JPH04154666A - Silicon nitride sintered compact and its production - Google Patents

Silicon nitride sintered compact and its production

Info

Publication number
JPH04154666A
JPH04154666A JP2277279A JP27727990A JPH04154666A JP H04154666 A JPH04154666 A JP H04154666A JP 2277279 A JP2277279 A JP 2277279A JP 27727990 A JP27727990 A JP 27727990A JP H04154666 A JPH04154666 A JP H04154666A
Authority
JP
Japan
Prior art keywords
sintered body
silicon nitride
sio
mol
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2277279A
Other languages
Japanese (ja)
Other versions
JP2724768B2 (en
Inventor
Kiyoshi Yokoyama
清 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2277279A priority Critical patent/JP2724768B2/en
Publication of JPH04154666A publication Critical patent/JPH04154666A/en
Application granted granted Critical
Publication of JP2724768B2 publication Critical patent/JP2724768B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain the title sintered compact improved in high-temperature strength and oxidation resistance by heat treatment of a specific Si3N4 sintered compact in a non-oxidative atmosphere containing SiO to effect depositing silicon oxynitride crystal phase on said compact's surface. CONSTITUTION:A mixture comprising (A) 85-99mol% of Si3N4, (B) 0.5-5mol% of an oxide (RE2O3) of group III a elements and (C) <=10mol%, in terms of SiO2, of excess oxygen with the molar ratio SiO2/RE2O3 of <=2 is formed and then calcined in a non-oxidative atmosphere at 1600-2000 deg.C into a Si3N4 sintered compact with the ratio of density to its theoretical density of >=95%. Hence, this sintered compact is heat-treated at 1300-1900 deg.C in a non-oxidative atmosphere containing SiO to effect depositing SiO2 or silicate glass on the surface layer of the sintered compact and also depositing silicon oxynitride crystal phase on the surface layer 1-100mum thick.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ガスタービン等の熱機関構造用部品として有
用な高温特性に優れた窒化珪素質焼結体及びその製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a silicon nitride sintered body with excellent high-temperature properties useful as a structural component of a heat engine such as a gas turbine, and a method for manufacturing the same.

(従来技術) 従来から、窒化珪素質焼結体は高温における強度、硬度
、熱的化学的安定性に優れた材料として注目されエンジ
ニアリングセラミックスとして、特に熱機関用構造材料
としての応用が進められている。
(Prior art) Silicon nitride sintered bodies have long attracted attention as materials with excellent strength, hardness, and thermal and chemical stability at high temperatures, and their application as engineering ceramics, particularly as structural materials for heat engines, has been progressing. There is.

一般に窒化珪素はそれ自体、難焼結性であるために焼結
助剤としてY2O5等の周期律表第IIIa族元素酸化
物をはじめAh03等の添加が必要とされている。また
、かかる焼結体を製造する場合には、窒化珪素粉末に上
記の焼結助剤粉末を所定量添加混合した後、この混合物
を公知の成形方法で成形し1500〜2000℃の非酸
化性雰囲気中で焼成することにより高密度の焼結体が得
られている。
Generally, silicon nitride itself is difficult to sinter, so it is necessary to add oxides of group IIIa elements of the periodic table such as Y2O5 and Ah03 as sintering aids. In addition, when producing such a sintered body, after adding and mixing a predetermined amount of the above-mentioned sintering aid powder to silicon nitride powder, this mixture is molded by a known molding method to form a non-oxidizing body at 1500 to 2000°C. A high-density sintered body is obtained by firing in an atmosphere.

このような窒化珪素質焼結体は特性の上からは全体とし
て均一な組織あるいは組成からなることが望まれている
From the viewpoint of characteristics, such a silicon nitride sintered body is desired to have a uniform structure or composition as a whole.

また、窒化珪素質焼結体は、特にターボロータやガスタ
ービンロータ等の熱機関用構造材料として用いる場合、
高温における抗折強度が高いこと、また耐酸化性に優れ
、室温から高温までの強度の劣化が小さいことが要求さ
れる。
In addition, silicon nitride sintered bodies, especially when used as structural materials for heat engines such as turbo rotors and gas turbine rotors,
It is required to have high bending strength at high temperatures, excellent oxidation resistance, and little deterioration in strength from room temperature to high temperature.

そこで、組成的に高温特性に優れたものとして窒化珪素
(SisNn)に対して、周期律表第IIIa族元素酸
化物(REzOs)および酸化珪素(SiOz )を添
加し、窒化珪素結晶粒の粒界にStJ、−REzO,−
5tO□からな高融点のガラスや結晶相を析出した焼結
体が特開昭55−3397号にて提案されている。
Therefore, an oxide of a Group IIIa element in the periodic table (REzOs) and silicon oxide (SiOz) are added to silicon nitride (SisNn), which has excellent compositional properties at high temperatures. StJ, -REzO, -
A glass having a high melting point of 5 tO□ and a sintered body in which a crystalline phase is precipitated have been proposed in JP-A-55-3397.

また、本出願人は先に特願昭62−124663号にて
上記3元系においてSing/ REz(hのモル比を
2以下にすることにより高温強度を高めることができる
ことを提案し、また特願平02−61781号ではSi
O□/REz(hのモル比を2より太き(することによ
り高温時の耐酸化性を大幅に向上できることを提案した
In addition, the present applicant previously proposed in Japanese Patent Application No. 124663/1982 that high-temperature strength can be increased by reducing the molar ratio of Sing/REz (h to 2 or less in the above ternary system, and also In Ganhei 02-61781, Si
It was proposed that the oxidation resistance at high temperatures could be greatly improved by making the molar ratio of O□/REz (h larger than 2).

(発明が解決しようとする問題点) しかしながら、これらの焼結体はいずれも、高温強度あ
るいは耐酸化性のどちらかの特性については確かに優れ
た特性を有するものの、他方の特性が不十分であり特性
も不安定であるという問題がある。
(Problems to be Solved by the Invention) However, although these sintered bodies certainly have excellent properties in either high-temperature strength or oxidation resistance, they are insufficient in the other property. There is also a problem that the characteristics are unstable.

また、上記の特性、特に抗折強度は焼結体表面が鏡面研
磨された場合における強度であり、例えば複雑な形状の
焼結体を作成する場合には、その表面すべてを完全に研
磨することが不可能である場合、その特性は焼結体表面
が荒れにより大きく低下するという問題があり、また、
寸法精度を挙げるために焼結体表面を研削加工した場合
にもその加工傷は破壊源となり強度を低下させるという
問題がある。
In addition, the above properties, especially the bending strength, are the strengths when the surface of the sintered body is mirror-polished. For example, when creating a sintered body with a complicated shape, it is necessary to completely polish the entire surface. If this is not possible, there is a problem that the properties will be greatly deteriorated due to roughness on the surface of the sintered body, and
Even when the surface of a sintered body is ground to improve dimensional accuracy, there is a problem in that the processing scratches become a source of destruction and reduce the strength.

かかる焼結体の表面の荒れや加工傷に対しては例えば、
焼結体を大気等の酸化性雰囲気にて熱処理して表面の窒
化珪素を酸化させることにより酸化珪素からなる被膜を
生成させ、焼結体表面の傷や荒れを治癒する方法が知ら
れている。しかし、この方法は表面が加工された焼結体
に対してはその加工面の加工傷の焼きなまし効果があり
、また焼結体内部の強度を向上することができるが、例
えば複雑形状をなすために焼成後何ら加工のできない焼
結体に対しては、その焼き放し面の強度を回復すること
ができない、また、焼結体自体の耐酸化性が焼結助剤の
種類や、焼結条件等により異なるために、同一の酸化処
理を行っても強度にバラツキが生じやすく、酸化処理条
件によっては逆に表面荒れを招く等の恐れがある。
For example, for roughness and processing scratches on the surface of the sintered body,
A known method is to heat-treat a sintered body in an oxidizing atmosphere such as the air to oxidize the silicon nitride on the surface, thereby producing a film made of silicon oxide to heal scratches and roughness on the surface of the sintered body. . However, this method has the effect of annealing the processing scratches on the machined surface of a sintered body whose surface has been processed, and can improve the internal strength of the sintered body. For sintered bodies that cannot be processed in any way after firing, the strength of the fired surface cannot be recovered, and the oxidation resistance of the sintered body itself depends on the type of sintering aid and sintering conditions. Even if the same oxidation treatment is performed, variations in strength are likely to occur, and depending on the oxidation treatment conditions, the surface may become rough.

(問題点を解決するための手段) 本発明者俸は、上記の問題点に対して検討を加えた結果
、特定の組成からなる焼結体をSiOを含む窒素雰囲気
中にて熱処理して該焼結体の表面に雰囲気からSiO□
を析出させるとともにその表層部にSi、N20で表さ
れる結晶相を析出させることにより、焼結体の表面をバ
ラツキなく均質化することができるとともに高温強度お
よび耐酸化性に優れた焼結体が得られることを知見した
(Means for Solving the Problems) As a result of considering the above-mentioned problems, the present inventor has determined that a sintered body having a specific composition is heat-treated in a nitrogen atmosphere containing SiO. SiO□ from the atmosphere on the surface of the sintered body
By precipitating the crystal phase represented by Si and N20 on the surface layer, the surface of the sintered body can be homogenized without variation, and the sintered body has excellent high-temperature strength and oxidation resistance. We found that it is possible to obtain

すなわち本発明の窒化珪素質焼結体は、窒化珪素が85
〜99モル%と、周期律表第1[[a族元素酸化物(R
EzOs)が0.5〜5モル%と、過剰酸素のSin。
That is, the silicon nitride sintered body of the present invention has a silicon nitride content of 85
~99 mol%, and oxides of group 1 elements of the periodic table (R
EzOs) from 0.5 to 5 mol% and excess oxygen.

換算量が10モル%以下からなり、SiO2/RE2O
3で表されるモル比が2以下の割合からなる窒化珪素質
焼結体において、該焼結体の表面から1〜100μmの
表層部のみにSi、N、0で表される結晶相が含有され
ることを特徴とするもので、また、製造方法としては窒
化珪素が85〜99モル%と、周期律表第■a族元素酸
化物(REzO:+)が0.5〜5モル%と、過剰酸素
のSiO□換算量が10モル%以下からなり、SiO□
/RE、O,で表されるモル比が2以下の割合からなる
窒化珪素質焼結体をSiOを含有する1300〜190
0℃の非酸化性雰囲気で熱処理し、前記焼結体の表層部
に酸化珪素またはシリケートガラスを析出させ、該焼結
体の表面から1〜100μ腸の厚さにわたりSi、N、
Oで表される結晶相を析出させたことを特徴とするもの
である。
The equivalent amount is 10 mol% or less, and SiO2/RE2O
In a silicon nitride sintered body having a molar ratio represented by 3 of 2 or less, a crystal phase represented by Si, N, and 0 is contained only in the surface layer part of 1 to 100 μm from the surface of the sintered body. In addition, the manufacturing method includes 85 to 99 mol% of silicon nitride and 0.5 to 5 mol% of the oxide of Group Ia element of the periodic table (REzO:+). , the amount of excess oxygen converted to SiO□ is 10 mol% or less, and SiO□
A silicon nitride sintered body having a molar ratio of /RE, O, of 2 or less containing SiO 1300 to 190
Heat treatment is performed in a non-oxidizing atmosphere at 0°C to precipitate silicon oxide or silicate glass on the surface layer of the sintered body, and Si, N,
It is characterized in that a crystal phase represented by O is precipitated.

以下、本発明を詳述する。The present invention will be explained in detail below.

本発明の窒化珪素質焼結体は、組成的には窒化珪素を主
体とし、焼結助剤として少なくとも周期律表第111a
族元素を含有するものである。また、焼結体中には、窒
化珪素原料から不可避的に混入する不純物酸素も存在す
る。これらを含めた焼結体の全体組成は、窒化珪素が8
5〜99モル%、周期律表第IIIa族元素(RE)が
酸化物換算(REzOs)で0.5〜5モル%、過剰酸
素がSiO□換算量で10モル%以下であり、またSi
O□/REzOxで表されるモル比が2以下であること
が重要である。
The silicon nitride sintered body of the present invention is composed mainly of silicon nitride, and contains at least 111a of the periodic table as a sintering aid.
It contains group elements. In addition, impurity oxygen, which is inevitably mixed in from the silicon nitride raw material, also exists in the sintered body. The overall composition of the sintered body including these is silicon nitride of 8
5 to 99 mol%, Group IIIa element (RE) of the periodic table is 0.5 to 5 mol% in terms of oxide (REzOs), excess oxygen is 10 mol% or less in terms of SiO□, and Si
It is important that the molar ratio expressed by O□/REzOx is 2 or less.

ここで、過剰酸素とは焼結体中の1体積当たりの全酸素
量から周期律表第■a族元素酸化物(RE2O3)等の
焼結助剤として混入する酸素を差し引いた残りの酸素量
である。
Here, excess oxygen refers to the amount of oxygen remaining after subtracting oxygen mixed as a sintering aid such as oxides of Group A elements of the periodic table (RE2O3) from the total amount of oxygen per volume in the sintered body. It is.

焼結体の組成を上記のように限定したのは、窒化珪素が
85モル%未満、あるいは周期律表第IIIa族元素酸
化物が5モル%を越える場合、また過剰酸素が10モル
%を越えるといずれも高温強度が低下し、逆に窒化珪素
が99モル%を越えるか、あるいは周期律表第IIIa
族元素酸化物が0.5モル%未満では緻密な焼結体が得
られず、特性は大きく劣化する。また、焼結体全体組成
における5it)□/RE2O3モル比が2を越えると
高温強度が低下するためである。
The composition of the sintered body is limited as above when the silicon nitride content is less than 85 mol%, or the oxide of Group IIIa element of the periodic table exceeds 5 mol%, or the excess oxygen exceeds 10 mol%. In both cases, the high-temperature strength decreases, and conversely, silicon nitride exceeds 99 mol%, or
If the content of the group element oxide is less than 0.5 mol %, a dense sintered body cannot be obtained, and the properties are significantly deteriorated. Furthermore, if the molar ratio of 5it)□/RE2O3 in the overall composition of the sintered body exceeds 2, the high temperature strength will decrease.

通常、上記組成からなる焼結体は組織的には窒化珪素か
らなる主結晶粒子と、その主結晶粒子間に存在する粒界
相とから構成され、粒界相は主として窒化珪素、周期律
表第IIIa族元素酸化物および酸化珪素を含有し、こ
れらはガラス相または結晶相、あるいはこれらの混合相
として存在するが高温特性を向上させる上では粒界が結
晶化されていることが望ましい。
Normally, a sintered body having the above composition is structurally composed of main crystal grains made of silicon nitride and a grain boundary phase existing between the main crystal grains. It contains a Group IIIa element oxide and silicon oxide, and these exist as a glass phase, a crystalline phase, or a mixed phase thereof, but in order to improve high-temperature properties, it is desirable that the grain boundaries be crystallized.

そこで、本発明の窒化珪素質焼結体によれば、その表層
部のみに5izN、Oで表されるシリコンオキシナイト
ライド結晶相が析出していることを大きな特徴とする。
Therefore, the silicon nitride sintered body of the present invention is characterized in that a silicon oxynitride crystal phase represented by 5izN,O is precipitated only in the surface layer.

この5i2NzOで表されるシリコンオキシナイトライ
ド結晶相は、それ自体1000℃を越える高温域におい
ても酸化することなく、非常に安定な結晶相であること
から、焼結体の表層部に存在することにより焼結体の高
温域での耐酸化性を大きく向上することができる。
This silicon oxynitride crystal phase represented by 5i2NzO is a very stable crystal phase that does not oxidize even at high temperatures exceeding 1000°C, so it is possible that it exists in the surface layer of the sintered body. This makes it possible to greatly improve the oxidation resistance of the sintered body in a high temperature range.

また、このSi、N、0結晶相の析出領域はその表層部
のみであることが重要であり、具体的には1〜100μ
m、特に5〜50μmであることが望ましい。
Furthermore, it is important that the precipitated region of this Si, N, 0 crystal phase is only in the surface layer.
m, particularly preferably 5 to 50 μm.

これは、かかる表層部の厚みが1μ■より薄いと高温域
での耐酸化性の向上効果がなく、厚みが100μmを越
えると焼結体自体の酸素量が多量となり高温域での強度
が劣化するためである。
This is because if the thickness of the surface layer is thinner than 1 μm, there is no effect of improving oxidation resistance in the high temperature range, and if the thickness exceeds 100 μm, the amount of oxygen in the sintered body itself becomes large and the strength in the high temperature range deteriorates. This is to do so.

上記のように焼結体中に析出する結晶相を制御するには
、表層部における過剰酸素のSiO□換算量と周期律表
第IIIa族元素酸化物(REzO+)とのSiO2/
RE2O3で表されるモル比で制御することが最も好適
である。即ち、5lot/ RE!03モル比が2以下
では、RE4SI zOJz (Y A M )相やS
i、N4・RE、03(メリライト)相で表されるアパ
タイト相等の結晶相が析出しやすいのに対してSiO□
/REz03モル比が2を越えると5tzN、0結晶相
が主として析出しその他にREzSizOlで表される
ダイシリケート結晶相が析出する。
In order to control the crystal phase precipitated in the sintered body as described above, the amount of excess oxygen in the surface layer in terms of SiO□ and the SiO2/
It is most preferable to control the molar ratio expressed by RE2O3. That is, 5 lots/RE! When the 03 molar ratio is 2 or less, RE4SI zOJz (Y A M ) phase and S
Although crystal phases such as apatite phase represented by i, N4・RE, and 03 (melilite) phases are likely to precipitate, SiO□
When the /REz03 molar ratio exceeds 2, 5tzN, 0 crystal phases are mainly precipitated, and in addition, a disilicate crystal phase represented by REzSizOl is precipitated.

よって本発明の焼結体によれば、その表層部のSiO□
/RE2O3のモル比が2を越える割合からなるように
制御することが望ましい。
Therefore, according to the sintered body of the present invention, the surface layer of SiO□
It is desirable to control the molar ratio of /RE2O3 to exceed 2.

このような焼結体を製造するには、まず、窒化珪素、周
期律表第IIIa族元素酸化物および酸化珪素が上記の
組成からなる実質上内外とも均質な組成からなる対理論
密度比95%以上の高密度焼結体を得る。
In order to manufacture such a sintered body, first, silicon nitride, an oxide of a group IIIa element of the periodic table, and silicon oxide are made of the above-mentioned composition, and the composition is substantially homogeneous inside and outside, and the theoretical density ratio is 95%. A high-density sintered body having the above density is obtained.

かかる焼結体を得る方法としては、窒化珪素粉末、周期
律表第1[[a族元素酸化物粉末および所望により酸化
珪素粉末を用いて、窒化珪素粉末が85〜99モル%と
、周期律表第IIIa族元素酸化物(RE。
As a method for obtaining such a sintered body, silicon nitride powder, an oxide powder of an element of group I [[[[A] of the periodic table], and optionally a silicon oxide powder are used, and the silicon nitride powder is 85 to 99 mol%, Table Group IIIa element oxides (RE.

0.)粉末が0.5〜5モル%と、酸化珪素(SiO□
)粉末が10モル%以下からなり、且つ5iO1/RE
z03で表されるモル比が2以下の割合からなるように
秤量する。なお、ここで用いられる窒化珪素粉末は、α
型あるいはβ型のいずれでも用いることができ、その平
均粒径は0.1〜1.0μ朧であることが望ましく、さ
らに不可避的に含有する不純物酸素量が0.5〜3.0
重量%であることが望ましい。この時、不純物酸素は酸
化珪素として換算し酸化珪素粉末の添加量が上記の範囲
になるように適宜調整することが必要である。
0. ) powder is 0.5 to 5 mol%, and silicon oxide (SiO□
) the powder consists of 10 mol% or less, and 5iO1/RE
They are weighed so that the molar ratio represented by z03 is 2 or less. Note that the silicon nitride powder used here is α
Either type or β type can be used, and the average particle size is preferably 0.1 to 1.0 μm, and the amount of impurity oxygen unavoidably contained is 0.5 to 3.0 μm.
Preferably, it is % by weight. At this time, it is necessary to convert the impurity oxygen into silicon oxide and adjust the amount of silicon oxide powder added so that it falls within the above range.

次に、上記の組成からなる混合物をプレス成形、押し出
し成形、射出成形、鋳込み成形、冷間静水圧成形等の公
知の成形方法で所定の形状に成形後、焼成する。
Next, the mixture having the above composition is molded into a predetermined shape by a known molding method such as press molding, extrusion molding, injection molding, cast molding, or cold isostatic pressing, and then fired.

焼成は、1600〜2000℃の非酸化性雰囲気中で、
常圧焼成、ホットプレス焼成、窒素ガス圧力焼成、熱間
静水圧焼成等の焼成方法により行うことができる。
Firing is performed in a non-oxidizing atmosphere at 1,600 to 2,000°C.
This can be carried out by a firing method such as normal pressure firing, hot press firing, nitrogen gas pressure firing, or hot isostatic pressure firing.

また、高密度焼結体を得るための他の方法としては、金
属シリコンに対して周期律表第IIIa族元素酸化物お
よび酸化珪素の各粉末、また所望により窒化珪素粉末を
添加して成形後、これを窒素雰囲気中で処理して金属シ
リコンを窒化し、その後1、  上記の焼成方法と同様
にして焼成することにより高密度の焼結体が得られる。
In addition, as another method for obtaining a high-density sintered body, powders of oxides of group IIIa elements of the periodic table and silicon oxide, and if desired, silicon nitride powder are added to metal silicon, and then after molding, This is treated in a nitrogen atmosphere to nitride the metal silicon, and then 1. A high-density sintered body is obtained by firing in the same manner as the firing method described above.

次に、この焼結体をSiOを含む窒素あるいはアルゴン
等の非酸化性雰囲気で1300〜1900℃程度の温度
で熱処理する。かかる雰囲気は、例えば金属Siと酸化
珪素とが重量比で0.1〜100となるように混合され
たものを加熱炉内に設置すると、高温で金属Siと酸化
珪素の両者が分解反応しSiOガスが発生する。
Next, this sintered body is heat-treated at a temperature of about 1300 to 1900° C. in a non-oxidizing atmosphere such as nitrogen or argon containing SiO. In such an atmosphere, for example, when a mixture of metal Si and silicon oxide is placed in a heating furnace at a weight ratio of 0.1 to 100, both metal Si and silicon oxide decompose and react at high temperatures, forming SiO. Gas is generated.

この熱処理によれば、発生したSiOガスは、焼結体表
面で高温時、或いは高温からの冷却過程において凝結し
、焼結体表面にSiO□として析出する。
According to this heat treatment, the generated SiO gas condenses on the surface of the sintered body at a high temperature or during the cooling process from a high temperature, and precipitates as SiO□ on the surface of the sintered body.

それ・と同時に焼結体内に存在する周期律表第1[1a
族元素酸化物と一部反応しつつシリケートガラス層が焼
結体表面に形成される。
At the same time, the periodic table 1 [1a
A silicate glass layer is formed on the surface of the sintered body while partially reacting with the group element oxide.

これにより焼結体の表層部と焼結体内部には組成的に変
化が生じる。具体的には、焼結体を構成する珪素、窒素
、酸素、周期律表第IIIa族元素のうち、珪素および
酸素は内部より表層部が多く、窒素および周期律表第I
IIa族元素は減少する傾向にある。
This causes a compositional change in the surface layer portion of the sintered body and the inside of the sintered body. Specifically, among the silicon, nitrogen, oxygen, and group IIIa elements of the periodic table that constitute the sintered body, silicon and oxygen are present more in the surface layer than in the interior, and nitrogen and
Group IIa elements tend to decrease.

本発明によれば、この時のSiO□の析出を最終的焼結
体の表層部の1=lOOl1m以内になるように熱処理
の処理時間や温度、雰囲気中のSiO濃度を制御し、焼
結体の表層部にお↓するSing/ REz03モル比
が2を越えるように制御する。
According to the present invention, the heat treatment time, temperature, and SiO concentration in the atmosphere are controlled so that the precipitation of SiO□ at this time is within 1=lOOl1m of the surface layer of the final sintered body, and the sintered body is The molar ratio of Sing/REz03 in the surface layer of the sample is controlled to exceed 2.

かかる処理によれば、処理後の冷却を徐々に行うか、ま
たは1300〜1900℃の非酸化性雰囲気中で熱処理
することにより焼結体の粒界の結晶化を図ることにより
焼結体の表層部には、Si、N、0で表されるシリコン
オキシナイトライド結晶相が析出する。また、焼結体内
部には、前述したYAM相あるいはアパタイト、ウオラ
ストナイト、アパタイト等の結晶相が析出する。
According to this treatment, the surface layer of the sintered body is gradually cooled after the treatment or heat treated in a non-oxidizing atmosphere at 1300 to 1900°C to crystallize the grain boundaries of the sintered body. A silicon oxynitride crystal phase represented by Si, N, and 0 is precipitated in this area. Furthermore, the aforementioned YAM phase or crystal phases such as apatite, wollastonite, and apatite are precipitated inside the sintered body.

なお、本発明において用いられる周期律表第■a族元素
酸化物としては、Y2O3、yb、o、 Er、03 
Dyto、 HozDz 5ctOz等が挙げられ、特
に焼結体の特性の安定性から考慮すると、Ybz03、
Erz03が望ましい。
Incidentally, the oxides of Group IV a elements of the periodic table used in the present invention include Y2O3, yb, o, Er, 03
Examples include Dyto, HozDz 5ctOz, etc. Considering the stability of the properties of the sintered body, Ybz03,
Erz03 is preferred.

また本発明によれば、上述した本発明の効果に悪影響を
及ぼさない範囲で、他の添加物を加えることができる。
Further, according to the present invention, other additives can be added within a range that does not adversely affect the effects of the present invention described above.

具体的には、A1□03、−03、NbzO5、Cr2
O3、Mo0i、Zr0z、SrOが挙げられるが、特
にA1□03は粒界の結晶化を阻害することから1重量
%以下に抑えることが望ましい。
Specifically, A1□03, -03, NbzO5, Cr2
Examples include O3, Mo0i, Zr0z, and SrO, but especially A1□03 inhibits crystallization of grain boundaries, so it is desirable to suppress it to 1% by weight or less.

(作 用) 本発明によれば、表層部は、内部よりも珪素および酸素
が多く存在するととも高温において化学安定性に優れた
Si、N20結晶相が存在することから、焼結体の高温
酸化性雰囲気での劣化を防止することができる。また、
内部は、酸素および珪素量を少なく制御することにより
高温強度を高めることができる。かかる2種の異なる性
質を持つ焼結体が複合化され上記表層部が特定の厚さで
設けられることにより高温酸化性雰囲気において優れた
耐酸化性を有しつつ、高い高温強度を有する焼結体が提
供できる。
(Function) According to the present invention, the surface layer contains more silicon and oxygen than the interior, and also contains Si and N20 crystal phases that have excellent chemical stability at high temperatures. Deterioration in a harsh atmosphere can be prevented. Also,
High-temperature strength can be increased by controlling the amount of oxygen and silicon in the interior. By combining these two types of sintered bodies with different properties and providing the above-mentioned surface layer with a specific thickness, the sintered body has excellent oxidation resistance in a high-temperature oxidizing atmosphere and high high-temperature strength. The body can provide.

また、製法において焼結体をSiO含有雰囲気中での熱
処理すると、その焼結体が研削加工品や焼き放し品であ
っても、その表面においてSiO□が析出することによ
って表層部がいわば再焼成されることにより表層部が改
質されるとともに均質化され、これにより焼結体表面の
荒れ等による焼結体の強度の低下が解消され、焼結体本
来の強度を発揮することができる。
In addition, when a sintered body is heat-treated in an SiO-containing atmosphere during the manufacturing process, even if the sintered body is a ground product or an unburned product, SiO□ precipitates on the surface, causing the surface layer to become re-fired. As a result, the surface layer portion is modified and homogenized, thereby eliminating the decrease in strength of the sintered body due to roughness of the surface of the sintered body, and the original strength of the sintered body can be exhibited.

以下、本発明を次の例で説明する。The invention will now be explained with the following examples.

(実施例) 窒化珪素粉末(α化率90%、不純物酸素量2.0重量
%、平均粒径0.5μm)と、周期律表第IIIa族元
素酸化物粉末ならびに酸化珪素粉末を第1表に示す割合
にて秤量混合した後に、プレス成形により4 X 5 
X50mmの形状に成形後、1950℃の窒素ガス圧9
atmの雰囲気で焼成した。
(Example) Silicon nitride powder (gelatinization rate 90%, impurity oxygen content 2.0% by weight, average particle size 0.5 μm), oxide powder of group IIIa element of the periodic table, and silicon oxide powder are shown in Table 1. After weighing and mixing in the proportions shown, press molding into 4 x 5
After molding into a shape of x50mm, 1950℃ nitrogen gas pressure 9
It was fired in an ATM atmosphere.

それぞれの試料を第1表に示す条件で熱処理した後に、
1400℃の窒素ガス雰囲気中で2時間熱処理し粒界の
結晶化を行った。なお、熱処理をSiOを含有する窒素
雰囲気中で行う場合には、炉内に金属SiとSiO□と
の混合粉末を入れて行った。
After heat treating each sample under the conditions shown in Table 1,
A heat treatment was performed for 2 hours in a nitrogen gas atmosphere at 1400° C. to crystallize grain boundaries. Note that when heat treatment was performed in a nitrogen atmosphere containing SiO, a mixed powder of metal Si and SiO□ was placed in the furnace.

処理後の焼結体に対してJISR1601に従い、室温
および1400℃における抗折強度を測定し、さらに1
400℃の酸化性雰囲気中で24時間保持後の単位面積
当たりの重量増加を測定した。
The flexural strength of the treated sintered body was measured at room temperature and 1400°C in accordance with JISR1601, and further 1
The weight increase per unit area after being held in an oxidizing atmosphere at 400° C. for 24 hours was measured.

また、各焼結体の表層部と内部との珪素量と酸素量との
組成的な変化をEPMA分析によりその大小を比較する
とともに酸素量および珪素量が内部よりも多くなる表層
部の厚みを調べた。さらに上記表層部に対しEPMA分
析により定量分析を行い、周期律表第IIIa族元素酸
化物uEzoi)と酸化珪素(SiO□)とのモル比(
Sift/ REvOs)を求めた。
In addition, we compared the compositional changes in the amount of silicon and oxygen between the surface layer and the inside of each sintered body by EPMA analysis, and also determined the thickness of the surface layer where the amount of oxygen and silicon is higher than the inside. Examined. Furthermore, the above surface layer was quantitatively analyzed by EPMA analysis, and the molar ratio of the oxide of Group IIIa element of the periodic table (uEzoi) and silicon oxide (SiO□) was determined (
Sift/REvOs) was calculated.

また、焼結体の表層部と焼結体中心部においてX線回折
測定し、存在する結晶相を同定した。
In addition, X-ray diffraction measurements were performed on the surface layer and the center of the sintered body, and the existing crystal phases were identified.

これらの結果を第1表に示す。These results are shown in Table 1.

(以下余白) 第1表の結果によれば、単なる非酸化性雰囲気中で熱処
理したもので、その内部におけるSiO□/REz03
モル比が2以下であり、その表層部も同様に2以下であ
る従来の焼結体である試料N11lは、YAM結晶相が
析出しており、特性的にも高温強度に優れるが、高温で
の耐酸化性が0.2■g/c+*”と不十分である。ま
た、内部、表層部ともにSiO2/RE2O3モル比が
2を越える試料N112は結晶相として5izN、O結
晶相が内外に析出しており高温での耐酸化性に非常に優
れるものであったが、高温での強度が30kg/lll
1zト低イ。
(Left below) According to the results in Table 1, SiO
Sample N11l, which is a conventional sintered body whose molar ratio is 2 or less and whose surface layer is also 2 or less, has precipitated YAM crystal phases and has excellent high-temperature strength; The oxidation resistance is insufficient at 0.2g/c++''.In addition, in sample N112 where the SiO2/RE2O3 molar ratio exceeds 2 in both the internal and surface parts, the crystalline phase is 5izN, O crystalline phase inside and outside. It was precipitated and had excellent oxidation resistance at high temperatures, but its strength at high temperatures was 30 kg/lll.
1z is low.

また、焼結体の周期律表第IIIa族元素酸化物の添加
量が5モル%を越える試料N(Li2でも高温強度が低
く、酸化珪素量が10モル%を越える試料NcL14で
も特性的には悪いものであった。
In addition, sample N in which the amount of added oxide of group IIIa element of the periodic table exceeds 5 mol % (Li2 also has low high temperature strength, and sample NcL14 in which the amount of silicon oxide exceeds 10 mol % also has characteristics) It was bad.

これに対して、本発明に従い、所定の組成比からなる焼
結体をSiOを含む非酸化性雰囲気中で処理したものは
、いずれも組成的には表層部の酸素量および珪素量は内
部よりも多く存在しており結晶化処理によりSi、N、
O結晶相が検出され、内部に−はほとんどの試料におい
てYAM相が検出された。
On the other hand, in accordance with the present invention, when a sintered body having a predetermined composition ratio is treated in a non-oxidizing atmosphere containing SiO, the amount of oxygen and silicon in the surface layer is lower than that in the inside. Si, N,
An O crystal phase was detected, and an internal YAM phase was detected in most of the samples.

また特性的には、高温耐酸化性は試料間、2と同レベル
の0.1+ag/c+a”以下で、高温強度は試料間1
と同レベルの70kg/am2以上の優れた特性の焼結
体が得られた。
In addition, in terms of characteristics, high temperature oxidation resistance is 0.1+ag/c+a" or less between samples, the same level as 2, and high temperature strength is 1 between samples.
A sintered body with excellent properties of 70 kg/am2 or more, which is the same level as that of the previous example, was obtained.

しかしながら、SiO雰囲気中での処理時間が長く、か
かる表層部の厚みが100 ttraを越える試料N1
115では、高温耐酸化性は優れるが強度の低下が見ら
れた。゛ また、窒素中でSiOが存在しても処理温度が高い試料
間7では焼結体表面が分解し高温強度は著しく低下した
However, the processing time in the SiO atmosphere is long and the thickness of the surface layer exceeds 100 ttra for sample N1.
No. 115 had excellent high-temperature oxidation resistance, but a decrease in strength was observed. Furthermore, even in the presence of SiO in nitrogen, the surface of the sintered body decomposed in Sample No. 7, where the treatment temperature was high, and the high-temperature strength was significantly reduced.

さらに、単なる大気中で処理した試料間16の表層部は
、組成的には内部に比較して酸素量のみが多くなってお
り、ダイシリケート相が析出しており、特性は悪いもの
であった。
Furthermore, in terms of composition, the surface layer of Sample 16, which was simply treated in the atmosphere, had a higher amount of oxygen than the inside, and a disilicate phase had precipitated, resulting in poor characteristics. .

(発明の効果) 以上詳述した通り、本発明によれば焼結体の表面を耐酸
化性に優れ、内部を高温強度に優れたものから構成する
ことにより、それぞれの欠点が補われ高温において耐酸
化性および強度に優れた焼結体を提供できる。
(Effects of the Invention) As detailed above, according to the present invention, the surface of the sintered body is made of a material with excellent oxidation resistance, and the inside is made of a material with excellent high-temperature strength. A sintered body with excellent oxidation resistance and strength can be provided.

また、本発明の製造方法によれば、焼き放し後や研削加
工後の劣化した表面を実質的に改質することができ、こ
れにより強度を回復させることができ、且つ高温におけ
る耐酸化性および強度の高い焼結体を提供することがで
きる。
Further, according to the manufacturing method of the present invention, it is possible to substantially modify the deteriorated surface after baking or grinding, thereby recovering the strength, and improving oxidation resistance and A sintered body with high strength can be provided.

よって、ターボロータやガスタービンをはじめとする複
雑形状品やその他高温特性が要求される各種構造用材料
へ応用する場合に特にその効果が発揮される。
Therefore, it is especially effective when applied to complex-shaped products such as turbo rotors and gas turbines, and various other structural materials that require high-temperature properties.

Claims (3)

【特許請求の範囲】[Claims] (1)窒化珪素が85〜99モル%と、周期律表第III
a族元素酸化物(RE_2O_3)が0.5〜5モル%
と、過剰酸素のSiO_2換算量が10モル%以下から
なり、SiO_2/RE_2O_3で表されるモル比が
2以下の割合からなる窒化珪素質焼結体において、該焼
結体の表面から厚さ1〜100μmの表層部のみにシリ
コンオキシナイトライド結晶相が存在することを特徴と
する窒化珪素質焼結体。
(1) Silicon nitride is 85 to 99 mol% and is found in III of the periodic table.
Group a element oxide (RE_2O_3) is 0.5 to 5 mol%
In a silicon nitride sintered body in which the SiO_2 equivalent amount of excess oxygen is 10 mol% or less and the molar ratio expressed by SiO_2/RE_2O_3 is 2 or less, a thickness of 1 A silicon nitride sintered body characterized in that a silicon oxynitride crystal phase exists only in the surface layer of ~100 μm.
(2)焼結体内部にYAM、アパタイト、ウォラストナ
イトあるいはメリライト結晶相が存在する請求項1記載
の窒化珪素質焼結体。
(2) The silicon nitride sintered body according to claim 1, wherein a YAM, apatite, wollastonite, or melilite crystal phase is present inside the sintered body.
(3)窒化珪素が85〜99モル%と、周期律表第III
a族元素酸化物(RE_2O_3)が0.5〜5モル%
と、過剰酸素のSiO_2換算量が10モル%以下から
なり、SiO_2/RE_2O_3で表されるモル比が
2以下の割合からなる窒化珪素質焼結体をSiOを含有
する1300〜1900℃の非酸化性雰囲気で熱処理し
、前記焼結体の表層に酸化珪素またはシリケートガラス
を析出させ、該焼結体の表面から厚さ1〜100μmの
表層部のみにシリコンオキシナイトライド結晶相を析出
させたことを特徴とする窒化珪素質焼結体の製造方法。
(3) Silicon nitride is 85 to 99 mol%, and it is found in III of the periodic table.
Group a element oxide (RE_2O_3) is 0.5 to 5 mol%
Then, a silicon nitride sintered body with an excess oxygen equivalent to SiO_2 of 10 mol% or less and a molar ratio of SiO_2/RE_2O_3 of 2 or less is heated to a non-oxidized state at 1300 to 1900°C containing SiO. heat treatment in a neutral atmosphere to precipitate silicon oxide or silicate glass on the surface layer of the sintered body, and precipitate a silicon oxynitride crystal phase only in the surface layer with a thickness of 1 to 100 μm from the surface of the sintered body. A method for producing a silicon nitride sintered body, characterized by:
JP2277279A 1990-10-15 1990-10-15 Silicon nitride sintered body and method for producing the same Expired - Fee Related JP2724768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2277279A JP2724768B2 (en) 1990-10-15 1990-10-15 Silicon nitride sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2277279A JP2724768B2 (en) 1990-10-15 1990-10-15 Silicon nitride sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH04154666A true JPH04154666A (en) 1992-05-27
JP2724768B2 JP2724768B2 (en) 1998-03-09

Family

ID=17581318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2277279A Expired - Fee Related JP2724768B2 (en) 1990-10-15 1990-10-15 Silicon nitride sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP2724768B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0848565A (en) * 1994-04-05 1996-02-20 Natl Inst For Res In Inorg Mater Silicon nitride sintered compact and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0848565A (en) * 1994-04-05 1996-02-20 Natl Inst For Res In Inorg Mater Silicon nitride sintered compact and its production

Also Published As

Publication number Publication date
JP2724768B2 (en) 1998-03-09

Similar Documents

Publication Publication Date Title
JPH04154666A (en) Silicon nitride sintered compact and its production
JPH0321504B2 (en)
JP3231950B2 (en) Surface coated silicon nitride material
JPH07330436A (en) Silicon nitride heat resistant member and its production
JP2789133B2 (en) Silicon nitride sintered body and method for producing the same
JPH03290369A (en) Sintered silicon nitride and production thereof
JP3124867B2 (en) Silicon nitride sintered body and method for producing the same
JP2828583B2 (en) Surface-coated silicon nitride heat-resistant member
JPH035371A (en) Production of si3n4 sintered compact
JP2883248B2 (en) Silicon nitride based sintered body and method for producing the same
JP2783720B2 (en) Silicon nitride sintered body and method for producing the same
JP3124862B2 (en) Method for producing silicon nitride based sintered body
JPH03164472A (en) Production of silicon nitride sintered body
JPH1059773A (en) Silicon nitride sintered compact and its production
JPH03199165A (en) Silicon nitride-based sintered body and production thereof
JP2670222B2 (en) Silicon nitride sintered body and method for producing the same
JP3237963B2 (en) Silicon nitride sintered body and method for producing the same
JPH0579625B2 (en)
JP3207045B2 (en) Method for producing silicon nitride based sintered body
JP2777051B2 (en) Method for producing silicon nitride based sintered body
JP2694368B2 (en) Method for producing silicon nitride based sintered body
JPH02180758A (en) Silicon nitride-based sintered body
JPH0940464A (en) Silicon nitride-base sintered compact and its production
JPH05148027A (en) Sintered silicon nitride and its production
JPH07172958A (en) Surface-coated heat-resistant silicon nitride member

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees