JPH0848565A - Silicon nitride sintered compact and its production - Google Patents

Silicon nitride sintered compact and its production

Info

Publication number
JPH0848565A
JPH0848565A JP6093102A JP9310294A JPH0848565A JP H0848565 A JPH0848565 A JP H0848565A JP 6093102 A JP6093102 A JP 6093102A JP 9310294 A JP9310294 A JP 9310294A JP H0848565 A JPH0848565 A JP H0848565A
Authority
JP
Japan
Prior art keywords
silicon nitride
weight
sintered body
lanthanide metal
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6093102A
Other languages
Japanese (ja)
Inventor
Satoyuki Nishimura
聡之 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP6093102A priority Critical patent/JPH0848565A/en
Publication of JPH0848565A publication Critical patent/JPH0848565A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To crystallize a high m.p. oxynitride at grain boundaries and to obtain a silicon nitride sintered compact excellent in strength at room temp. and high temp. by limiting a sintering aid and conditions in sintering. CONSTITUTION:Silicon nitride powder is mixed with 1-16wt.% lanthanide oxide, preferably Tm2O3, Yb2O,3 Lu2O3 or mixture of them and 0-5wt.% silica, and the resultant mixture is compacted and fired at 1,700-2,200 deg.C in nitrogen under 1-100atm pressure to obtain the objective silicon nitride sintered compact consisting of 98-80wt.% silicon nitride grains and 1-20wt.% crystalline oxynitride represented by Ln4Si2O7N2 (Ln is a lanthanide or Y) or 98-80wt.% silicon nitride grains, 1-15wt.% crystalline oxynitride represented by Ln4Si2O7N2 and 1-15wt.% Ln2SiO5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車、精密機械、化
学プラント、切削工具等の分野において、構造材料とし
て利用される、室温及び高温強度に優れた窒化ケイ素焼
結体及びその製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride sintered body excellent in room temperature and high temperature strength which is used as a structural material in the fields of automobiles, precision machinery, chemical plants, cutting tools and the like, and a method for producing the same. It is a thing.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】窒化ケ
イ素焼結体は、室温及び高温強度、破壊靭性、摩擦摩耗
抵抗等の機械的性質に優れ、自動車エンジン部品、ボー
ルベアリング、非鉄金属製造用機械部品、切削工具等に
利用されている。
BACKGROUND OF THE INVENTION Sintered silicon nitride is excellent in mechanical properties such as room temperature and high temperature strength, fracture toughness, friction and wear resistance, and is used for manufacturing automobile engine parts, ball bearings and non-ferrous metals. Used for machine parts, cutting tools, etc.

【0003】従来は、窒化ケイ素の原料粉末に各種の酸
化物を焼結助剤として混合し、成形後、窒素中で高温に
加熱して高密度焼結体を製造していた。焼結助剤として
有効な酸化物はマグネシア、アルミナ、希土類金属酸化
物である。焼結助剤は高温での原料表面の酸化層である
シリカと反応して液相を生成する。焼結は窒化ケイ素が
液相内を拡散することによって進行する。焼結後冷却す
ると、液相の一部は結晶化するが大部分はガラス相とし
て粒界に残る。
Conventionally, various oxides were mixed as raw materials of silicon nitride as a sintering aid, and after molding, they were heated to a high temperature in nitrogen to produce a high density sintered body. Oxides effective as sintering aids are magnesia, alumina, and rare earth metal oxides. The sintering aid reacts with silica, which is an oxide layer on the surface of the raw material at a high temperature, to form a liquid phase. Sintering proceeds by the diffusion of silicon nitride in the liquid phase. When cooled after sintering, a part of the liquid phase is crystallized, but most remains as a glass phase at the grain boundaries.

【0004】最も多く使用される助剤はマグネシア、イ
ットリアーアルミナである。焼結後、焼結体は窒化ケイ
素粒子と液相が固化した少量のガラス相からなってい
る。ガラス相の中に酸化物又は酸窒化物として一部が結
晶化する場合がある。
The most frequently used auxiliaries are magnesia and yttria alumina. After sintering, the sintered body is composed of silicon nitride particles and a small amount of glass phase in which the liquid phase is solidified. Some may crystallize in the glass phase as oxides or oxynitrides.

【0005】しかし、このような焼結体に外部から曲げ
や引っ張りの応力を加えると、亀裂が粒界を進行して破
壊するという欠点があった。また、温度が800〜10
00℃になると、ガラス相は軟化するので、強度は急激
に低下する。この低下の度合いは粒界相の化学組成に大
きく依存する。これは、ガラスの軟化温度は粒界相中の
金属−Si−O系の溶融温度に比例するためである。こ
のため、マグネシアを用いて製造した焼結体よりも、イ
ットリアーアルミナ系を用いた場合の方が高温強度は大
きい。イットリアーアルミナ系を用いても焼結体の粒界
に低融点のガラス相が存在し、強度は1200℃以上で
室温の値より2〜4割低下する。
However, when a stress such as bending or tensile is applied to such a sintered body from the outside, there is a drawback that a crack progresses through a grain boundary and breaks. The temperature is 800 to 10
At 00 ° C., the glass phase softens and the strength sharply decreases. The degree of this decrease largely depends on the chemical composition of the grain boundary phase. This is because the softening temperature of glass is proportional to the melting temperature of the metal-Si-O system in the grain boundary phase. Therefore, the high-temperature strength is higher when the yttria-alumina system is used than when the sintered body produced by using magnesia is used. Even if the yttria-alumina system is used, a glass phase having a low melting point exists in the grain boundaries of the sintered body, and the strength is 20 to 40% lower than the value at room temperature at 1200 ° C or higher.

【0006】最近では、イットリアーシリカ系の助剤を
用いて、粒界に高融点のY2Si27を析出させる研究も
行われている(J.Am.Ceram.Soc.75号、2050頁
(1992))。この系では図1(a)に示す窒素含有アパ
タイト(N相、Y10Si7234)又はW相(YSiO2N)
或いはそれに近い組成のガラス相がY2Si27に次ぐ第
2の粒界相となる。N相やW相の軟化温度は1500℃
以下と低い。そこで、これらの相の生成を防ぐため、原
料の化学組成がSi34−Y2Si27−Si2ON2内のS
i34付近になるように原料粉末を混合する。それで
も、原料が粉末のため、反応は不均一で相図からは予想
できない上記低融点の結晶相又はガラス相が少量生成す
る。また、窒化ケイ素粒子と粒界相であるY2Si27
熱的・機械的性質の差が大きく、冷却中に粒界に微小亀
裂が生成して強度の絶対値を低下させる。
Recently, studies have been conducted to deposit Y 2 Si 2 O 7 having a high melting point at grain boundaries using an yttria-silica type auxiliary agent (J. Am. Ceram. Soc. No. 75, 2050 pages
(1992)). In this system, the nitrogen-containing apatite (N phase, Y 10 Si 7 O 23 N 4 ) or W phase (YSiO 2 N) shown in FIG.
Alternatively, the glass phase having a composition close to that becomes the second grain boundary phase next to Y 2 Si 2 O 7 . Softening temperature of N phase and W phase is 1500 ℃
Low as below. In order to prevent the formation of these phases, the raw material of the chemical composition in the Si 3 N 4 -Y 2 Si 2 O 7 -Si 2 ON 2 S
The raw material powders are mixed so as to be around i 3 N 4 . Even so, since the raw material is powder, the reaction is non-uniform and a small amount of the above-mentioned low melting point crystal phase or glass phase which cannot be predicted from the phase diagram is formed. Further, there is a large difference in thermal and mechanical properties between the silicon nitride particles and Y 2 Si 2 O 7 which is a grain boundary phase, and microcracks are generated at the grain boundaries during cooling to lower the absolute value of strength.

【0007】このような従来の材料は、粒界に低融点の
結晶相やガラス相が存在したり、酸化物の粒界相のた
め、室温及び/又は高温強度の高いものは得られなかっ
た。
Such conventional materials cannot have a high room temperature and / or high temperature strength due to the presence of a low melting point crystal phase or glass phase at the grain boundary or the oxide grain boundary phase. .

【0008】本発明は、上記のような従来技術の問題点
を解決するために、結晶助剤系と焼結条件を検討するこ
とにより、粒界に高融点の酸窒化物を結晶化させ、室温
及び高温強度の優れた窒化ケイ素焼結体を提供すること
を目的としている。
In order to solve the above-mentioned problems of the prior art, the present invention examines the crystallization aid system and the sintering conditions to crystallize a high melting point oxynitride at the grain boundaries, It is an object of the present invention to provide a silicon nitride sintered body having excellent room temperature and high temperature strength.

【0009】[0009]

【課題を解決するための手段】焼結助剤は、液相焼結を
促進するために焼結温度以下で溶融する相を生成し、焼
結後、粒界で高融点の結晶相として残留する必要があ
る。この2点が耐熱性の高い焼結体を得る焼結助剤の条
件である。これが多くの場合、ランタニド金属酸化物が
助剤として用いられる理由である。しかし、既に述べた
ようにランタニド金属酸化物−SiO2−Si34系の相
図は複雑であり(図1(a))、目的とする高融点の酸窒化
物のみを粒界相とする焼結体を製造することは困難であ
った。
[Solving Means] A sintering aid forms a phase that melts at a temperature equal to or lower than the sintering temperature in order to promote liquid phase sintering, and remains as a high melting point crystalline phase at a grain boundary after sintering. There is a need to. These two points are the conditions of the sintering aid for obtaining a sintered body having high heat resistance. This is often the reason why lanthanide metal oxides are used as auxiliaries. However, as already mentioned, the phase diagram of the lanthanide metal oxide-SiO 2 -Si 3 N 4 system is complicated (Fig. 1 (a)), and only the desired high melting point oxynitride is regarded as the grain boundary phase. It was difficult to manufacture a sintered body that does.

【0010】そこで、本発明者は、従来検討されなかっ
たランタニド金属酸化物を含む系を研究し、ランタニド
金属がツリウム(Tm)、イッテリビウム(Yb)、ルテチウ
ム(Lu)の単独又はその混合物であれば相図が単純にな
り、低融点の化合物又はガラス相の共存を防ぐことがで
きることを見い出した。
Therefore, the present inventor has studied a system containing a lanthanide metal oxide, which has not been studied so far, and found that the lanthanide metal was thulium (Tm), ytteribium (Yb), lutetium (Lu) alone or in a mixture thereof. It has been found that, for example, the phase diagram becomes simple and the coexistence of low melting point compounds or glass phases can be prevented.

【0011】Yb23を含む系はJ.Mater.Sci.28
号、3529頁(1993)を基に図1(b)のように完成
した。この相図でYb4Si272(J相)及びYb2SiO5
(S相)は融点がそれぞれ1850℃、1980℃と高
い。図1(a)で示される通り、この2つの相は、イット
リア系では窒化ケイ素粒子とは平衡には存在できない相
である。ツリウム(Tm)、ルテチウム(Lu)の単独又はそ
の混合物も同様な相図である。
A system containing Yb 2 O 3 is described in J. Mater. Sci. 28.
No., page 3529 (1993), and completed as shown in FIG. 1 (b). In this phase diagram, Yb 4 Si 2 O 7 N 2 (J phase) and Yb 2 SiO 5
(S phase) has high melting points of 1850 ° C. and 1980 ° C., respectively. As shown in FIG. 1 (a), these two phases cannot exist in equilibrium with the silicon nitride particles in the yttria system. Thulium (Tm) and lutetium (Lu) alone or in a mixture thereof have similar phase diagrams.

【0012】また、上記3種類のランタニド金属に他の
ランタニド金属を混合しても、前者が主成分であれば、
その作用は基本的には変わらない。
Further, even if the above three kinds of lanthanide metals are mixed with other lanthanide metals, if the former is the main component,
Its action is basically unchanged.

【0013】このように、焼結体全体の化学組成がSi3
4−Ln4Si272−Ln2SiO5(Ln:上記ランタニ
ド金属)内の窒化ケイ素側にあるように原料粉末の混合
比を制御し、適当な条件で焼結すれば室温及び高温で高
強度な焼結体を製造することができる。これらの知見を
基に本発明を完成したものである。
As described above, the chemical composition of the whole sintered body is Si 3
N 4 -Ln 4 Si 2 O 7 N 2 -Ln 2 SiO 5: controls the mixing ratio of raw material powders as in silicon nitride side in (Ln the lanthanide metals), at room temperature when sintered under appropriate conditions Also, a high-strength sintered body can be manufactured at high temperature. The present invention has been completed based on these findings.

【0014】すなわち、本発明は、98〜80重量%の
窒化ケイ素粒子と、1〜20重量%の結晶質酸窒化物L
n4Si272(但し、Lnはランタニド金属又はイットリ
ウム)からなることを特徴とする窒化ケイ素焼結体を要
旨としている。
That is, according to the present invention, 98 to 80% by weight of silicon nitride particles and 1 to 20% by weight of crystalline oxynitride L are used.
The gist is a silicon nitride sintered body characterized by being made of n 4 Si 2 O 7 N 2 (where Ln is a lanthanide metal or yttrium).

【0015】また、他の本発明は、98〜80重量%の
窒化ケイ素粒子と、1〜15重量%の結晶質酸窒化物L
n4Si272(但し、Lnはランタニド金属又はイットリ
ウム)、及び1〜15重量%のLn2SiO5(但し、Lnは
ランタニド金属又はイットリウム)からなることを特徴
とする窒化ケイ素焼結体を要旨としている。
In another aspect of the present invention, 98 to 80% by weight of silicon nitride particles and 1 to 15% by weight of crystalline oxynitride L are used.
n 4 Si 2 O 7 N 2 (where Ln is lanthanide metal or yttrium) and 1 to 15% by weight of Ln 2 SiO 5 (where Ln is lanthanide metal or yttrium). The main point is the union.

【0016】また、その製造法は、窒化ケイ素粉末に1
〜16重量%のランタニド金属酸化物と0〜5重量%の
シリカを混合し、成形後、1〜100気圧の窒素中で1
700〜2200℃に焼成することを特徴としている。
The manufacturing method is as follows:
-16% by weight of lanthanide metal oxide and 0-5% by weight of silica are mixed and, after molding, 1 to 100 atm of nitrogen is used.
It is characterized by firing at 700 to 2200 ° C.

【0017】更に、他の製造法は、窒化ケイ素粉末に1
〜16重量%のランタニド金属の酸化物と0〜5重量%
のシリカ及び0〜1重量%のアルミナを混合し、成形
後、10〜100気圧の窒素中で1850〜2200℃
に焼成した後、1300〜1700℃で熱処理すること
を特徴としている。
Further, another manufacturing method is as follows:
~ 16% by weight lanthanide metal oxide and 0-5% by weight
Of silica and 0 to 1% by weight of alumina are mixed, and after molding, at 1850 to 2200 ° C. in nitrogen of 10 to 100 atm.
It is characterized in that it is heat-treated at 1300 to 1700 ° C. after firing.

【0018】[0018]

【作用】以下に本発明について更に詳細に説明する。The present invention will be described in more detail below.

【0019】本発明の製造法では、出発原料としては通
常の焼結用原料を用いるが、高純度で平均粒径0.6ミ
クロン以下と微細かつ粒度分布の狭い粉末が望ましい。
添加する焼結助剤はTm23、Yb23、Lu23の単独
又はその混合物を用いるのがよい。
In the production method of the present invention, an ordinary sintering raw material is used as a starting raw material, but it is desirable to use a powder having a high purity and a fine average particle size of 0.6 micron or less and a narrow particle size distribution.
As the sintering aid to be added, it is preferable to use Tm 2 O 3 , Yb 2 O 3 , Lu 2 O 3 alone or in a mixture thereof.

【0020】これに、焼結体全体の化学組成がSi34
−Ln4Si272−Ln2SiO5(Ln:上記ランタニド金
属)内にあるように、必要に応じて、シリカを添加す
る。窒化ケイ素粉末の表面には酸化層として1〜3重量
%のシリカが存在するので、ランタニド金属酸化物の添
加量が少ない範囲ではシリカを追加添加する必要はな
い。添加量は、ランタニド金属酸化物が1〜16重量
%、シリカが0〜5重量%の範囲である。添加量がこの
範囲より少ないと焼結が困難である。また添加量がこれ
より多くても目的は達成できるが、ランタニド金属酸化
物の価格が高いので製品が高価になる欠点がある。添加
量は高密度化と粒界の結晶化の両方が達成できれば少な
いほどよい。望ましくは、ランタニド金属酸化物が6〜
12重量%、シリカが1〜3重量%の範囲である。粒界
相中におけるランタニド金属酸化物/シリカのモル比は
1〜0.5の範囲である必要がある。この範囲よりシリ
カが多いとLn4Si272が生成しない。この範囲より
少ないと、溶融しないLn2Si334相が生成し焼結は
途中で止まってしまうので留意する必要がある。
In addition, the chemical composition of the whole sintered body is Si 3 N 4
-Ln 4 Si 2 O 7 N 2 -Ln 2 SiO 5: as in (Ln the lanthanide metals) inside, if necessary, the addition of silica. Since 1 to 3% by weight of silica exists as an oxide layer on the surface of the silicon nitride powder, it is not necessary to additionally add silica as long as the amount of lanthanide metal oxide added is small. The addition amount is in the range of 1 to 16% by weight of lanthanide metal oxide and 0 to 5% by weight of silica. If the amount added is less than this range, sintering will be difficult. The object can be achieved even if the addition amount is larger than this, but there is a drawback that the price of the lanthanide metal oxide is high and the product becomes expensive. The addition amount is better if both high density and crystallization of grain boundaries can be achieved. Desirably, the lanthanide metal oxide is 6 to
The range is 12% by weight and the amount of silica is 1 to 3% by weight. The lanthanide metal oxide / silica molar ratio in the grain boundary phase must be in the range of 1 to 0.5. If the amount of silica exceeds this range, Ln 4 Si 2 O 7 N 2 will not be produced. If it is less than this range, it should be noted that the unmelted Ln 2 Si 3 O 3 N 4 phase is generated and the sintering stops in the middle.

【0021】また、焼結性を向上するために、少量の上
記3種類以外のランタニド金属酸化物やアルミナを添加
することも有効である。また、粒界相としてLn4Si2
72単独又はLn2SiO5との混合物が主成分であれば、
少量の他の結晶相やガラス相が共存しても焼結性や焼結
体の機械的特性は変わらない。
In order to improve the sinterability, it is also effective to add a small amount of lanthanide metal oxide other than the above-mentioned three kinds or alumina. In addition, as a grain boundary phase, Ln 4 Si 2 O
If 7 N 2 alone or a mixture with Ln 2 SiO 5 is the main component,
Even if a small amount of other crystal phase or glass phase coexists, the sinterability and the mechanical properties of the sintered body do not change.

【0022】原料混合物は金型成形、静水圧成形、射出
成形、鋳込み成形等で所定の形状に成形する。この成形
体を各種の方法で焼結するが、焼結条件は、焼結法にも
よるが、概ね1〜100気圧の窒素中、1700〜22
00℃の温度である。
The raw material mixture is molded into a predetermined shape by die molding, hydrostatic molding, injection molding, cast molding or the like. This molded body is sintered by various methods, and the sintering conditions are, depending on the sintering method, 1700 to 22 in 1 to 100 atm of nitrogen.
The temperature is 00 ° C.

【0023】最も簡単には、窒化ホウ素粉末を塗布した
黒鉛製の型に混合物を入れ、100〜500気圧の圧力
下、窒素中で1700〜1800℃に10分〜4時間加
熱するホットプレス法である。成形体を1気圧の窒素中
で1700〜1800℃で加熱する常圧焼結法によると
安価な製品が製造できる。常圧焼結で得た相対密度95
〜98%の焼結体を、1000〜2000気圧の窒素中
で1650〜2000℃に加熱する高温静水圧焼結(H
IP)法で処理すると残留気孔が除去され、更に高密度
の焼結体が得られる。成形体を1〜100気圧の窒素
中、1850〜2200℃に焼結するガス圧焼結では、
常圧焼結より窒化ケイ素が安定な条件で加熱できるの
で、より高温で焼結できる。焼結を高温で行うほど窒素
を高圧にする必要がある。必要な最低窒素圧は1900
℃では5気圧、2000℃では10気圧、2100℃で
は20気圧、2200℃では30気圧である。
[0023] In the simplest way, the mixture is put in a graphite mold coated with boron nitride powder and heated at 1700 to 1800 ° C in nitrogen under a pressure of 100 to 500 atm for 10 minutes to 4 hours by a hot pressing method. is there. An inexpensive product can be manufactured by the pressureless sintering method in which the molded body is heated at 1700 to 1800 ° C. in nitrogen at 1 atm. Relative density 95 obtained by pressureless sintering
˜98% of the sintered body is heated to 1650 to 2000 ° C. in nitrogen of 1000 to 2000 atm for high temperature hydrostatic sintering (H
When the treatment is carried out by the IP method, residual pores are removed and a sintered body having a higher density can be obtained. In gas pressure sintering in which a compact is sintered at 1850 to 2200 ° C. in nitrogen at 1 to 100 atm,
Since silicon nitride can be heated under more stable conditions than atmospheric pressure sintering, it can be sintered at a higher temperature. The higher the sintering temperature, the higher the pressure of nitrogen needs to be. Minimum required nitrogen pressure is 1900
The pressure is 5 atm at 10 ° C, 10 atm at 2000 ° C, 20 atm at 2100 ° C, and 30 atm at 2200 ° C.

【0024】焼結後、焼結温度より低い1300〜17
00℃に1〜20時間保持すると粒界に残留していたガ
ラス相は大部分結晶化する。
After sintering, 1300 to 17 lower than the sintering temperature
When kept at 00 ° C for 1 to 20 hours, most of the glass phase remaining at the grain boundaries is crystallized.

【0025】次に本発明の実施例を示す。Next, examples of the present invention will be described.

【0026】[0026]

【実施例1】窒化ケイ素粉末(宇部興産製、E−10タ
イプ)86.4重量%と、酸化イッテリビウム(信越化学
製、純度99.9%)12.0重量%と、沈降製シリカ(関
東化学製)を仮焼して吸着水を除去したもの1.0重量%
とを、窒化ケイ素製のボールミルでn−ヘキサンを分散
媒として、湿式混合した。混合物を乾燥後、窒化ホウ素
粉末を塗布した直径15mmの型に入れ、窒素雰囲気で2
00気圧の加圧下、1750℃に2時間加熱した。焼結
体の相対密度は96.8%であった。粉末X線回折で測
定した結晶質はβ−Si34が主成分であり、第2相と
してYb4Si272が認められた。少量のYb2Si33
4、Yb2SiO5及び微量のα−Si34が存在した。透
過型電子顕微鏡によるとβ−Si34と粒界の結晶相の
間に少量のガラス相が認められた。この結果粒界の相と
して、高融点の酸窒化物であるYb4Si272を主成分
とする窒化ケイ素焼結体が得られた。
[Example 1] Silicon nitride powder (Ube Industries, E-10 type) 86.4% by weight, ytterbium oxide (Shin-Etsu Chemical, purity 99.9%) 12.0% by weight, and precipitated silica (Kanto) 1.0% by weight, which is obtained by calcining (Chemical) to remove adsorbed water
And were wet-mixed with a ball mill made of silicon nitride using n-hexane as a dispersion medium. After the mixture was dried, it was placed in a mold with a diameter of 15 mm coated with boron nitride powder and placed in a nitrogen atmosphere for 2
The mixture was heated to 1750 ° C. for 2 hours under a pressure of 00 atm. The relative density of the sintered body was 96.8%. The crystalline substance measured by powder X-ray diffraction had β-Si 3 N 4 as a main component, and Yb 4 Si 2 O 7 N 2 was observed as the second phase. A small amount of Yb 2 Si 3 O 3
N 4 , Yb 2 SiO 5 and traces of α-Si 3 N 4 were present. According to a transmission electron microscope, a small amount of glass phase was observed between β-Si 3 N 4 and the crystal phase of grain boundaries. As a result, a silicon nitride sintered body containing Yb 4 Si 2 O 7 N 2 which is a high melting point oxynitride as a main component was obtained as a grain boundary phase.

【0027】[0027]

【比較例1】実施例1と同じモル比になるように、窒化
ケイ素粉末に、酸化イットリウム(信越化学製、純度9
9.9%)7.3重量%と、シリカ0.6重量%を混合し
た。混合物について実施例1と同じ手順で焼結体を作製
した。焼結体の相対密度は75.6%であり、高密度焼
結体は得られなかった。粉末X線回折で測定した結晶質
はβ−Si34が主成分であり、他の相としてY2Si3
34、YSiO2N及び微量のα−Si34が存在した。
2Si334は高温では安定で溶融しないので、焼結
に寄与しない。焼結に寄与するのはYSiO2及び少量存
在するガラス相であり、添加した助剤の半分程度であ
る。このため高温での液相量が少なく、高密度化できな
かった。
Comparative Example 1 Yttrium oxide (manufactured by Shin-Etsu Chemical Co., Ltd., purity 9) was added to silicon nitride powder so that the same molar ratio as in Example 1 was obtained.
9.9%) 7.3% by weight and silica 0.6% by weight. A sintered body was produced from the mixture by the same procedure as in Example 1. The relative density of the sintered body was 75.6%, and a high-density sintered body could not be obtained. The crystalline substance measured by powder X-ray diffraction contains β-Si 3 N 4 as a main component, and Y 2 Si 3 O as another phase.
There was 3 N 4 , YSiO 2 N and traces of α-Si 3 N 4 .
Y 2 Si 3 O 3 N 4 does not contribute to sintering because it is stable and does not melt at high temperatures. It is YSiO 2 and the glass phase present in a small amount that contribute to the sintering, and about half of the added auxiliaries. For this reason, the amount of liquid phase at high temperature was small, and high density could not be achieved.

【0028】[0028]

【実施例2〜5】実施例1の窒化ケイ素粉末に表1に示
す組成の焼結助剤を添加し、実施例1と同じ方法で混合
・乾燥した。混合物を200気圧の圧力で金型成形後、
2000気圧で静水圧プレスし、約4×5×45mmの成
形体とした。成形体を表2の条件で窒素雰囲気中、所定
温度で焼結した。焼結体を平面研削後、相対密度、JI
S−R1601に従う4点曲げ(外スパン30mm、内ス
パン10mm)による室温の強度測定結果、粉末X線回折
による粒界相の結晶質組成を表2に示す。また、120
0℃おける高温4点曲げ強度(高温強度)は実施例3の試
料について測定したところ、690MPaであった。実
施例2〜5のいずれもLn4Si272単独又はLn2Si
5と共存する粒界相を持つ窒化ケイ素焼結体が得ら
れ、高密度・高強度の焼結体であった。
Examples 2 to 5 The sintering aid having the composition shown in Table 1 was added to the silicon nitride powder of Example 1 and mixed and dried in the same manner as in Example 1. After molding the mixture at a pressure of 200 atm,
It was hydrostatically pressed at 2000 atmospheric pressure to obtain a molded body of about 4 × 5 × 45 mm. The compact was sintered at a predetermined temperature in a nitrogen atmosphere under the conditions shown in Table 2. After surface-grinding the sintered body, the relative density, JI
Table 2 shows the results of room temperature strength measurement by 4-point bending (outer span 30 mm, inner span 10 mm) according to S-R1601 and the crystalline composition of the grain boundary phase by powder X-ray diffraction. Also, 120
The high temperature four-point bending strength (high temperature strength) at 0 ° C. measured on the sample of Example 3 was 690 MPa. In any of Examples 2 to 5, Ln 4 Si 2 O 7 N 2 alone or Ln 2 Si
A silicon nitride sintered body having a grain boundary phase coexisting with O 5 was obtained, which was a high-density and high-strength sintered body.

【0029】[0029]

【比較例2】実施例1の窒化ケイ素粉末に表1の比較例
2に示す組成の焼結助剤を添加し、実施例1と同じ方法
で混合・乾燥した。混合物を200気圧の圧力で金型成
形後、2000気圧で静水圧プレスし、約4×5×45
mmの成形体とした。成形体を表2の条件で窒素雰囲気
中、所定温度で焼結した。高密度焼結体が得られたが、
粉末X線回折によると粒界相はガラス状態であった。
Comparative Example 2 A sintering aid having the composition shown in Comparative Example 2 in Table 1 was added to the silicon nitride powder of Example 1, and mixed and dried in the same manner as in Example 1. After molding the mixture at a pressure of 200 atm, isostatically press at 2000 atm, about 4 x 5 x 45
The molded body had a size of mm. The compact was sintered at a predetermined temperature in a nitrogen atmosphere under the conditions shown in Table 2. Although a high-density sintered body was obtained,
According to powder X-ray diffraction, the grain boundary phase was in a glass state.

【0030】[0030]

【実施例6】実施例1と同じ粉末混合物を内径18mm
の金型で200気圧で一次成形し、次いで2000気圧
で静水圧成形した。このペレットを10気圧の窒素中で
1950℃で2時間焼結し、引き続いて1500℃で5
時間熱処理した。焼結体の相対密度は99.%であっ
た。粉末X線回折で検出した粒界の結晶相はYb4Si2
72のみであった。実施例2〜5と同様にして測定した
焼結体の4点曲げ強度は813MPaと高強度であっ
た。
Example 6 The same powder mixture as in Example 1 was used with an inner diameter of 18 mm.
Primary molding was carried out at 200 atm by using the above mold, and then hydrostatic molding was carried out at 2000 atm. The pellets were sintered in nitrogen at 10 atmospheres at 1950 ° C. for 2 hours and subsequently at 1500 ° C. for 5 hours.
Heat treated for hours. The relative density of the sintered body was 99.%. The crystal phase of the grain boundary detected by powder X-ray diffraction is Yb 4 Si 2 O
Only 7 N 2 . The four-point bending strength of the sintered body measured in the same manner as in Examples 2 to 5 was as high as 813 MPa.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【発明の効果】以上詳述したように、本発明によれば、
98〜80重量%の窒化ケイ素を主成分とし、粒界にL
n4Si272単独又はLn2SiO5と共存する窒化ケイ素
焼結体が得られる。このように粒界に高融点の化合物を
持つ焼結体は従来製造できず、希土類金属(Ln)がツリ
ウム(Tm)、イッテリビウム(Yb)、ルテチウム(Lu)を
主成分とする場合のみ可能になった。
As described in detail above, according to the present invention,
98 to 80% by weight of silicon nitride as a main component and L at grain boundaries
A silicon nitride sintered body is obtained which has n 4 Si 2 O 7 N 2 alone or coexists with Ln 2 SiO 5 . As described above, a sintered body having a compound with a high melting point at the grain boundary cannot be manufactured conventionally, and it is possible only when the rare earth metal (Ln) contains thulium (Tm), ytterbium (Yb), and lutetium (Lu) as main components. became.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)はSi34−SiO2−Y23系相図、(b)
はSi34−SiO2−Yb23系相図であり、図中、Jは
Ln4Si272、KはLn2Si334、SはLn2Si
5、WはLnSiO2N、NはY10Si7234を表わ
す。
FIG. 1 (a) is a phase diagram of Si 3 N 4 —SiO 2 —Y 2 O 3 system, (b).
Is a Si 3 N 4 —SiO 2 —Yb 2 O 3 system phase diagram, in which J is Ln 4 Si 2 O 7 N 2 , K is Ln 2 Si 3 O 3 N 4 , and S is Ln 2 Si.
O 5 and W represent LnSiO 2 N, and N represents Y 10 Si 7 O 23 N 4 .

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 98〜80重量%の窒化ケイ素粒子と、
1〜20重量%の結晶質酸窒化物Ln4Si272(但
し、Lnはランタニド金属又はイットリウム)からなるこ
とを特徴とする窒化ケイ素焼結体。
1. 98-80% by weight of silicon nitride particles,
A silicon nitride sintered body characterized by comprising 1 to 20% by weight of a crystalline oxynitride Ln 4 Si 2 O 7 N 2 (where Ln is a lanthanide metal or yttrium).
【請求項2】 98〜80重量%の窒化ケイ素粒子と、
1〜15重量%の結晶質酸窒化物Ln4Si272(但
し、Lnはランタニド金属又はイットリウム)、及び1〜
15重量%のLn2SiO5(但し、Lnはランタニド金属又
はイットリウム)からなることを特徴とする窒化ケイ素
焼結体。
2. 98-80% by weight of silicon nitride particles,
1 to 15% by weight of crystalline oxynitride Ln 4 Si 2 O 7 N 2 (where Ln is lanthanide metal or yttrium), and 1 to
A silicon nitride sintered body comprising 15% by weight of Ln 2 SiO 5 (where Ln is a lanthanide metal or yttrium).
【請求項3】 ランタニド金属がツリウム(Tm)、イッ
テリビウム(Yb)、ルテチウム(Lu)、又はその混合物で
ある請求項1又は2に記載の窒化ケイ素焼結体。
3. The silicon nitride sintered body according to claim 1, wherein the lanthanide metal is thulium (Tm), ytteribium (Yb), lutetium (Lu), or a mixture thereof.
【請求項4】 ランタニド金属がツリウム(Tm)、イッ
テリビウム(Yb)、ルテチウム(Lu)の単独又はその混合
物と、他のランタニド金属又はイットリウムとの混合物
であり、前者の混合割合がランタニド金属の70原子%
以上である請求項1又は2に記載の窒化ケイ素焼結体。
4. The lanthanide metal is thulium (Tm), ytteribium (Yb), lutetium (Lu) alone or in a mixture thereof with another lanthanide metal or yttrium, and the former is 70% of the lanthanide metal. atom%
The above is the silicon nitride sintered body according to claim 1 or 2.
【請求項5】 窒化ケイ素粉末に1〜16重量%のラン
タニド金属酸化物と0〜5重量%のシリカを混合し、成
形後、1〜100気圧の窒素中で1700〜2200℃
に焼成することを特徴とする請求項1、2、3又は4に
記載の窒化ケイ素焼結体の製造法。
5. A silicon nitride powder is mixed with 1 to 16% by weight of a lanthanide metal oxide and 0 to 5% by weight of silica, and after molding, 1700 to 2200 ° C. in nitrogen of 1 to 100 atm.
The method for producing a silicon nitride sintered body according to claim 1, 2, 3, or 4, wherein the firing is performed at a temperature of 10 to 20.
【請求項6】 窒化ケイ素粉末に1〜16重量%のラン
タニド金属の酸化物と0〜5重量%のシリカ及び0〜1
重量%のアルミナを混合し、成形後、10〜100気圧
の窒素中で1850〜2200℃に焼成した後、130
0〜1700℃で熱処理することを特徴とする請求項
1、2、3又は4に記載の窒化ケイ素焼結体の製造法。
6. Silicon nitride powder in 1-16 wt% lanthanide metal oxide, 0-5 wt% silica and 0-1.
After mixing alumina by weight% and after molding, baking was performed at 1850 to 2200 ° C. in nitrogen at 10 to 100 atm, and then 130
The method for producing a silicon nitride sintered body according to claim 1, wherein heat treatment is performed at 0 to 1700 ° C.
【請求項7】 ランタニド金属酸化物の添加量が6〜1
2重量%である請求項5又は6に記載の方法。
7. The amount of lanthanide metal oxide added is 6 to 1.
The method according to claim 5 or 6, which is 2% by weight.
【請求項8】 シリカの添加量が1〜3重量%である請
求項5又は6に記載の方法。
8. The method according to claim 5, wherein the addition amount of silica is 1 to 3% by weight.
JP6093102A 1994-04-05 1994-04-05 Silicon nitride sintered compact and its production Pending JPH0848565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6093102A JPH0848565A (en) 1994-04-05 1994-04-05 Silicon nitride sintered compact and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6093102A JPH0848565A (en) 1994-04-05 1994-04-05 Silicon nitride sintered compact and its production

Publications (1)

Publication Number Publication Date
JPH0848565A true JPH0848565A (en) 1996-02-20

Family

ID=14073169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6093102A Pending JPH0848565A (en) 1994-04-05 1994-04-05 Silicon nitride sintered compact and its production

Country Status (1)

Country Link
JP (1) JPH0848565A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100067A (en) * 1986-06-12 1988-05-02 日本碍子株式会社 Silicon nitride sintered body and manufacture
JPH027645A (en) * 1988-06-24 1990-01-11 Nec Corp Start-stop synchronous data communication system using modem interface trunk
JPH04154666A (en) * 1990-10-15 1992-05-27 Kyocera Corp Silicon nitride sintered compact and its production
JPH04243972A (en) * 1991-01-28 1992-09-01 Kyocera Corp Sintered substance of silicon nitride
JPH04292465A (en) * 1991-03-20 1992-10-16 Ngk Insulators Ltd Silicon nitride sintered compact and its production
JPH05319540A (en) * 1992-05-19 1993-12-03 Mitsubishi Cable Ind Ltd Transfer screw

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100067A (en) * 1986-06-12 1988-05-02 日本碍子株式会社 Silicon nitride sintered body and manufacture
JPH027645A (en) * 1988-06-24 1990-01-11 Nec Corp Start-stop synchronous data communication system using modem interface trunk
JPH04154666A (en) * 1990-10-15 1992-05-27 Kyocera Corp Silicon nitride sintered compact and its production
JPH04243972A (en) * 1991-01-28 1992-09-01 Kyocera Corp Sintered substance of silicon nitride
JPH04292465A (en) * 1991-03-20 1992-10-16 Ngk Insulators Ltd Silicon nitride sintered compact and its production
JPH05319540A (en) * 1992-05-19 1993-12-03 Mitsubishi Cable Ind Ltd Transfer screw

Similar Documents

Publication Publication Date Title
KR960006250B1 (en) High thermal conductive silicon nitride sintered body and the method of producing the same
JP2001080964A (en) POLYCRYSTAL SiC SINTERED COMPACT PRODUCTION OF THE SAME AND PRODUCT OBTAINED BY APPLYING THE SAME
JPS64349B2 (en)
JPH02160669A (en) Silicon nitride-silicon carbide multiple sintered compact and production thereof
JP2663028B2 (en) Silicon nitride sintered body
JP3145519B2 (en) Aluminum nitride sintered body
JPH0848565A (en) Silicon nitride sintered compact and its production
JP3152790B2 (en) Method for producing silicon nitride based sintered body
JPH03177361A (en) Production of beta-sialon-boron nitride-based conjugate sintered compact
JP3124865B2 (en) Silicon nitride sintered body and method for producing the same
JP3124867B2 (en) Silicon nitride sintered body and method for producing the same
JPH07138075A (en) Production of silicon nitride having high strength and high thermal expansion
JPH0559074B2 (en)
JPH0559073B2 (en)
JP3124864B2 (en) Silicon nitride sintered body and method for producing the same
JP3124862B2 (en) Method for producing silicon nitride based sintered body
JP2694369B2 (en) Silicon nitride sintered body
JP2647807B2 (en) α-sialon sintered body and method for producing the same
JP3236733B2 (en) Silicon nitride sintered body
JP3207045B2 (en) Method for producing silicon nitride based sintered body
JPS6126566A (en) Method of sintering sic composite body
JP2000247749A (en) Silicon nitride-silicon carbide-based composite sintered compact and its production
JPH0435436B2 (en)
JP2001019550A (en) Crystallite granule silicon carbide sintered compact having superplasticity and its production
JPH07206522A (en) Bn-aln-based complex sintered compact and its production