,3a,3b,3c バイパス配管 4 主配管 5a,5b,5c 分岐配管 6,14 開閉バルブ 7 流量制御バルブ 8,8a,8b,8c ヒータ 9 排出主配管 10,13 流量制御装置 18 ブリッジ回路 20 ガスボンベ 21 処理室 22,22a,22b,22c 制御・電源部[Explanation of Codes] 1 main piping 2, 2a, 2b, 2c sensor section 3, 3a, 3b, 3c bypass piping 4 main piping 5a, 5b, 5c branch piping 6, 14 open / close valve 7 flow control valve 8, 8a, 8b, 8c Heater 9 Discharge main piping 10, 13 Flow rate control device 18 Bridge circuit 20 Gas cylinder 21 Processing chamber 22, 22a, 22b, 22c Control / power supply unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ガス供給装置より供給されるガスを導入
するガス導入主配管と、この主配管から複数本に分岐さ
れる分岐配管と、複数の前記分岐配管の内一本を残しそ
れ以外の該分岐配管に取付けられる開閉弁と、それぞれ
の該分岐配管から分岐されるバイパス配管に取付けられ
る流量センサと、これら分岐配管を集合し該ガスを排出
するガス排出主配管と、このガス排出主配管に取付けら
れる流量調節弁とを備え、前記開閉弁を任意に開き該ガ
スが流れる前記分岐配管の本数を変えるとともに前記流
量調節弁の開度を変えることによって前記ガス排出主配
管から導出される該ガスの流量を調節することを特徴と
する流量制御装置。
1. A gas introduction main pipe for introducing a gas supplied from a gas supply device, a branch pipe branched from the main pipe into a plurality of pipes, and one of the plurality of branch pipes is left and the other pipes are left. An on-off valve attached to the branch pipe, a flow rate sensor attached to each bypass pipe branched from the branch pipe, a gas discharge main pipe that collects the branch pipes and discharges the gas, and a gas discharge main pipe A flow control valve attached to the gas discharge main pipe by changing the number of the branch pipes through which the gas flows and changing the opening of the flow control valve. A flow control device characterized by adjusting the flow rate of gas.
JP5287890A 1993-11-17 1993-11-17 Flow controller Expired - Fee Related JP2546520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5287890A JP2546520B2 (en) 1993-11-17 1993-11-17 Flow controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5287890A JP2546520B2 (en) 1993-11-17 1993-11-17 Flow controller

Publications (2)

Publication Number Publication Date
JPH07141032A true JPH07141032A (en) 1995-06-02
JP2546520B2 JP2546520B2 (en) 1996-10-23

Family

ID=17723048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5287890A Expired - Fee Related JP2546520B2 (en) 1993-11-17 1993-11-17 Flow controller

Country Status (1)

Country Link
JP (1) JP2546520B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955185A (en) * 1995-08-11 1997-02-25 Furontetsuku:Kk Mass filter type gas analyzer with calibration gas system and its operating method
JPH1194603A (en) * 1997-06-24 1999-04-09 Balzers Ag Method for monitoring actual flow of gas to vacuum facility, and vacuum processing device
KR101407642B1 (en) * 2012-11-08 2014-06-13 한국에너지기술연구원 Duplex calorimeter
WO2015064848A1 (en) * 2013-11-04 2015-05-07 한국에너지기술연구원 Bidirectional calorimeter and heat energy supply system provided with same
JP2020107061A (en) * 2018-12-27 2020-07-09 株式会社フジキン Mass flow controller

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955185A (en) * 1995-08-11 1997-02-25 Furontetsuku:Kk Mass filter type gas analyzer with calibration gas system and its operating method
JPH1194603A (en) * 1997-06-24 1999-04-09 Balzers Ag Method for monitoring actual flow of gas to vacuum facility, and vacuum processing device
KR101407642B1 (en) * 2012-11-08 2014-06-13 한국에너지기술연구원 Duplex calorimeter
WO2015064848A1 (en) * 2013-11-04 2015-05-07 한국에너지기술연구원 Bidirectional calorimeter and heat energy supply system provided with same
JP2020107061A (en) * 2018-12-27 2020-07-09 株式会社フジキン Mass flow controller

Also Published As

Publication number Publication date
JP2546520B2 (en) 1996-10-23

Similar Documents

Publication Publication Date Title
US9010369B2 (en) Flow rate range variable type flow rate control apparatus
JP4642115B2 (en) Flow rate ratio controller
CN101256935B (en) Method and apparatus for controlling gas flow to a processing chamber
CN101256936B (en) Method and apparatus for controlling gas flow to a processing chamber
TWI434161B (en) Flow ratio variable fluid supply device
TWI480712B (en) A gas shunt supply device for a semiconductor manufacturing apparatus
KR20110123258A (en) Fluid controller
JP2008211218A5 (en)
US9383758B2 (en) Flow rate range variable type flow rate control apparatus
CN101256937A (en) Method and apparatus for controlling gas flow to a processing chamber
US9921089B2 (en) Flow rate range variable type flow rate control apparatus
US4989637A (en) Gas mixing apparatus
JP2546520B2 (en) Flow controller
KR20190074930A (en) Mass Flow Controller
JPH09330128A (en) Mass-flow controller
KR20050089894A (en) Fluid control apparatus and heat treatment system
JPH07175B2 (en) Gas intake device for reaction vessel
JP5124410B2 (en) Gas supply system
JP2003074800A (en) Fluid controller, heat treatment device and fluid control method
JPH064139A (en) Flow rate controller
JPH04313107A (en) Mass flow controller
JPH0548025Y2 (en)
JPH05233069A (en) Mass flow controller
JPH0314010A (en) Mass flow controller
JP3552767B2 (en) Fluid pressure automatic control system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070808

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees