JP3552767B2 - Fluid pressure automatic control system - Google Patents

Fluid pressure automatic control system Download PDF

Info

Publication number
JP3552767B2
JP3552767B2 JP30505194A JP30505194A JP3552767B2 JP 3552767 B2 JP3552767 B2 JP 3552767B2 JP 30505194 A JP30505194 A JP 30505194A JP 30505194 A JP30505194 A JP 30505194A JP 3552767 B2 JP3552767 B2 JP 3552767B2
Authority
JP
Japan
Prior art keywords
pressure
fluid pressure
pressure control
control system
automatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30505194A
Other languages
Japanese (ja)
Other versions
JPH08161055A (en
Inventor
茂 浜崎
和雄 中原
Original Assignee
財団法人日本ガス機器検査協会
ガスミックス工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人日本ガス機器検査協会, ガスミックス工業株式会社 filed Critical 財団法人日本ガス機器検査協会
Priority to JP30505194A priority Critical patent/JP3552767B2/en
Publication of JPH08161055A publication Critical patent/JPH08161055A/en
Application granted granted Critical
Publication of JP3552767B2 publication Critical patent/JP3552767B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Fluid Pressure (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、水等の粘性の低い液体、或いは燃料ガス、空気等の気体を所定の圧力で供給するための流体圧自動制御システムに関し、更に詳しくは流体圧が高精度に制御されると共に、多段階の設定圧が瞬時に切替可能であり、しかも同設定圧の切替時における圧力変動を極力小さくし、更に流量の変動による圧力変動を極力小さくし得る流体圧自動制御システムに関する。
【0002】
【従来の技術】
近年、ガス燃焼機の燃焼性検査や、CVDプロセスを始めとする半導体、グラスファィバ、ニューセラミックス等の広範な技術分野において、高精度の成分組織をもつ混合ガスを使用する必要性が高まっている。特に、燃焼機における燃焼性検査では燃料ガスの組成基準が極めて厳格に規定されている。従って、前記混合ガスの製造にあたっては各種原料ガスの供給が所定の条件下で高精度になされなければならず、しかも高精度の組成をもつ混合ガスも所定の圧力及び流量で燃焼機等に供給される必要がある。
【0003】
こうした要求を満足させるため、先に本発明者等は精度の高い流体圧制御弁を開発した(特願平6−165350号)。図2は同流体圧制御弁30の構造を示している。同図によれば、弁本体31の内部に、一次側流体圧流路32及び二次側流体圧流路33が形成されると共に、その各流路32,33を連結する連絡流路34の一次側流体圧流路32側の流路上方に貫通部35を介して制御用空間36が設けられ、前記連絡流路34の途中に弁座42及び弁体43からなるノズル部44を形成している。
【0004】
前記連絡流路34と前記制御用空間36とを連通させる貫通部35はバランスダイアフラム50により仕切られ、更に前記制御用空間36内は二つの制御用ダイアフラム45,46により、連絡流路34に関して離れた側から順に、制御用空気61が供給される空圧制御室49と、大気74に開放される大気室48と、二次側流体圧流路33と連通する均圧室47との三室に仕切られている。更に、前記弁体43と各ダイアフラム45,46,50との間が弁棒51で連結されている。
【0005】
上述のごとく制御用空間36を二つの連結された制御用ダイアフラム45,46及びバランスダイアフラム50により三室に仕切ると共に、同制御用ダイアフラム45,46の径差が任意に設定でき、上記空圧制御室49内の制御用空気圧を、その供給源にとって最も変動なく供給できる最適な値に選定できるため、制度の高い圧力制御を可能にすることができる。
【0006】
更に、前記制御用ダイアフラム45,46を一体成形すると共に、その連結軸部52に弁棒51を貫通させることなく挿入固定する場合には、大気室48が空圧制御室49及び均圧室47に対して制御用ダイアフラム45,46を介して完全に隔離され、しかも仮りに前記制御用ダイアフラム45,46のいずれかが破損した場合にも、制御用空気と被制御流体とが混入することはなく、上述の高精度に加えて信頼性と安定性が確保される。
【0007】
なお、図2において符号80は貫通部35の二次側流体圧流路33に通じる空間部に外部から挿入固定されるストッパ機構であり、同ストッパ機構80は閉止用空気供給源81から送られる閉止用空気によりピストン82aを収縮動可能に作動するストッパ用シリンダ82を有し、同シリンダ82の作動によりピストン82aをスプリング83の付勢に抗して縮動させて、ノズル部44の弁座42に当接する弁体43の規制を解除し、弁体43の制御動作を可能にする。
【0008】
【発明が解決しようとする課題】
しかるに、上述の如く所定の二次側圧力を高精度に制御することが可能な圧力制御弁にあっても、これを単に流体圧回路に組み込むだけでは、例えば使用者側での急激な圧力変動が発生した場合には、制御圧力が安定化するまでに相当な時間遅れが生じる。かかる圧力変動と時間遅れの発生は、上述したように高い精度が求められる流体圧制御にあっては極力回避すべき課題となる。
【0009】
更に、従来の一般的な圧力制御システムによれば、その圧力制御弁はスプリング等により設定圧を変更する機械的な機構が採用されているため、設定圧力の変更時に逐次その調整操作を行わなければならず、しかも圧力の昇降時間と関連させて連続的に調整することは不可能であった。
【0010】
本発明の目的は、上述のごとく通常避けて通れない制御圧力の起動時及び同圧力の切替時に発生する急激な圧力変動を回避すると共に、所望の設定時間で繰り返して所定の設定圧力が得られ、しかも常時二次側の流体圧を高精度に制御し得る流体圧自動制御システムを提供することにある。
【0011】
【課題を解決するための手段】
かかる目的は、本発明の主要な構成をなす中央処理部、流体圧制御回路、及び圧力検出部が組み込まれてなる流体圧自動制御システムにおいて、前記流体圧制御回路は、前記中央処理部からの指令電気信号に基づく制御空気圧に変換する電/空変換器と、同電/空変換器に接続され二次側圧力を設定圧となるように制御する圧力制御弁と、同圧力制御弁の一次側流路の入口と二次側流路の出口とを連結する還流管路と、同還流管路に介装された還流ポンプとを有し、同還流ポンプが流体圧の起動と同時に作動され、二次側流体圧の一部を継続して前記一次側流路に強制還流させてなることを特徴とする流体圧自動制御システムによって達成される。
【0012】
また好適な実施態様によれば、前記中央処理部には、複数の予め設定された圧力に対してそれぞれに複数の圧力到達時間が記憶され、前記電/空変換器への指令電気信号と組み合わせて、複数の到達時間をもって所定の設定圧力が繰り返し得られるようになされ、また外部のパソコンやシーケンサとの相互通信を可能にする入出力端子が設けられており、更に好適には前記還流ポンプによる還流圧力を1.0 〜1.8 l/min とすることが好ましい。
【0013】
【作用】
圧力制御弁の一次側配管路と二次側配管路との間に強制還流管路を設置することにより、前記圧力制御弁には一次側流体圧流路から二次側流体圧流路に所定の圧力をもつ被制御流体が継続的に流れるようになるため、流体圧制御回路の起動時、或いは設定圧力の切替時にも周辺部材がよく追随するようになり、短時間に安定した制御流体圧が得られる。
【0014】
この短時間での設定圧力の安定化とその再現性は、圧力上昇及び降下時間を自由に設定することをも可能にする。このことは、例えばガス燃焼試験において、燃焼時におけるガス圧の降下に基づく安全弁の作動時期を知見するにあたり、本発明による所定の時間内における連続的な圧力降下を予め設定することにより、安全弁が作動した時点の降下圧力値を高精度に確認し得ることを意味する。
【0015】
【実施例】
以下、本発明を図面に基づいて具体的に説明する。図1は本発明のシステムに基づく流体圧自動制御回路の一実施例を示している。本実施例における前記流体圧自動制御回路はユニット化されており、単一のハウジング1内に全ての関連部材が一体に組み込まれている。そして、制御空気圧、被制御流体圧、センサ導入圧等の各出入口や、外部の例えばパソコン、シーケンサ等と接続される中央処理装置(マイコン)の接続端子が同ハウジング1に設けられている。このため、前記中央処理部は外部機器との通信機能やリモートコントロール機能を有している。
【0016】
図中、符号41は被制御流体の二次側圧力を所定の圧力に制御する圧力制御弁であり、この圧力制御弁30には本発明者等が先に開発した図2に示す精密圧力制御弁が適用されている。そして、前記ハウジング1には同圧力制御弁30の一次側流体圧の入口及び二次側流体圧の出口にそれぞれ連結された外部配管との接続口1a,1bが設けられている。また、同圧力制御弁30の空圧制御室49には電/空変換器60が接続されている。この電/空変換器60は図示せぬ外部の制御空気圧供給源に接続され、前記空圧制御室49に所定の制御空気圧61を多段に切り替えて供給する。この制御空気圧は4〜7kg/cmの範囲で最も安定した供給がなされる。
【0017】
更に、前記電気/空圧変換器60は中央処理装置20のD/A変換部と電気的に接続されており、同中央処理装置20から電気的な切替信号を受けると、同切替信号により所定の制御空気圧に直接変換され、同制御圧力が前記圧力制御弁30の空圧制御室49に送り出される。本実施例によれば、中央処理装置20に予め設定されているデータ(圧力及び安定化時間のデータ)に基づき、気体の圧力制御の場合は1〜400mmHO の範囲で15段階の再現性をもった切替えが可能であり、液体の圧力制御の場合は0.01〜10kg/cmの範囲を同じく15段階で再現性をもって圧力切替えを可能にしている。
【0018】
また、前記中央処理装置20のA/D変換部には圧力センサ10が接続され、同圧力センサ10の検出圧入力口1c及び検出流体の排出口1dがハウジング1に設けられている。通常、この圧力センサ10の検出圧の入力口1cは前記圧力制御弁30の二次側流体圧流路33とつながる図示せぬ各種外部機器の流体圧導入路に連結され、二次側流体圧を常時検出すると共に、同検出信号を前記中央処理装置20に送り、同中央処理装置20にて所定の比較演算処理がなされて、上記電/空変換器60を作動させ、空圧制御室49に供給される制御空気圧をきめ細かに切り替え、二次側流体圧をフィードバック制御する。
【0019】
そして、前記圧力制御弁30には本発明の最も特徴部をなす還流ポンプ70が設置される。即ち、前記圧力制御弁30の一次側配管路41aと二次側配管路41bとの間に還流管路71を設け、同還流管路71に還流ポンプ70が設置される。同還流ポンプ70は内部電源2に接続されており、同電源2のスイッチが入ると起動して、本流体圧自動制御回路の作動中は常に作動し前記二次側配管路41bの一部流量を一次側配管路41aに強制的に還流させている。本発明において、前記還流圧力は1.0〜1.8 l/minの範囲に設定される。この還流圧力が1 .0 l/minより低いと制御圧力切替時における急激な圧力変動等による影響が相変わらず大きく、また1.8 l/minを超えるとその還流圧力の影響が大きくなり、被制御流体に対する負荷容量範囲が小さくなる。
【0020】
こうして圧力制御弁30の一次側配管路41aと二次側配管路41bとの間に強制還流管路71を設置することにより、前記圧力制御弁30には一次側流体圧流路32から二次側流体圧流路33に所定の圧力をもつ被制御流体が継続的に流れるため、急激な設定圧力の切替時にも周辺部材がよく追随するようになり、短時間に安定した制御流体圧が得られるばかりでなく、設定圧力と切替え圧力の安定化が、上述の如く中央処理装置20からのデジタル信号により全てが制御されるため、従来のような調整ネジによる調整ではないため応答が速く且つ再現性に優れたものになる。
【0021】
図3は、20号湯沸器における燃焼検査時の着火特性を示しており、実線は本発明の上記流体圧自動制御回路を適用した場合の同特性図、仮想線は同流体圧自動制御回路から上記強制還流回路を排除した場合の同特性図である。図3から明らかなごとく通常の流体圧制御システムを使用した場合には着火時に大きな圧力低下(約150mmHO)が生じて、燃焼ガス圧が安定化するまで約2秒を要しているが、本発明を適用した場合には着火時に約17mmHO のガス圧の低下が発生するに過ぎず、しかも燃焼ガス圧が安定化するまでに要する時間も約1.2秒と極めて短くなっていることが理解できる。
【0022】
図4は、本発明の上記流体圧自動制御回路を使い被制御流体(空気)の設定圧力をOmmHO →300mmHO →20mmHO と大きな値で且つ急激に切り替えたときの調圧特性を示している。同図から明らかなごとく、0mmHO から300mmHO へと最小値から最大値まで昇圧させるために約3〜4秒で安定した圧力が得られ、また300mmHO から20mmHO へと急激な降圧時にも同様に3〜4秒と言う短時間で極めて滑らかな設定圧(20mmHO )が得られることが分かる。
【0023】
また図5及び図6は、本発明の上記流体圧自動制御回路を使用して、空気圧を50mmHO と300mmHO との間で50mmHO ごとに順次切り替えたときの調圧特性を示している。
【0024】
図5は昇圧時の特性線図、図6は降圧時の特性線図である。これらの図から明らかなごとく、全ての範囲にわたり圧力の切替えが短時間(1秒〜1.7秒)に且つ円滑になされていることが理解できる。これは、本発明の設定圧切替えにあたり、中央処理装置20によるデジタル設定であるがため、前記強制還流回路に加えて設定値の再現性が保証されることを示している。この場合も、上記強制還流回路の作動を持続させ、上記圧力制御弁30には常に1.0〜1.8 l/minのガスが流れるようにしている。こうして、ガス圧の昇降を設定曲線に沿って高精度に且つ再現性よく実現できることは、単位時間あたりの昇降圧を任意に設定し得ることにつながり、これを上記中央処理装置20に予め入力しておけば、任意の連続する昇降圧曲線が実現でき、例えば燃焼器等の試験において、ガス圧の降下による安全弁の作動時において、その作動時のガス圧を客観的に且つ高精度で確認し得るようになる。
【0025】
なお、上記実施例は本発明の流体圧自動制御システムをユニット化した例であるが、本発明のシステムは通常の流体圧回路に直接組み込むことも可能であり、また例えば被制御流体が水道水であって本管から多数の支管へと分岐して配水する等の場合に、本発明の流体圧自動制御システムを各支管ごとに設置することにより、配水先の水圧を常に一定に保持させ得る。
【0026】
【発明の効果】
以上の説明から明らかなごとく、本発明の流体圧自動制御システムによれば、同システム中の作動休止時及び制御圧力の切替時にあっても、圧力制御弁には常に所定の流体圧が強制的に流し続けられるため、同システムの起動或いは圧力切替時において圧力制御弁の内部に急激で且つ大きな圧力変動が発生せず、従って制御圧力の安定化も素早くなされるようになり、特に混合ガスの製造や燃焼機の燃焼ガス検査等のような高精度の流体圧制御が厳しく求められる場合に極めて有効なものとなる。
【0027】
そして、本発明における上述のごとく高精度で且つ再現性に優れた流体圧力の連続的な制御により、流体圧の昇降時間を自由に設定できるようになり、これを流体圧の各種試験に適用すれば、信頼性の高い好結果が保障される。
【図面の簡単な説明】
【図1】本発明の代表的な実施例である流体圧自動制御回路を示すブロック図である。
【図2】同流体圧自動制御回路に適用される精密圧力制御弁の構成を示す断面図である。
【図3】同流体圧自動制御回路による着火特性図である。
【図4】同流体圧自動制御回路による圧力切替時の調圧特性図である。
【図5】同流体圧自動制御回路による多段の昇圧切替時における調圧特性図である。
【図6】同流体圧自動制御回路による多段の降圧切替時における調圧特性図である。
【符号の説明】
1 ハウジング
1a,1b 外部配管接続口
1c 検出圧入力口
1d 検出流体排出口
2 内部電源
10 圧力センサ
20 中央処理装置
30 圧力制御弁
31 弁本体
32 一次側流体圧流路
33 二次側流体圧流路
34 連絡流路
35 貫通部
36 制御用空間
41a 一次側配管路
41b 二次側配管路
42 弁座
43 弁体
44 ノズル部
45,46 制御用ダイアフラム
47 均圧室
48 大気室
49 空圧制御室
50 バランスダイアフラム
51 弁棒
52 連結軸部
60 電気空圧変換器
61 制御空気圧
70 還流ポンプ
71 強制還流管路
80 ストッパ機構
81 閉止用空気供給源
82 閉止用シリンダ
82a ピストン
83 スプリング
[0001]
[Industrial applications]
The present invention relates to a fluid automatic control system for supplying a low-viscosity liquid such as water, or a fuel gas or a gas such as air at a predetermined pressure.More specifically, the fluid pressure is controlled with high precision, The present invention relates to an automatic fluid pressure control system capable of instantaneously switching multi-stage set pressures, and further minimizing pressure fluctuations at the time of switching the set pressures, and further minimizing pressure fluctuations due to flow rate fluctuations.
[0002]
[Prior art]
2. Description of the Related Art In recent years, there has been an increasing need to use a mixed gas having a high-accuracy component structure in a wide range of technical fields such as a combustibility test of a gas combustor, a semiconductor process, a glass fiber process, and a new ceramic process including a CVD process. Particularly, in the combustibility test of a combustor, the composition standard of the fuel gas is extremely strictly specified. Therefore, in producing the mixed gas, the supply of various raw material gases must be performed with high precision under predetermined conditions, and a mixed gas having a high-precision composition is also supplied to a combustor or the like at a predetermined pressure and flow rate. Need to be done.
[0003]
In order to satisfy such demands, the present inventors have previously developed a highly accurate fluid pressure control valve (Japanese Patent Application No. 6-165350). FIG. 2 shows the structure of the fluid pressure control valve 30. According to the drawing, a primary fluid pressure flow path 32 and a secondary fluid pressure flow path 33 are formed inside a valve body 31 and a primary side of a communication flow path 34 connecting the respective flow paths 32, 33. A control space 36 is provided above the flow path on the side of the fluid pressure flow path 32 via a penetrating portion 35, and a nozzle section 44 including a valve seat 42 and a valve body 43 is formed in the middle of the communication flow path 34.
[0004]
The through portion 35 for communicating the communication flow path 34 with the control space 36 is partitioned by a balance diaphragm 50, and the inside of the control space 36 is separated from the communication flow path 34 by two control diaphragms 45 and 46. In order from the side, a pneumatic control chamber 49 to which the control air 61 is supplied, an atmospheric chamber 48 opened to the atmosphere 74, and a pressure equalizing chamber 47 communicating with the secondary fluid pressure flow path 33 are partitioned into three chambers. Have been. Further, the valve body 43 and each of the diaphragms 45, 46, 50 are connected by a valve rod 51.
[0005]
As described above, the control space 36 is partitioned into three chambers by the two connected control diaphragms 45 and 46 and the balance diaphragm 50, and the diameter difference between the control diaphragms 45 and 46 can be set arbitrarily. Since the control air pressure in 49 can be selected to an optimum value that can be supplied to the supply source with the least variation, highly accurate pressure control can be performed.
[0006]
Furthermore, when the control diaphragms 45 and 46 are integrally formed and inserted and fixed without penetrating the valve rod 51 into the connection shaft portion 52 thereof, the air chamber 48 becomes the pneumatic control chamber 49 and the pressure equalizing chamber 47. Are completely isolated from each other via the control diaphragms 45, 46, and even if one of the control diaphragms 45, 46 is broken, the control air and the controlled fluid are not mixed. In addition, reliability and stability are ensured in addition to the high accuracy described above.
[0007]
In FIG. 2, reference numeral 80 denotes a stopper mechanism which is inserted and fixed from the outside into a space communicating with the secondary-side fluid pressure flow path 33 of the through portion 35, and the stopper mechanism 80 is a closing mechanism supplied from a closing air supply source 81. A stopper cylinder 82 for operating the piston 82a so that the piston 82a can be contracted and moved by air for use. The cylinder 82 is operated to contract the piston 82a against the bias of the spring 83, and the valve seat 42 of the nozzle portion 44 is The restriction of the valve body 43 that comes into contact with is released, and the control operation of the valve body 43 is enabled.
[0008]
[Problems to be solved by the invention]
However, even if the pressure control valve is capable of controlling the predetermined secondary pressure with high accuracy as described above, simply incorporating this in the fluid pressure circuit will cause, for example, a sudden pressure fluctuation on the user side. Occurs, there is a considerable time delay before the control pressure stabilizes. The occurrence of such pressure fluctuation and time delay is a problem to be avoided as much as possible in fluid pressure control requiring high accuracy as described above.
[0009]
Further, according to the conventional general pressure control system, the pressure control valve employs a mechanical mechanism for changing the set pressure by a spring or the like. Therefore, when the set pressure is changed, the adjustment operation must be performed sequentially. A continuous adjustment in relation to the pressure rise and fall times was not possible.
[0010]
An object of the present invention is to avoid sudden pressure fluctuations that occur at the time of control pressure startup and switching of the same pressure that cannot be normally avoided as described above, and that a predetermined set pressure can be obtained repeatedly at a desired set time. Another object of the present invention is to provide a fluid pressure automatic control system capable of always controlling the fluid pressure on the secondary side with high accuracy.
[0011]
[Means for Solving the Problems]
Such an object is achieved by a fluid pressure automatic control system in which a central processing unit, a fluid pressure control circuit, and a pressure detection unit, which constitute the main components of the present invention, are incorporated. An electro-pneumatic converter for converting to a control air pressure based on a command electric signal, a pressure control valve connected to the electro-pneumatic converter for controlling the secondary pressure to a set pressure, and a primary pressure control valve A return line connecting the inlet of the side flow path and the outlet of the secondary side flow path, and a return pump interposed in the return line, wherein the return pump is activated simultaneously with the activation of the fluid pressure. The fluid pressure automatic control system is characterized in that a part of the secondary fluid pressure is continuously flown back to the primary flow path.
[0012]
According to a preferred embodiment, the central processing unit stores a plurality of pressure arrival times for a plurality of preset pressures, respectively, and combines the arrival times with a command electric signal to the electro-pneumatic converter. A predetermined set pressure is repeatedly obtained with a plurality of arrival times, and an input / output terminal is provided for enabling mutual communication with an external personal computer or a sequencer. It is preferable that the reflux pressure be 1.0 to 1.8 l / min.
[0013]
[Action]
By installing a forced return line between the primary side line and the secondary side line of the pressure control valve, the pressure control valve is provided with a predetermined pressure from the primary side hydraulic pressure passage to the secondary side hydraulic pressure passage. Since the controlled fluid having the pressure continuously flows, the peripheral members follow well even when the fluid pressure control circuit is started or when the set pressure is switched, and a stable control fluid pressure can be obtained in a short time. Can be
[0014]
This stabilization of the set pressure in a short time and its reproducibility also allow the pressure rise and fall times to be set freely. This means that, for example, in a gas combustion test, when finding out the operation timing of the safety valve based on the gas pressure drop during combustion, by setting a continuous pressure drop within a predetermined time according to the present invention in advance, the safety valve This means that the drop pressure value at the time of operation can be confirmed with high accuracy.
[0015]
【Example】
Hereinafter, the present invention will be specifically described with reference to the drawings. FIG. 1 shows an embodiment of a fluid pressure automatic control circuit based on the system of the present invention. The automatic fluid pressure control circuit in the present embodiment is unitized, and all the related members are integrated into a single housing 1. The housing 1 is provided with ports such as control air pressure, controlled fluid pressure, and sensor introduction pressure, and connection terminals of a central processing unit (microcomputer) connected to an external device such as a personal computer or a sequencer. Therefore, the central processing unit has a communication function with an external device and a remote control function.
[0016]
In the figure, reference numeral 41 denotes a pressure control valve for controlling the secondary pressure of the fluid to be controlled to a predetermined pressure, and the pressure control valve 30 has a precision pressure control shown in FIG. A valve has been applied. The housing 1 is provided with connection ports 1a and 1b to external pipes connected to the inlet of the primary fluid pressure and the outlet of the secondary fluid pressure of the pressure control valve 30, respectively. An electro-pneumatic converter 60 is connected to the pneumatic control chamber 49 of the pressure control valve 30. The electric / pneumatic converter 60 is connected to an external control air pressure supply source (not shown), and supplies a predetermined control air pressure 61 to the pneumatic control chamber 49 in a multi-stage manner. The most stable supply is performed when the control air pressure is in the range of 4 to 7 kg / cm 2 .
[0017]
Further, the electric / pneumatic converter 60 is electrically connected to a D / A conversion unit of the central processing unit 20. When the electric / pneumatic converter 60 receives an electric switching signal from the central processing unit 20, the electric / pneumatic converter 60 performs a predetermined operation by the switching signal. The control pressure is directly sent to the pneumatic control chamber 49 of the pressure control valve 30. According to this embodiment, based on data preset in the central processing unit 20 (data of the pressure and stabilization time), 15 stages of reproducibility in the range of 1~400mmH 2 O For pressure control of the gas In the case of liquid pressure control, the pressure can be switched in a range of 0.01 to 10 kg / cm 2 in the same 15 steps with reproducibility.
[0018]
A pressure sensor 10 is connected to the A / D converter of the central processing unit 20, and a detection pressure input port 1 c and a detection fluid discharge port 1 d of the pressure sensor 10 are provided in the housing 1. Normally, the input port 1c of the detection pressure of the pressure sensor 10 is connected to a fluid pressure introduction path of various external devices (not shown) connected to the secondary fluid pressure flow path 33 of the pressure control valve 30, and controls the secondary fluid pressure. At the same time, the detection signal is sent to the central processing unit 20, and the central processing unit 20 performs a predetermined comparison operation. The supplied control air pressure is finely switched, and the secondary fluid pressure is feedback-controlled.
[0019]
The pressure control valve 30 is provided with a reflux pump 70 which is the most characteristic part of the present invention. That is, a reflux pipe 71 is provided between the primary pipe 41a and the secondary pipe 41b of the pressure control valve 30, and a reflux pump 70 is installed in the reflux pipe 71. The recirculation pump 70 is connected to the internal power supply 2 and is started when the power supply 2 is turned on, and is always activated during the operation of the automatic fluid pressure control circuit, and the partial flow rate of the secondary piping 41b is reduced. Is forcibly recirculated to the primary side piping passage 41a. In the present invention, the reflux pressure is set in a range of 1.0 to 1.8 l / min. The reflux pressure is 1. When the pressure is lower than 0 l / min, the influence of sudden pressure fluctuation at the time of switching the control pressure is still large. When the pressure exceeds 1.8 l / min, the influence of the recirculation pressure becomes large, and the load capacity range for the controlled fluid is reduced. Become smaller.
[0020]
By thus installing the forced recirculation line 71 between the primary side piping line 41a and the secondary side piping line 41b of the pressure control valve 30, the pressure control valve 30 is connected to the primary side fluid pressure flow path 32 from the secondary side. Since the controlled fluid having the predetermined pressure continuously flows through the fluid pressure flow path 33, the peripheral members follow well even when the set pressure is rapidly changed, and a stable control fluid pressure can be obtained in a short time. However, since the set pressure and the stabilization of the switching pressure are all controlled by the digital signal from the central processing unit 20 as described above, the response is fast and reproducible because the adjustment is not performed by the conventional adjustment screw. It will be excellent.
[0021]
FIG. 3 shows the ignition characteristics of the No. 20 water heater at the time of the combustion test. The solid line is the same characteristic diagram when the above-mentioned automatic fluid pressure control circuit of the present invention is applied, and the imaginary line is the automatic fluid pressure control circuit. FIG. 6 is a characteristic diagram when the forced recirculation circuit is omitted from FIG. As is clear from FIG. 3, when the normal fluid pressure control system is used, a large pressure drop (about 150 mmH 2 O) occurs at the time of ignition, and it takes about 2 seconds until the combustion gas pressure is stabilized. However, when the present invention is applied, only a decrease in gas pressure of about 17 mmH 2 O at the time of ignition occurs, and the time required for the combustion gas pressure to stabilize is extremely short at about 1.2 seconds. I understand that there is.
[0022]
4, adjustment pressure characteristics when the set pressure of the control fluid using the fluid pressure automatic control circuit of the present invention (air) is switched and rapidly in OmmH 2 O → 300mmH 2 O → 20mmH 2 O and large value Is shown. As is apparent from the figure, sharply from 0 mm H 2 O 300MmH stable pressure is obtained to 2 O from a minimum value at about 3 to 4 seconds in order to boost up to a maximum value, also from 300MmH 2 O to 20 mm H 2 O It can also be seen that an extremely smooth set pressure (20 mmH 2 O) can be obtained in a short time of 3 to 4 seconds even when the pressure is lowered.
[0023]
The 5 and 6, by using the fluid pressure automatic control circuit of the present invention, air pressure indicates a tone pressure characteristics when the sequentially switched every 50 mm H 2 O between 50 mm H 2 O and 300mmH 2 O ing.
[0024]
FIG. 5 is a characteristic diagram at the time of boosting, and FIG. 6 is a characteristic diagram at the time of step-down. As is clear from these figures, it can be understood that the pressure switching is performed in a short time (1 second to 1.7 seconds) and smoothly over the entire range. This indicates that, since the digital pressure is set by the central processing unit 20 when the set pressure is switched in the present invention, reproducibility of the set value is guaranteed in addition to the forced circulation circuit. Also in this case, the operation of the forced recirculation circuit is maintained, and a gas of 1.0 to 1.8 l / min always flows through the pressure control valve 30. The fact that the gas pressure can be raised and lowered in a highly accurate and reproducible manner along the set curve in this way leads to the ability to arbitrarily set the pressure rise and fall per unit time, which is input to the central processing unit 20 in advance. If this is done, an arbitrary continuous pressure increase / decrease curve can be realized.For example, in a test of a combustor or the like, when a safety valve is operated due to a decrease in gas pressure, the gas pressure during the operation can be objectively and accurately confirmed. You will get.
[0025]
Although the above embodiment is an example in which the automatic fluid pressure control system of the present invention is unitized, the system of the present invention can also be directly incorporated into a normal fluid pressure circuit. Therefore, in the case where water is branched from the main pipe to many branch pipes and the like and water is distributed, by installing the automatic fluid pressure control system of the present invention for each branch pipe, it is possible to always keep the water pressure of the distribution destination constant. .
[0026]
【The invention's effect】
As is clear from the above description, according to the automatic fluid pressure control system of the present invention, a predetermined fluid pressure is always forcibly applied to the pressure control valve even when the operation is stopped or the control pressure is switched in the system. As a result, no rapid and large pressure fluctuations occur inside the pressure control valve when the system is started or when the pressure is switched, so that the control pressure can be stabilized quickly, especially when the mixed gas is mixed. This is extremely effective when high-precision fluid pressure control is strictly required, such as in manufacturing and inspection of combustion gas of a combustor.
[0027]
The continuous control of the fluid pressure with high precision and excellent reproducibility as described above in the present invention enables the rise and fall times of the fluid pressure to be freely set, which can be applied to various tests of the fluid pressure. This guarantees reliable and good results.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a fluid pressure automatic control circuit which is a typical embodiment of the present invention.
FIG. 2 is a sectional view showing a configuration of a precision pressure control valve applied to the automatic fluid pressure control circuit.
FIG. 3 is an ignition characteristic diagram of the automatic fluid pressure control circuit.
FIG. 4 is a pressure regulation characteristic diagram at the time of pressure switching by the automatic fluid pressure control circuit.
FIG. 5 is a pressure regulation characteristic diagram at the time of multi-stage boost switching by the fluid pressure automatic control circuit.
FIG. 6 is a pressure regulation characteristic diagram at the time of multi-stage pressure drop switching by the automatic fluid pressure control circuit.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Housing 1a, 1b External piping connection port 1c Detected pressure input port 1d Detected fluid discharge port 2 Internal power supply 10 Pressure sensor 20 Central processing unit 30 Pressure control valve 31 Valve body 32 Primary fluid pressure channel 33 Secondary fluid pressure channel 34 Connection flow passage 35 Penetrating portion 36 Control space 41a Primary piping 41b Secondary piping 42 Valve seat 43 Valve 44 Nozzle 45, 46 Control diaphragm 47 Equalizing chamber 48 Atmospheric chamber 49 Pneumatic control chamber 50 Balance Diaphragm 51 Valve rod 52 Connecting shaft section 60 Electropneumatic converter 61 Control air pressure 70 Reflux pump 71 Forced return line 80 Stopper mechanism 81 Closing air supply source 82 Closing cylinder 82a Piston 83 Spring

Claims (4)

中央処理部、流体圧制御回路、及び圧力検出部が組み込まれてなる流体圧自動制御システムにおいて、
前記流体圧制御回路は、前記中央処理部からの指令電気信号に基づく制御空気圧に変換する電/空変換器と、同電/空変換器に接続され二次側圧力が前記設定圧となるように制御する圧力制御弁と、同圧力制御弁の一次側流路の入口と二次側流路の出口とを連結する還流管路と、同還流管路に介装された還流ポンプとを有し、同還流ポンプが流体圧の起動と同時に作動され、二次側流体圧の一部を継続して前記一次側流路に強制還流させてなることを特徴とする流体圧自動制御システム。
In a central processing unit, a fluid pressure control circuit, and a fluid pressure automatic control system in which a pressure detection unit is incorporated,
The fluid pressure control circuit is connected to the electric / pneumatic converter for converting into a control air pressure based on a command electric signal from the central processing unit, and the secondary pressure is set to the set pressure. A pressure control valve for controlling the pressure control valve, a return line connecting the inlet of the primary side flow path and the outlet of the secondary side flow path of the pressure control valve, and a return pump interposed in the return line. An automatic fluid pressure control system characterized in that the recirculation pump is activated simultaneously with the activation of the fluid pressure, and a part of the secondary fluid pressure is continuously forcibly recirculated to the primary channel.
前記中央処理部には、複数の設定圧力に対してそれぞれに複数の到達時間が設定され、前記電/空変換器への指令電気信号と組み合わされて、複数の到達時間をもって所定の設定圧力が繰り返し得られるようにしてなる請求項1記載の流体圧自動制御システム。In the central processing unit, a plurality of arrival times are respectively set for a plurality of set pressures, and in combination with a command electric signal to the electro-pneumatic converter, a predetermined set pressure is obtained with a plurality of arrival times. 2. The automatic fluid pressure control system according to claim 1, wherein the fluid pressure automatic control system is obtained repeatedly. 前記中央処理部には、外部機器との相互通信を可能にする入出力端子が設けられてなる請求項1記載の流体圧自動制御システム。2. The automatic fluid pressure control system according to claim 1, wherein the central processing unit is provided with an input / output terminal that enables mutual communication with an external device. 前記還流ポンプによる還流量が1.0 〜1.8 l/min である請求項1記載の流体圧自動制御システム。The automatic fluid pressure control system according to claim 1, wherein the amount of reflux by the reflux pump is 1.0 to 1.8 l / min.
JP30505194A 1994-12-08 1994-12-08 Fluid pressure automatic control system Expired - Fee Related JP3552767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30505194A JP3552767B2 (en) 1994-12-08 1994-12-08 Fluid pressure automatic control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30505194A JP3552767B2 (en) 1994-12-08 1994-12-08 Fluid pressure automatic control system

Publications (2)

Publication Number Publication Date
JPH08161055A JPH08161055A (en) 1996-06-21
JP3552767B2 true JP3552767B2 (en) 2004-08-11

Family

ID=17940529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30505194A Expired - Fee Related JP3552767B2 (en) 1994-12-08 1994-12-08 Fluid pressure automatic control system

Country Status (1)

Country Link
JP (1) JP3552767B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6056008A (en) * 1997-09-22 2000-05-02 Fisher Controls International, Inc. Intelligent pressure regulator

Also Published As

Publication number Publication date
JPH08161055A (en) 1996-06-21

Similar Documents

Publication Publication Date Title
EP0880658B1 (en) Valve system providing dual-mode gas flow
US6796326B2 (en) Gas pressure regulator
US10386863B2 (en) Pressure-type flow controller
US20070205384A1 (en) Flow Rate Control Apparatus
EP1489477A1 (en) Mass flow controller
KR970705781A (en) IMPROVED TWO-STAGE PRESSURE REGULATOR
US6595231B1 (en) Device and method for regulating the pressure of a gas stream
US20050145280A1 (en) Fluid flow pressure regulator
US20060037412A1 (en) Low temperature testing device for electronic components
JP3552767B2 (en) Fluid pressure automatic control system
JP2004265363A (en) Gas pressure reducing valve
JP3020941B1 (en) damper-
JPH117325A (en) Pressure reducing valve
RU2787975C1 (en) Gas pressure regulator
JPH1052655A (en) Nozzle shut-off valve and pressure spray nozzle having the same
CN214699370U (en) Pressure reducing valve for micro-pressure self-operated regulating valve
JP2000220553A (en) Fuel pressure controller for fuel injection device
SU1314315A1 (en) Pressure regulator
JPH0120523Y2 (en)
JPS6014056Y2 (en) Flow control valve with quick discharge valve
JP3012042B2 (en) Control valve of mass flow controller
JPS57130118A (en) Control device for constant pressure of gas
SU1399713A1 (en) Pressure regulator
SU1040469A1 (en) Gas consumption control
JP3139654B2 (en) Automatic flow control valve

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees