JPH02160669A - Silicon nitride-silicon carbide multiple sintered compact and production thereof - Google Patents

Silicon nitride-silicon carbide multiple sintered compact and production thereof

Info

Publication number
JPH02160669A
JPH02160669A JP1031125A JP3112589A JPH02160669A JP H02160669 A JPH02160669 A JP H02160669A JP 1031125 A JP1031125 A JP 1031125A JP 3112589 A JP3112589 A JP 3112589A JP H02160669 A JPH02160669 A JP H02160669A
Authority
JP
Japan
Prior art keywords
silicon carbide
silicon nitride
silicon
sintered body
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1031125A
Other languages
Japanese (ja)
Inventor
Hiromasa Isaki
寛正 伊崎
Takamasa Kawakami
川上 殷正
Kouichi Yakiyou
八京 孝一
Riako Nakano
里愛子 中野
Koichi Niihara
晧一 新原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP1031125A priority Critical patent/JPH02160669A/en
Publication of JPH02160669A publication Critical patent/JPH02160669A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To provide the title sintered compact of high hardness excellent in high-temperature mechanical strength, fracture toughness, thermal insulation, processability and wear resistance, having such structure that fine SiC dispersed within Si3N4 and on the boundary of Si3N4 grains. CONSTITUTION:A mixture of SiC<1mum in average grain size and noncrystalline Si3N4 powder is further mixed with, as sintering auxiliary, 0.1-20wt.% of MgO, Al2O3, Y2O3, AlN, CeO2, etc. The resultant mixed powder raw material is then press-molded followed by sintering through hot press or HIP process at 1500-3000 deg.C. During the sintering process, a liquid phase is formed due to the presence of the sintering auxiliary. and the SiC several-several hundreds nm in grain size is dispersed within the Si3N4 grains while the SiC<=0.5mum in average grain size is dispersed on the boundary of the Si3N4 grains. Thus the objective SiC-Si3N4 multiple sintered compact excellent in high-temperature mechanical strength, hardness and wear resistance can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、窒化ケイ素−炭化ケイ素複合焼結体およびそ
の製造法に関し、さらに詳しくは、本発明は、特異な微
細構造を有する窒化ケイ素−炭化ケイ素複合焼結体およ
びその製造法であって、炭化ケイ素が窒化ケイ素粒子内
$よび粒界に分散した特異な微細構造を形成し、室温/
高温強度、破壊靭性値および断熱性に優れ、さらに弾性
率が低く加工性に優れており、しかも硬度が高く耐摩耗
性にも優れた複合焼結体に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a silicon nitride-silicon carbide composite sintered body and a method for manufacturing the same. A silicon carbide composite sintered body and its manufacturing method, which form a unique microstructure in which silicon carbide is dispersed within silicon nitride particles and at grain boundaries, and
The present invention relates to a composite sintered body that has excellent high-temperature strength, fracture toughness, and heat insulation properties, has a low elastic modulus and is excellent in workability, and has high hardness and excellent wear resistance.

〔従来技術およびその問題点〕[Prior art and its problems]

窒化ケイ素、炭化ケイ素は高温構造材料用のエンジニア
リングセラミックス材料として近年富に注目を集めて来
ている。特に窒化ケイ素は耐熱衝撃や破壊靭性に、また
炭化ケイ素は耐酸化性や高温強度にそれぞれ優れた性質
を有している。
Silicon nitride and silicon carbide have recently attracted much attention as engineering ceramic materials for high-temperature structural materials. In particular, silicon nitride has excellent thermal shock resistance and fracture toughness, and silicon carbide has excellent oxidation resistance and high-temperature strength.

このため窒化ケイ素、炭化ケイ素はそれぞれの特性を生
かした分野で開発が行われている。
For this reason, silicon nitride and silicon carbide are being developed in fields that take advantage of their respective properties.

一方、両者の利点を生かすために窒化ケイ素−炭化ケイ
素複合体の開発も種々試みられている。
On the other hand, various attempts have been made to develop silicon nitride-silicon carbide composites in order to take advantage of the advantages of both.

従来、窒化ケイ素−炭化ケイ素複合体セラミックスを得
る方法としては、 (1)窒化ケイ素(S13N4)粉末と炭化ケイ素(S
iC)粉末あるいは炭化ケイ素ウィスカーとを機械的に
混合して常圧焼結あるいはホットプレスやHIPなどの
加圧下で焼結する方法。
Conventionally, methods for obtaining silicon nitride-silicon carbide composite ceramics include (1) silicon nitride (S13N4) powder and silicon carbide (S
iC) A method in which powder or silicon carbide whiskers are mechanically mixed and sintered under pressure such as normal pressure sintering or hot pressing or HIP.

(2)炭化ケイ素粉末とケイ素(SiC)粉末とからな
る成型体を窒化反応によって窒化ケイ素を生成させたり
、窒化ケイ素粉末と炭素とからなる成型体にケイ素を浸
透させて炭化ケイ素を生成させたりする方法。
(2) A molded body made of silicon carbide powder and silicon (SiC) powder is subjected to a nitriding reaction to generate silicon nitride, or a molded body made of silicon nitride powder and carbon is infiltrated with silicon to generate silicon carbide. how to.

(3)有機ケイ素ポリマー、または有機ケイ素ポリマー
にケイ素粉末を加えたものを原料としてこれを直接ある
いは熱処理後成型して後加熱し窒化ケイ素−炭化ケイ素
複合体を生成させる方法。
(3) A method of producing a silicon nitride-silicon carbide composite by using an organosilicon polymer or an organosilicon polymer to which silicon powder is added as a raw material and molding it directly or after heat treatment and then heating it.

等々がある。しかし、これらのうち、(2) 、(3)
による方法は一般に寸法精度がよく成型性に優れている
利点はあるが、得られる焼結体は多孔質になり易く密度
の高い緻密な焼結体を得ることは困難である。このため
得られる焼結体物性は、緻密な窒化ケイ素、炭化ケイ素
単独焼結体に比べて劣る場合が多べ、たとえば焼結体の
強度は窒化ケイ素、炭化ケイ素単独焼結体より一般的に
低い。
And so on. However, among these, (2), (3)
Although the method generally has the advantage of good dimensional accuracy and excellent moldability, the resulting sintered body tends to be porous and it is difficult to obtain a dense sintered body with high density. For this reason, the physical properties of the sintered body obtained are often inferior to those of a dense sintered body of silicon nitride or silicon carbide alone.For example, the strength of the sintered body is generally lower than that of a sintered body of silicon nitride or silicon carbide alone. low.

このため、高密度で緻密な複合焼結体を得るには通常前
記(1)の方法が採用されるのが一般的である。この方
法には大別して窒化ケイ素に炭化ケイ素ウィスカーを添
加する方法と、窒化ケイ素に炭化ケイ素粉末を添加する
方法がある。
Therefore, in order to obtain a high-density and dense composite sintered body, the method (1) above is generally employed. This method can be roughly divided into a method in which silicon carbide whiskers are added to silicon nitride, and a method in which silicon carbide powder is added to silicon nitride.

炭化ケイ素ウィスカーを分散させた窒化ケイ素−炭化ケ
イ素複合焼結体では、窒化ケイ素に比べ破壊靭性値の向
上が認められるが、炭化ケイ素ウィスカーを均一に分散
させることが困難なため、強度は一般に低くなる。また
、この手段では得られる窒化ケイ素−炭化ケイ素複合焼
結体の熱伝導度や弾性率は複合則にしたがって予測し得
るように窒化ケイ素のそれより高くなる。
A silicon nitride-silicon carbide composite sintered body in which silicon carbide whiskers are dispersed has improved fracture toughness compared to silicon nitride, but it is difficult to uniformly disperse silicon carbide whiskers, so the strength is generally low. Become. Furthermore, with this method, the thermal conductivity and elastic modulus of the silicon nitride-silicon carbide composite sintered body obtained are higher than those of silicon nitride, as can be predicted according to the law of compounding.

一方、炭化ケイ素粉末を用いた窒化ケイ素−炭化ケイ素
複合焼結体の例としては、例えば、U、 S。
On the other hand, examples of silicon nitride-silicon carbide composite sintered bodies using silicon carbide powder include U and S.

P、 4.184.882.あるいはJ、Am、Cer
am、 Sac、、 56.445 (1973)に示
されているように、5〜32μmの炭化ケイ素(SiC
)粉末(最大40 Vo1%)を窒化ケイ素(Si3N
s)粉末に添加することにより窒化ケイ素に比べ熱伝導
度や高温強度の改善された成型体が得られることが開示
されている。
P, 4.184.882. Or J, Am, Cer
am, Sac, 56.445 (1973).
) powder (maximum 40 Vo1%) to silicon nitride (Si3N)
s) It is disclosed that by adding it to powder, a molded body with improved thermal conductivity and high temperature strength compared to silicon nitride can be obtained.

この方法によれば、添加する炭化ケイ素粉末の粒径が大
きいものを用いた場合には、破壊靭性値が窒化ケイ素の
それより高くなるが、強度はむしろ窒化ケイ素より低く
なる。
According to this method, when the added silicon carbide powder has a large particle size, the fracture toughness value is higher than that of silicon nitride, but the strength is rather lower than that of silicon nitride.

他方、添加する炭化ケイ素の粒径が小さい場合には、室
温強度は窒化ケイ素と同程度であるが、破壊靭性値は窒
化ケイ素より低くなる。また、高温強度はいずれの場合
も窒化ケイ素よりも高くなり、粒径の小さいものの方が
その効果は大きい。
On the other hand, when the particle size of the added silicon carbide is small, the room temperature strength is comparable to that of silicon nitride, but the fracture toughness value is lower than that of silicon nitride. Moreover, the high temperature strength is higher than that of silicon nitride in any case, and the effect is greater when the particle size is smaller.

この方法でも炭化ケイ素ウィスカーを添加する方法と同
様に、熱伝導度は炭化ケイ素粉末の添加によって上昇す
る。
In this method as well, the thermal conductivity is increased by the addition of silicon carbide powder, similar to the method of adding silicon carbide whiskers.

また特開昭58−91070号では気相反応により得ら
れた窒化ケイ素、と炭化ケイ素との複合粉末を用いた高
温強度と耐熱衝撃性に優れた複合焼結体が開示されてい
る。また、特開昭61−183107号ではカーボン粉
末を分散させたケイ素アルコキシドを加水分解すること
によって得た混合粉末を焼結することにより窒化ケイ素
よりも熱伝導度のよい焼結体を得ることが示されている
。さらに、特開昭62−65910号にはシリカとカー
ボンをN2およびAr。
Further, JP-A No. 58-91070 discloses a composite sintered body having excellent high-temperature strength and thermal shock resistance using a composite powder of silicon nitride and silicon carbide obtained by a gas phase reaction. Furthermore, in JP-A-61-183107, a sintered body with better thermal conductivity than silicon nitride can be obtained by sintering a mixed powder obtained by hydrolyzing silicon alkoxide in which carbon powder is dispersed. It is shown. Furthermore, in Japanese Patent Application Laid-Open No. 62-65910, silica and carbon were mixed with N2 and Ar.

tieの特定の混合気流中、特定の温度範囲で加熱する
ことによって得られる混合粉末を用いて、窒化ケイ素と
比較して熱伝導度と曲げ強度に優れた焼結体を得ること
が述べられている。
It has been stated that a sintered body with superior thermal conductivity and bending strength compared to silicon nitride can be obtained by using a mixed powder obtained by heating a TIE in a specific mixed air flow at a specific temperature range. There is.

このように、炭化ケイ素粉末を分散させる方法はウィス
カーを分散させる方法に比較すると均一に炭化ケイ素を
分散させることが容易であり、炭化ケイ素粉末を用いて
得られる窒化ケイ素−炭化ケイ素複合焼結体は窒化ケイ
素単独の焼結体に比べ、強度特に高温強度や熱伝導度に
すぐれているという特徴がある。
In this way, the method of dispersing silicon carbide powder is easier to uniformly disperse silicon carbide than the method of dispersing whiskers, and the silicon nitride-silicon carbide composite sintered body obtained using silicon carbide powder is Compared to a sintered body made of silicon nitride alone, it has superior strength, especially high-temperature strength, and thermal conductivity.

従来の窒化ケイ素−炭化ケイ素複合焼結体が高温強度に
優れているのは、主として焼結体中の炭化ケイ素粒子が
窒化ケイ素粒子の粒界に存在することによって高温時に
窒化ケイ素の粒界のすべりを抑制するためであり、また
、熱伝導度が窒化ケイ素よりも高くなるのは炭化ケイ素
の熱伝導度が窒化ケイ素よりも高いために、複合則に従
って熱伝導度が上がるためと考えられる。
The reason why the conventional silicon nitride-silicon carbide composite sintered body has excellent high-temperature strength is mainly because the silicon carbide particles in the sintered body exist at the grain boundaries of the silicon nitride particles. This is to suppress slippage, and it is thought that the reason why the thermal conductivity is higher than that of silicon nitride is that silicon carbide has a higher thermal conductivity than silicon nitride, so the thermal conductivity increases according to the law of compositeness.

しかしながら、こうようにして得られる窒化ケイ素−炭
化ケイ素複合焼結体の高温強度は近年のガスタービン等
の耐熱部材で要求される強度には未だ不充分であり、ま
た、断熱性を要求される部材には不適であった。
However, the high-temperature strength of the silicon nitride-silicon carbide composite sintered body obtained in this way is still insufficient to meet the strength required for heat-resistant components such as gas turbines in recent years, and it also requires heat insulation properties. It was unsuitable for parts.

このような問題点に鑑み、本発明者らは先に平均粒径が
1μm以下の炭化ケイ素を窒化ケイ素に均一に分散させ
、窒化ケイ素の粒子を柱状化することによって、室温強
度および破壊靭性値ともに窒化ケイ素のそれに優る窒化
ケイ素−炭化ケイ素複合焼結体が得られることを示した
(特開昭63−159256)。本発明者らは、窒化ケ
イ素−炭化ケイ素複合焼結体につきさらに検討した。
In view of these problems, the present inventors first uniformly dispersed silicon carbide with an average particle size of 1 μm or less in silicon nitride, and by forming the silicon nitride particles into columns, the room temperature strength and fracture toughness values were improved. In both cases, it was shown that a silicon nitride-silicon carbide composite sintered body superior to that of silicon nitride could be obtained (Japanese Patent Laid-Open No. 159256/1983). The present inventors further investigated the silicon nitride-silicon carbide composite sintered body.

本発明は、従来の窒化ケイ素−炭化ケイ素複合焼結体で
は達し得なかった高い室温/高温強度と破壊靭性値を有
し、しかも熱伝導度の低い、すなわち断熱性に優れ、弾
性率が低く加工性に優れた窒化ケイ素−炭化ケイ素複合
焼結体を提供することにある。
The present invention has high room temperature/high temperature strength and fracture toughness that could not be achieved with conventional silicon nitride-silicon carbide composite sintered bodies, and also has low thermal conductivity, that is, excellent heat insulation properties, and low elastic modulus. An object of the present invention is to provide a silicon nitride-silicon carbide composite sintered body with excellent workability.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、窒化ケイ素−炭化ケイ素複合焼結体において
、平均粒径1μm以下の炭化ケイ素粒子が粒界に分散し
、かつ数ナノメーターから数百ナノメーターの炭化ケイ
素粒子が窒化ケイ素粒子内に分散した微細構造からなる
窒化ケイ素−炭化ケイ素複合焼結体であって、特に構成
する窒化ケイ素環よび炭化ケイ素の平均粒径がサブミク
ロン大で均一に分散しており、平均粒径1μm以下の炭
化ケイ素が粒界に均一に分散し、かつ数ナノメータから
数百ナノメータの大きさの炭化ケイ素粒子が窒化ケイ素
粒子内に分散している微細構造からなる窒化ケイ素−炭
化ケイ素複合焼結体詔よびその製造法に関する。
The present invention provides a silicon nitride-silicon carbide composite sintered body in which silicon carbide particles with an average particle size of 1 μm or less are dispersed at the grain boundaries, and silicon carbide particles with a size of several nanometers to several hundred nanometers are contained within the silicon nitride particles. A silicon nitride-silicon carbide composite sintered body consisting of a dispersed microstructure, in particular, the constituent silicon nitride rings and silicon carbide have an average particle size of submicron size and are uniformly dispersed, and have an average particle size of 1 μm or less. A silicon nitride-silicon carbide composite sintered body having a microstructure in which silicon carbide is uniformly dispersed at grain boundaries and silicon carbide particles ranging in size from several nanometers to several hundred nanometers are dispersed within silicon nitride particles. Regarding its manufacturing method.

この様な微細構造で構成された本発明の窒化ケイ素−炭
化ケイ素複合焼結体は、従来の窒化ケイ素−炭化ケイ素
複合焼結体に見られない高い室温/高温強度や破壊靭性
値、複合則からは予測でき得ない低い熱伝導度、すなわ
ち断熱性や低い弾性率を示し、また、硬度が高く優れた
耐摩耗性を示す。
The silicon nitride-silicon carbide composite sintered body of the present invention, which has such a microstructure, has high room temperature/high temperature strength, fracture toughness, and composite law not found in conventional silicon nitride-silicon carbide composite sintered bodies. It exhibits low thermal conductivity, that is, heat insulation, and low elastic modulus, which cannot be predicted from steel, and also exhibits high hardness and excellent wear resistance.

本発明の窒化ケイ素−炭化ケイ素複合焼結体が従来の複
合焼結体には認められないような特異な物性を示すのは
、焼結体の微細構造の特異性にある。
The reason why the silicon nitride-silicon carbide composite sintered body of the present invention exhibits unique physical properties not found in conventional composite sintered bodies is due to the uniqueness of the microstructure of the sintered body.

たとえば、本発明の方法によって得られた窒化ケイ素−
炭化ケイ素複合焼結体において、炭化ケイ素の割合が少
ない場合、窒化ケイ素は多くの柱状粒子と等軸状粒子と
からなり、柱状粒子のアスペクト比が大きくよく発達し
た構造をとっている。
For example, silicon nitride obtained by the method of the present invention -
In a silicon carbide composite sintered body, when the proportion of silicon carbide is small, silicon nitride has a well-developed structure consisting of many columnar particles and equiaxed particles with a large aspect ratio of the columnar particles.

また、炭化ケイ素はその大部分が数ナノメーターから数
百ナノメーターの大きさで窒化ケイ素の粒子内部に存在
し、一部は粒界にサブミクロン大の粒径で存在している
。窒化ケイ素の柱状粒子が良く発達しているため、得ら
れる焼結体の破壊靭性値は窒化ケイ素に比べて高い値と
なり、また破壊靭性値が高くなる結果、強度が窒化ケイ
素のそれより向上する。
Furthermore, most of the silicon carbide exists inside the silicon nitride particles with a size of several nanometers to several hundred nanometers, and some of it exists at the grain boundaries with a submicron size. Because the columnar particles of silicon nitride are well developed, the fracture toughness value of the obtained sintered body is higher than that of silicon nitride, and as a result of the higher fracture toughness value, the strength is improved compared to that of silicon nitride. .

また、粒子内に存在する炭化ケイ素は窒化ケイ素の結晶
構造に歪みを与えることになり、結果として複合則から
は予測し得ないような窒化ケイ素−炭化ケイ素複合焼結
体の弾性率を下げたり、熱伝導の媒体となるフォノンを
散乱させることとなり、熱伝導度を下げたりするものと
推察される。
In addition, silicon carbide present in the particles causes distortion to the crystal structure of silicon nitride, resulting in a decrease in the elastic modulus of the silicon nitride-silicon carbide composite sintered body, which cannot be predicted from the compounding law. It is presumed that this scatters phonons, which serve as a medium for heat conduction, and lowers thermal conductivity.

炭化ケイ素が多い場合には、窒化ケイ素の柱状粒子の発
達が抑制され多くはより小さな粒径の等軸状の粒子とな
り、炭化ケイ素は窒化ケイ素粒子内のみならず粒界に多
く存在するようになる。このため破壊靭性値は炭化ケイ
素が少ない場合よりは低くなるものの、焼結体中の欠陥
の大きさが小さくなり、結果として強度は窒化ケイ素の
それより向上する。また、粒界に存在する炭化ケイ素粒
子が窒化ケイ素の粒界のすべりを抑制するのに加えて、
粒界あるいは窒化ケイ素粒子内に存在する炭化ケイ素粒
子によって大きな内部応力が発生し高温強度が窒化けい
素に比べて向上するものと推察される。また、粒界に存
在する炭化ケイ素量が多くなるほど熱伝導度や弾性率は
上昇する傾向を示す。また、炭化ケイ素量の増加につれ
て硬度も上昇する。
When there is a large amount of silicon carbide, the development of columnar grains of silicon nitride is suppressed, and most of them become equiaxed grains with a smaller grain size, so that silicon carbide is present not only within the silicon nitride grains but also at the grain boundaries. Become. Therefore, although the fracture toughness value is lower than when there is less silicon carbide, the size of defects in the sintered body becomes smaller, and as a result, the strength is improved compared to that of silicon nitride. In addition to silicon carbide particles existing at grain boundaries suppressing the slippage of silicon nitride grain boundaries,
It is presumed that large internal stress is generated by silicon carbide particles existing at grain boundaries or within silicon nitride particles, resulting in improved high-temperature strength compared to silicon nitride. Further, as the amount of silicon carbide present at grain boundaries increases, thermal conductivity and elastic modulus tend to increase. Furthermore, as the amount of silicon carbide increases, the hardness also increases.

このような特性を示す微細構造を持つ本発明の窒化ケイ
素−炭化ケイ素複合焼結体を製造する方法の一つは、焼
結過程において液相を生成する焼結助剤を使用し、焼結
温度1500〜2300℃で、平均粒径が0.5μm以
下の微細な炭化ケイ素の存在下で液相焼結することが挙
げられる。
One of the methods for manufacturing the silicon nitride-silicon carbide composite sintered body of the present invention having a microstructure exhibiting such characteristics is to use a sintering aid that generates a liquid phase during the sintering process. An example of this is liquid phase sintering at a temperature of 1500 to 2300°C in the presence of fine silicon carbide having an average particle size of 0.5 μm or less.

従来から窒化ケイ素の液相焼結の機構としては先ず、■
焼結助剤によって液相を生成し、■窒化ケイ素の液相中
への溶解、■β相の析出、0粒成長によって焼結が進行
するとされている。
Traditionally, the mechanism of liquid phase sintering of silicon nitride is
It is said that a liquid phase is generated by the sintering aid, and sintering progresses by (1) dissolution of silicon nitride into the liquid phase, (2) precipitation of β phase, and growth of zero grains.

本発明においては、系内に存在する微細な炭化ケイ素の
微粒子が、窒化ケイ素が液相焼結する過程において析出
するときの核として寄与し、本発明焼結体に認められる
微細構造を形成するものと推察される。本発明において
系内に存在する炭化ケイ素は、従来用いられてきた炭化
ケイ素に比べ粒径が小さいため、同一体積%でも存在す
る核の数は多くなり焼結体中に生成する窒化ケイ素は粒
径の小さな柱状の粒子が多くなる。また、炭化ケイ素の
粒径が小さいために、窒化ケイ素が析出して粒成長する
過程で炭化ケイ素が窒化ケイ素の粒内に取り込まれる形
となって焼結が進むものと考えられる。炭化ケイ素mが
多い場合には、窒化ケイ素が粒成長をする段階で系内に
分散した炭化ケイ素が障害物となるため、粒子の成長が
抑制され等軸状の窒化ケイ素粒子が存在するようになる
In the present invention, fine silicon carbide particles present in the system contribute as nuclei when silicon nitride precipitates during the liquid phase sintering process, forming the microstructure observed in the sintered body of the present invention. It is presumed that this is the case. In the present invention, the silicon carbide present in the system has a smaller particle size than conventionally used silicon carbide, so the number of nuclei present is large even for the same volume %, and the silicon nitride produced in the sintered body is grainy. The number of columnar particles with a small diameter increases. Furthermore, since the grain size of silicon carbide is small, it is thought that sintering progresses as silicon carbide is incorporated into the grains of silicon nitride during the process of precipitation and grain growth of silicon nitride. When there is a large amount of silicon carbide m, the silicon carbide dispersed in the system becomes an obstacle when silicon nitride grains grow, so grain growth is suppressed and equiaxed silicon nitride grains are present. Become.

最初は炭化ケイ素が窒化ケイ素の粒内に取り込まれて行
くが、ある程度の量になるともはや窒化ケイ素粒子内に
取り込まれることができなくなり、粒界に分散し、粒界
に分散した炭化ケイ素はそのまま粒成長をはじめるもの
と推察される。
At first, silicon carbide is incorporated into the silicon nitride grains, but once it reaches a certain amount, it can no longer be incorporated into the silicon nitride particles and is dispersed to the grain boundaries, and the silicon carbide dispersed at the grain boundaries remains as it is. It is presumed that grain growth begins.

本発明においては、系内に存在する炭化ケイ素が上記し
たような働きをするためその量によって生成する窒化ケ
イ素−炭化ケイ素複合焼結体の微細構造が異なったもの
となり本発明における如きの特異な微細構造を形成する
ものと推測さる。
In the present invention, since the silicon carbide present in the system functions as described above, the fine structure of the silicon nitride-silicon carbide composite sintered body produced differs depending on the amount of silicon carbide, resulting in a unique structure as in the present invention. It is presumed that it forms a fine structure.

本発明の焼結体を得るには、炭化ケイ素は焼結時に平均
粒径が0.5μm以下で存在することが必要である。本
発明においては原料として使用される炭化ケイ素粉末は
平均粒径が0.5μm以下のもの、あるいは焼結過程で
0.5μm以下の炭化ケイ素粒子を生成する非晶質粉末
が挙げられる。このような原料微粉末は、たとえば、熱
プラズマ、レーザーによる気相反応法などの合成法によ
って得られた微細な炭化ケイ素粉末が挙げられる。
In order to obtain the sintered body of the present invention, silicon carbide must be present with an average particle size of 0.5 μm or less during sintering. In the present invention, the silicon carbide powder used as a raw material may have an average particle size of 0.5 μm or less, or an amorphous powder that produces silicon carbide particles of 0.5 μm or less during the sintering process. Examples of such raw material fine powder include fine silicon carbide powder obtained by a synthesis method such as a gas phase reaction method using thermal plasma or laser.

また、窒化ケイ素は従来から用いられている結晶質ある
いは非晶質の粉末が使用できる。さらには本出願人が先
に報告したケイ素、炭素、窒素および酸素からなる非晶
質複合粉末などが挙げられる。
Furthermore, conventionally used crystalline or amorphous powders can be used as silicon nitride. Further examples include amorphous composite powders made of silicon, carbon, nitrogen, and oxygen that were previously reported by the present applicant.

この様な非晶質複合微粉末は原料の段階ですでに炭化ケ
イ素と窒化ケイ素とがよく混じり合うように緊密な状態
で混合しており炭化ケイ素を均一に分散させることがで
き、本発明に係る複合焼結体を得るのに好適である。上
記したケイ素、炭素上記したケイ素、炭素、窒素および
酸素からなる非晶質複合粉末はたとえば、特開昭60−
200812号公報、特開昭60−200813号公報
、特開昭60−221311号公報、特開昭60−23
5707°号公報、特開昭 61−117108号公報
に示される方法により得ることができる。
Such amorphous composite fine powder is already intimately mixed with silicon carbide and silicon nitride at the raw material stage so that silicon carbide and silicon nitride are mixed well, and silicon carbide can be uniformly dispersed. It is suitable for obtaining such a composite sintered body. The above-mentioned silicon, carbon, the above-mentioned amorphous composite powder consisting of silicon, carbon, nitrogen and oxygen are, for example,
200812, JP 60-200813, JP 60-221311, JP 60-23
It can be obtained by the method shown in JP-A No. 5707° and JP-A-61-117108.

具体的には、有機ケイ素化合物を気化しアンモニアを含
む非酸化性ガスとよく混合したのち、該混合物を所定温
度に加熱された反応器に導入反応させることにより非晶
質微粉末が得られる。
Specifically, an amorphous fine powder is obtained by vaporizing an organosilicon compound and thoroughly mixing it with a non-oxidizing gas containing ammonia, and then introducing the mixture into a reactor heated to a predetermined temperature and causing a reaction.

上記したケイ素、炭素、窒素および酸素からなる非晶質
複合粉末の合成に用いられる有機ケイ素化合物としては
、たとえば、〔(C1l 3) −3l)−NH。
Examples of organosilicon compounds used in the synthesis of the above-mentioned amorphous composite powder consisting of silicon, carbon, nitrogen, and oxygen include [(C1l3)-3l)-NH.

[(Ct13)−3iN11)、、[1ISi(CI!
3)2〕よNH。
[(Ct13)-3iN11),,[1ISi(CI!
3) 2] Yo NH.

((C113) ass〕7 MCll5、[(C1l
a) zsi−MCll3))のごときシラザン化合物
、または下記化学式であって、ケイ素上の置換基として
N−メチルアミノ基を有する6員環状のトリス(N−メ
チルアミノ)トリーN−メチル−シクロトリシラザン、 あるいは、CtlaSi (NIICIIs) s 、
(Clls) 2si(NHCfls) *、(CHa
)zsi  [:N(C)13)2]などのアミノケイ
素化合物、(C)Is)sSiCN、 (CHs)2s
i(CN)i 、(Cs)Is)asicN 。
((C113) ass]7 MCll5, [(C1l
a) A silazane compound such as zsi-MCll3)) or a 6-membered cyclic tris(N-methylamino)triN-methyl-cyclotris having the following chemical formula and having an N-methylamino group as a substituent on silicon. Silazane, or CtlaSi (NIICIIs),
(Clls) 2si (NHCfls) *, (CHa
)zsi [:N(C)13)2], (C)Is)sSiCN, (CHs)2s
i(CN)i, (Cs)Is)asicN.

(C6Hs) −S i (CN) 2、ll5S 1
CN1(CII=CII) CHsS i (CN) 
*、などのシアノケイ素化合物、(CHs)nsi。
(C6Hs) -S i (CN) 2,ll5S 1
CN1 (CII=CII) CHsS i (CN)
*, cyanosilicon compounds such as (CHs)nsi.

[(Clla) 3Silよ、C(CHa)−8s〕J
CIIs、[(C1ls) JSi %C1,CH3 (CHs)SiCj!、  (CHs)−SiC1等の
有機ケイ素化合物が例示される。
[(Clla) 3Sil, C(CHa)-8s]J
CIIs, [(C1ls) JSi %C1,CH3 (CHs)SiCj! , (CHs)-SiC1 and the like are exemplified.

本発明に用いられる焼結過程において液相を生成する焼
結助剤は、従来から窒化ケイ素、炭化ケイ素の焼結助剤
として用いられているいずれのものも使用することがで
きる。このような焼結助剤としては、たとえば、MgO
、A120a、 YsOs、AIN。
As the sintering aid that generates a liquid phase in the sintering process used in the present invention, any of those conventionally used as sintering aids for silicon nitride and silicon carbide can be used. As such a sintering aid, for example, MgO
, A120a, YsOs, AIN.

その他CeO*、 La20a等が例示され、これらは
単独で、または混合して使用することができる。
Other examples include CeO*, La20a, etc., and these can be used alone or in combination.

これらの焼結助剤の使用量は通常0.1〜20重量%の
範囲である。窒化ケイ素、炭化ケイ素混合粉末、あるい
は先に記載した非晶質複合粉末と焼結助剤との混合方法
は従来から用いられている乾式あるいは湿式いずれの方
法でもよい。
The amount of these sintering aids used is usually in the range of 0.1 to 20% by weight. The method of mixing the silicon nitride, silicon carbide mixed powder, or the above-mentioned amorphous composite powder with the sintering aid may be any conventionally used dry or wet method.

本発明における焼結方法は、通常の常圧焼結、ホットプ
レス、ガス圧焼結、あるいはHIP等の従来から実施さ
れている方法がそのまま適用できる。この焼結に際して
は充分に液相を生成させることが必要であり、たとえば
、液相を生成する温度以上で暫く保持して液相が粒子間
によく行き渡るようにしてから焼結工程に入ることによ
り本発明の微細構造が焼結体中に均一に生成する。
As the sintering method in the present invention, conventional methods such as ordinary pressureless sintering, hot pressing, gas pressure sintering, or HIP can be applied as they are. During this sintering, it is necessary to sufficiently generate a liquid phase; for example, by holding the temperature for a while above the temperature at which the liquid phase is generated so that the liquid phase is well distributed between the particles before starting the sintering process. As a result, the fine structure of the present invention is uniformly generated in the sintered body.

また、この保持を行うことにより粒子内および粒界に存
在する炭化ケイ素の量を制御することが可能である。 
焼結温度は通常1500〜2300℃が適当であり、好
ましくは窒化ケイ素の分解が起こらない1600〜18
50℃で実施される。
Furthermore, by performing this maintenance, it is possible to control the amount of silicon carbide present within the grains and at the grain boundaries.
The appropriate sintering temperature is usually 1500 to 2300°C, preferably 1600 to 18°C, at which silicon nitride decomposition does not occur.
Performed at 50°C.

例えば、代表的なホットプレス法では1600〜185
0℃、200〜400 kg/cm2.0.5〜10h
rsの条件で焼結される。このような焼結によれば最終
的に得られる焼結体は、大部分が主としてβ相の窒化ケ
イ素と主としてβ相の炭化ケイ素から構成される。
For example, in the typical hot press method, 1600 to 185
0℃, 200~400 kg/cm2.0.5~10h
Sintered under rs conditions. By such sintering, the sintered body finally obtained is mostly composed of silicon nitride mainly in the β phase and silicon carbide mainly in the β phase.

一方、HIPやガス圧焼結法による場合には、窒化ケイ
素の分解温度を上げることができるため焼結温度を高く
することができる。このような焼結法により窒化ケイ素
−炭化ケイ素複合焼結体中の炭化ケイ素をα相に富む相
へ変えることも可能である。また、焼結温度によっては
、焼結助剤が窒化ケイ素や炭化ケイ素と反応して結晶相
を生成することがあるが、このことは粒界相を強化する
こととなり、特に高温強度には好ましい結果を与えるの
で格別問題とはならない。
On the other hand, when using HIP or gas pressure sintering, the sintering temperature can be increased because the decomposition temperature of silicon nitride can be increased. By such a sintering method, it is also possible to change the silicon carbide in the silicon nitride-silicon carbide composite sintered body to a phase rich in α phase. Also, depending on the sintering temperature, the sintering aid may react with silicon nitride or silicon carbide to form a crystalline phase, which strengthens the grain boundary phase and is particularly desirable for high-temperature strength. This is not a particular problem since it gives results.

このような方法によって得られる本発明の複合焼結体は
、TEM (透過式電子顕微鏡)の写真に認められるよ
うに、従来の複合焼結体には認められない特異な微細構
造を有した焼結体で、室温および高温にあける強度、破
壊靭性値が高く、熱伝導度や弾性率が従来の複合則から
は予測し得ない値を示す。また、硬度が高く耐摩耗性に
も優れている。
The composite sintered body of the present invention obtained by such a method has a unique microstructure that is not observed in conventional composite sintered bodies, as seen in a TEM (transmission electron microscope) photograph. It is a solid body with high strength and fracture toughness at room and high temperatures, and exhibits values such as thermal conductivity and elastic modulus that cannot be predicted from conventional compound rules. It also has high hardness and excellent wear resistance.

第1図は本発明に係る複合焼結体の微細構造を示すTE
M (透過型電子顕微鏡)写真である。
Figure 1 shows the microstructure of the composite sintered body according to the present invention.
M (transmission electron microscope) photograph.

第1図の写真において白っぽく写っている部分が窒化ケ
イ素粒子であり、この中に黒っぽく写っている炭化ケイ
素の粒子の分散が認められる。
In the photograph of FIG. 1, the whitish parts are silicon nitride particles, and the dispersion of the black silicon carbide particles can be seen within these particles.

また窒化ケイ素粒子の粒界にも炭化ケイ素粒子の分散が
認められる。第1図においてAは窒化ケイ素粒子内に存
在する代表的な炭化ケイ素粒子、Bは粒界に分散した代
表的な炭化ケイ素粒子を示す。
Dispersion of silicon carbide particles is also observed at the grain boundaries of silicon nitride particles. In FIG. 1, A shows typical silicon carbide particles present within silicon nitride particles, and B shows typical silicon carbide particles dispersed at grain boundaries.

第2図は窒化ケイ素粒子内に炭化ケイ素粒子が存在して
いることを示す拡大写真である。
FIG. 2 is an enlarged photograph showing the presence of silicon carbide particles within silicon nitride particles.

第3図は本発明の複合焼結体の熱伝導度を、従来の方法
で得られた窒化ケイ素−炭化ケイ素複合焼結体と比較し
て示したものである。従来の複合焼結体の熱伝導度は、
複合則にしたがって炭化ケイ素量の増加に伴って単調に
増加する。これに対して本発明に係る焼結複合体は炭化
ケイ素の量の少ないところで窒化ケイ素より低い値を示
し、炭化ケイ素の量が増えるにしたがって上昇する傾向
を示している。これは従来の炭化ケイ素−窒化ケイ素複
合焼結体からは予測し得ない現象である。
FIG. 3 shows the thermal conductivity of the composite sintered body of the present invention in comparison with that of a silicon nitride-silicon carbide composite sintered body obtained by a conventional method. The thermal conductivity of conventional composite sintered bodies is
It increases monotonically as the amount of silicon carbide increases according to the compound law. On the other hand, the sintered composite according to the present invention shows a lower value than silicon nitride when the amount of silicon carbide is small, and shows a tendency to increase as the amount of silicon carbide increases. This is a phenomenon that cannot be predicted from conventional silicon carbide-silicon nitride composite sintered bodies.

第4図は、複合焼結体の弾性率を本発明に係る焼結体と
従来の複合焼結体とで比較して示したものである。本発
明に係る複合焼結体は、従来の複合焼結体より低い弾性
率を示している。
FIG. 4 shows a comparison of the elastic modulus of the composite sintered body between the sintered body according to the present invention and the conventional composite sintered body. The composite sintered body according to the present invention exhibits a lower elastic modulus than conventional composite sintered bodies.

次に本発明の実施例を比較例と共に示す。以下に示す実
施例は本発明の一例を示すものであって本発明の要旨を
超えない限り、これに限定されるものでない。
Next, examples of the present invention will be shown together with comparative examples. The examples shown below are merely examples of the present invention, and are not intended to be limiting unless they go beyond the gist of the present invention.

尚、本発明において、室温強度試験は3x4x> 36
mmの大きさの試験片を用い、3点曲げ強度でスパン3
0mm 、クロスヘツドスピード0.5mm/minで
行った。また高温強度試験は2X3X>24mmの大き
さの試験片を用い、3点曲げ強度でスパン20 mm、
クロスヘツドスピード0.5 m+n/min、で行っ
た。焼結体の嵩密度測定はアルキメデス法により、硬度
は微小硬度計によるビッカース硬度測定(19,6N荷
重、20秒保持)によった。また、熱伝導度はレーザー
フラッシュ法によって比熱と熱拡散率を求め、密度の値
と合わせて算出した。
In addition, in the present invention, the room temperature strength test is 3x4x>36
Using a test piece with a size of mm, the span is 3 with 3-point bending strength
The crosshead speed was 0.5 mm/min. In addition, the high temperature strength test used a test piece with a size of 2X3X>24mm, and a span of 20mm at 3-point bending strength.
The crosshead speed was 0.5 m+n/min. The bulk density of the sintered body was measured by the Archimedes method, and the hardness was measured by Vickers hardness using a microhardness meter (19.6N load, held for 20 seconds). In addition, the thermal conductivity was calculated by determining specific heat and thermal diffusivity using the laser flash method, and combining them with the density value.

さらに弾性率は共振法により求めた。Furthermore, the elastic modulus was determined by the resonance method.

実施例 1〜4 90 mm (直径) xiaoo mm (長さ)の
アルミナ製反応管を設置した縦型の抵抗式加熱炉を、1
050℃に保持した。一方、反応原料のへキサメチルジ
シラザ:/ [:Si (Clls) −) NHを約
500g/hrの供給量で蒸発器に導入し、完全に気化
させた後、表1に示した混合比のNi1−/Ar混合ガ
スとよく混合して上記反応炉に導入し反応させた。生成
した粉末的200gをアルミナ製容器に充填し、135
0℃、4hrs。
Examples 1 to 4 A vertical resistance heating furnace equipped with an alumina reaction tube of 90 mm (diameter) xiaoo mm (length) was
The temperature was maintained at 050°C. On the other hand, the reaction raw material hexamethyldisilazine:/[:Si(Clls)-)NH was introduced into the evaporator at a feed rate of about 500 g/hr, and after complete vaporization, the mixture ratio shown in Table 1 was The mixture was thoroughly mixed with the Ni1-/Ar mixed gas and introduced into the reactor for reaction. Fill an alumina container with 200 g of the generated powder, and
0℃, 4hrs.

N2気流下に熱処理を行い焼結体形成用のSi、N、C
および0からなる原料粉末を得たL得られた粉末はX線
回折によれば非晶質の粉末であり、SEM写真による観
察では0.5μm以下の球状粒子であった。
Si, N, C for forming a sintered body by heat treatment under N2 gas flow
The obtained powder was an amorphous powder according to X-ray diffraction, and was found to be spherical particles of 0.5 μm or less when observed by SEM photography.

得られた原料粉末にY2L 6 wt%、Aji! 2
032wt%を加えエタノール中で湿式混合を行い乾爆
した後、直径50 mmの黒鉛ダイスに充填し、窒素ガ
ス中350 kg/cm2の圧力で1800℃、2hr
sのホットプレス焼結を行った。得られた焼結体を切断
し、$100 、$ 600のダイヤモンド砥石で研削
したのち、3μm、1μmのダイヤモンドペーストで研
磨し、物性を測定した。この結果を表−1(次頁)に示
す。
The obtained raw material powder contains Y2L 6 wt%, Aji! 2
After adding 032 wt% and wet mixing in ethanol and dry explosion, it was filled into a graphite die with a diameter of 50 mm and heated at 1800°C for 2 hours at a pressure of 350 kg/cm2 in nitrogen gas.
Hot press sintering of s was performed. The obtained sintered bodies were cut and ground with diamond grindstones of $100 and $600, and then polished with diamond paste of 3 μm and 1 μm, and the physical properties were measured. The results are shown in Table 1 (next page).

表−1 (以下 余白) 表中、(本1)他の成分はSi及び不純物のFe、 A
j!。
Table-1 (Hereafter blank) In the table, (book 1) other components are Si and impurities Fe, A
j! .

Caなどである。(本2)原料中の炭素がすべてSiC
に転化したとして算出した。
Ca, etc. (Book 2) All carbon in the raw material is SiC
Calculated on the assumption that it was converted to

比較例 1 市販の高純度の結晶軍5isN4粉末(α相90%、平
均粒径0.(1+um、不純物Fe、 AJ、 Ca、
< 50ppmO<1wt%)にY*Os 6wt%、
 Aj!Js 2wt%を加え、エタノールと共に5i
aNnボールで5時間混式混合した後、実施例1と同様
の条件でホットプレス焼結を行って焼結体を得た。得ら
れた焼結体の物性を測定した結果、密度3.26 g/
c 、ビッカース硬度14.5 GPa 、3点曲げ強
度ぼ室温で87 kg/mm21200℃で60 kg
’/mm’ 、破壊靭性値は5.2 MN/m”また熱
伝導度は0.087Cal/Cm−8・℃、弾性率は3
056Paであツタ。
Comparative Example 1 Commercially available high-purity crystal army 5isN4 powder (90% α phase, average particle size 0.(1+um, impurities Fe, AJ, Ca,
<50ppmO<1wt%) and Y*Os 6wt%,
Aj! Add Js 2wt% and 5i with ethanol.
After 5 hours of mixed mixing using an aNn ball, hot press sintering was performed under the same conditions as in Example 1 to obtain a sintered body. As a result of measuring the physical properties of the obtained sintered body, the density was 3.26 g/
c, Vickers hardness 14.5 GPa, 3-point bending strength approximately 87 kg/mm at room temperature, 60 kg at 21200°C
'/mm', fracture toughness value is 5.2 MN/m'', thermal conductivity is 0.087 Cal/Cm-8・℃, elastic modulus is 3
Ivy at 056Pa.

実施例 5 実施例1と同様な処方により得られた非晶質の窒化ケイ
素(Si3N4)粉末(平均粒径0.3μm、不純物P
e、 ACCa < 50ppm  C=0.9wt%
、 O<1wt%)に、平均粒径0.2μmのβ−3i
C粉末を20wt%とY2O56wt%、Aj! 、0
.2wt%を加え、エタノールと共に5ia114ポー
ルで5時間混式混合した後、実施例1〜4と同様の条件
でホットプレス焼結を行って焼結体を得た。得られた複
合焼結体の物性を測定した結果、密度3.26g/c、
ビッカース硬度16゜8 GPa 、 3点曲げ強度は
室温で110kg/mm’、1200℃で76kg/m
In’であり、破壊靭性値は5.81N/m”熱伝導度
は0.060Ca1/CIo・8・℃、弾性率は310
GPaであった。
Example 5 Amorphous silicon nitride (Si3N4) powder (average particle size 0.3 μm, impurity P
e, ACCa < 50ppm C=0.9wt%
, O < 1 wt%), β-3i with an average particle size of 0.2 μm
20 wt% of C powder and 56 wt% of Y2O, Aj! ,0
.. After adding 2 wt % and mixing with ethanol in a 5ia114 pole for 5 hours, hot press sintering was performed under the same conditions as in Examples 1 to 4 to obtain a sintered body. As a result of measuring the physical properties of the obtained composite sintered body, the density was 3.26 g/c,
Vickers hardness: 16°8 GPa, 3-point bending strength: 110 kg/mm' at room temperature, 76 kg/m at 1200°C
In', the fracture toughness value is 5.81N/m, the thermal conductivity is 0.060Ca1/CIo・8・℃, and the elastic modulus is 310.
It was GPa.

比較例 2.3 比較例1に使用したと同様のSi3N、粉末にβ相炭化
ケイ素(平均粒径0.7μm1不純物PeO,02wt
%、 Af 0010 wt%、 Ca O,04wt
%、 00.04wt%)を表−2に示す割合で混合し
、これにY2ks 6 wt%、Aj!20,2%II
t% を加えエタノールと共に5時間混合した後、実施
例と同様の条件でホットプレス焼結を行って焼結体を得
た。この物性を表−2に示す。
Comparative Example 2.3 Si3N similar to that used in Comparative Example 1, β-phase silicon carbide (average particle size 0.7 μm1 impurity PeO, 02 wt.
%, Af 0010 wt%, Ca O, 04wt
%, 00.04wt%) in the ratio shown in Table 2, and Y2ks 6 wt%, Aj! 20.2% II
After adding t% and mixing with ethanol for 5 hours, hot press sintering was performed under the same conditions as in the example to obtain a sintered body. The physical properties are shown in Table-2.

(以下 余白) 表−2 〔発明の効果〕 この様に本発明による複合焼結体は、従来の窒化ケイ素
−炭化ケイ素複合焼結体には見られない特異な微細構造
を持ち、室温および高温における強度が高く、優れた破
壊靭性値を示すと共に硬度が高い。また熱伝導度および
弾性率は複合則からは予測し得ない低い値を示す。
(The following is a blank space) Table 2 [Effects of the invention] As described above, the composite sintered body according to the present invention has a unique microstructure not seen in conventional silicon nitride-silicon carbide composite sintered bodies, and has a unique microstructure that can be used both at room temperature and at high temperatures. It has high strength, excellent fracture toughness, and high hardness. Furthermore, the thermal conductivity and elastic modulus show low values that cannot be predicted from the compound law.

したがって本発明による窒化ケイ素−炭化ケイ素複合焼
結体は、とくに高温の強度に優れ、しかも熱伝導度およ
び弾性率が低いという特性を示し、加工性にも優れてお
りガスタービン、ターボチャージャー等の高温高強度部
材や断熱性を要求される部材に、また硬度が高く耐摩耗
性に優れており慴動部材、耐摩耗性を要求される部材な
どに好適な材料として使用し得る。
Therefore, the silicon nitride-silicon carbide composite sintered body according to the present invention exhibits characteristics such as particularly excellent strength at high temperatures, low thermal conductivity and low elastic modulus, and has excellent workability, and is used in gas turbines, turbochargers, etc. It can be used as a suitable material for high-temperature, high-strength members and members that require heat insulation, and because it has high hardness and excellent wear resistance, it can be used as a suitable material for sliding members and members that require wear resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図右よび第2図は本発明に係る複合焼結体の微細構
造を示すTEM (透過型電子顕微鏡)写真である。第
1図の写真において白っぽく写っている部分が窒化ケイ
素粒子であり、この中に黒っぽく写っている炭化ケイ素
の粒子を示す。 第1図においてAは窒化ケイ素粒子内に存在する代表的
な炭化ケイ素粒子、Bは粒界に分散した代表的な炭化ケ
イ素粒子をそれぞれ示す。 第2図は窒化ケイ素粒子内に炭化ケイ素粒子が存在して
いることを示す拡大写真である。 第3図は本発明の複合焼結体および従来の方法で得られ
た窒化ケイ素−炭化ケイ素複合焼結体ととにおける熱伝
導度を示すグラフである。 第4図は、本発明に係る焼結体と従来の窒化ケイ素−炭
化ケイ素複合焼結体との弾性率を示したグラフである。 特許出願人 三菱瓦斯化学株式会社 代理人(9070)  弁理士 小堀貞文iC含有量 (voH) C含有量 (vol$)
The right side of FIG. 1 and FIG. 2 are TEM (transmission electron microscope) photographs showing the fine structure of the composite sintered body according to the present invention. In the photograph of FIG. 1, the whitish parts are silicon nitride particles, and the dark parts within these are silicon carbide particles. In FIG. 1, A represents typical silicon carbide particles present within silicon nitride particles, and B represents typical silicon carbide particles dispersed at grain boundaries. FIG. 2 is an enlarged photograph showing the presence of silicon carbide particles within silicon nitride particles. FIG. 3 is a graph showing the thermal conductivity of a composite sintered body of the present invention and a silicon nitride-silicon carbide composite sintered body obtained by a conventional method. FIG. 4 is a graph showing the elastic modulus of the sintered body according to the present invention and the conventional silicon nitride-silicon carbide composite sintered body. Patent applicant Mitsubishi Gas Chemical Co., Ltd. agent (9070) Patent attorney Sadafumi Kobori iC content (voH) C content (vol$)

Claims (3)

【特許請求の範囲】[Claims] (1)窒化ケイ素−炭化ケイ素複合焼結体であって、平
均粒径1μm以下の炭化ケイ素が粒界に分散し、かつ数
ナノメータから数百ナノメータの大きさの炭化ケイ素の
微細粒子が窒化ケイ素粒子内に分散した微細構造からる
窒化ケイ素−炭化ケイ素複合焼結体。
(1) A silicon nitride-silicon carbide composite sintered body in which silicon carbide with an average grain size of 1 μm or less is dispersed in the grain boundaries, and fine particles of silicon carbide with a size of several nanometers to several hundred nanometers are silicon nitride. A silicon nitride-silicon carbide composite sintered body consisting of a fine structure dispersed within the particles.
(2)焼結過程において液相を生成する焼結助剤の存在
下、1500〜2300℃の温度で平均粒径が0.5μ
m以下の微細な炭化ケイ素の存在下で液相焼結すること
を特徴とする窒化ケイ素−炭化ケイ素複合焼結体の製造
法。
(2) In the presence of a sintering aid that generates a liquid phase during the sintering process, the average particle size is 0.5μ at a temperature of 1500 to 2300℃.
1. A method for producing a silicon nitride-silicon carbide composite sintered body, which comprises carrying out liquid phase sintering in the presence of microscopic silicon carbide.
(3)原料粉末として液相焼結系において平均粒径が0
.5μm以下の微細な炭化ケイ素を生成する非晶質窒化
ケイ素−炭化ケイ素複合粉末または窒化ケイ素−炭化ケ
イ素混合粉末を使用する請求項第2項記載の方法。
(3) As a raw material powder, the average particle size is 0 in liquid phase sintering system.
.. 3. The method according to claim 2, wherein an amorphous silicon nitride-silicon carbide composite powder or a silicon nitride-silicon carbide mixed powder is used which produces fine silicon carbide of 5 μm or less.
JP1031125A 1988-09-14 1989-02-13 Silicon nitride-silicon carbide multiple sintered compact and production thereof Pending JPH02160669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1031125A JPH02160669A (en) 1988-09-14 1989-02-13 Silicon nitride-silicon carbide multiple sintered compact and production thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-228515 1988-09-14
JP22851588 1988-09-14
JP1031125A JPH02160669A (en) 1988-09-14 1989-02-13 Silicon nitride-silicon carbide multiple sintered compact and production thereof

Publications (1)

Publication Number Publication Date
JPH02160669A true JPH02160669A (en) 1990-06-20

Family

ID=26369581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1031125A Pending JPH02160669A (en) 1988-09-14 1989-02-13 Silicon nitride-silicon carbide multiple sintered compact and production thereof

Country Status (1)

Country Link
JP (1) JPH02160669A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0463882A2 (en) * 1990-06-29 1992-01-02 Ngk Insulators, Ltd. Process for producing silicon nitride sintered material
EP0552381A1 (en) * 1991-08-13 1993-07-28 Sumitomo Electric Industries, Ltd. Composite silicon nitride sinter and production thereof
EP0676380A1 (en) * 1994-03-30 1995-10-11 Honda Giken Kogyo Kabushiki Kaisha Composite powders of silicon nitride and silicon carbide
EP0712819A2 (en) 1994-11-21 1996-05-22 Honda Giken Kogyo Kabushiki Kaisha Method for producing composite sintered body of silicon carbide and silicon nitride
US5618768A (en) * 1995-04-07 1997-04-08 Honda Giken Kogyo Kabushiki Kaisha Sintered body of silicon nitride and composite sintered body of silicon nitride and silicon carbide
US5767025A (en) * 1994-03-30 1998-06-16 Honda Giken Kogyo Kabushiki Kaisha Composite powder comprising silicon nitride and silicon carbide
US6133180A (en) * 1997-08-01 2000-10-17 Honda Giken Kogyo Kabushiki Kaisha Ceramic composite particle and production method thereof
EP1116704A1 (en) * 2000-01-11 2001-07-18 Metalloceramica Vanzetti S.p.A. Nanocomposite dense sintered silicon carbonitride ceramic cutting tool
US6844282B2 (en) * 2001-04-20 2005-01-18 Sumitomo Electric Industries, Ltd. Silicon nitride based composite sintered product and method for production thereof
CN110877980A (en) * 2019-11-13 2020-03-13 中国科学院上海硅酸盐研究所 High-strength silicon carbide/silicon nitride composite ceramic and preparation method thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5178809A (en) * 1990-06-29 1993-01-12 Ngk Insulators, Lts. Process for producing silicon nitride sintered material
EP0463882A2 (en) * 1990-06-29 1992-01-02 Ngk Insulators, Ltd. Process for producing silicon nitride sintered material
EP0552381A1 (en) * 1991-08-13 1993-07-28 Sumitomo Electric Industries, Ltd. Composite silicon nitride sinter and production thereof
EP0552381A4 (en) * 1991-08-13 1995-02-22 Sumitomo Electric Industries
US5767025A (en) * 1994-03-30 1998-06-16 Honda Giken Kogyo Kabushiki Kaisha Composite powder comprising silicon nitride and silicon carbide
EP0676380A1 (en) * 1994-03-30 1995-10-11 Honda Giken Kogyo Kabushiki Kaisha Composite powders of silicon nitride and silicon carbide
US5648028A (en) * 1994-03-30 1997-07-15 Honda Giken Kogyo Kabushiki Kaisha Method of manufacturing a sintered composite body of silicon nitride and silicon carbide
EP0712819A2 (en) 1994-11-21 1996-05-22 Honda Giken Kogyo Kabushiki Kaisha Method for producing composite sintered body of silicon carbide and silicon nitride
US5618768A (en) * 1995-04-07 1997-04-08 Honda Giken Kogyo Kabushiki Kaisha Sintered body of silicon nitride and composite sintered body of silicon nitride and silicon carbide
US6133180A (en) * 1997-08-01 2000-10-17 Honda Giken Kogyo Kabushiki Kaisha Ceramic composite particle and production method thereof
US6261511B1 (en) 1997-08-01 2001-07-17 Honda Giken Kogyo Kabushiki Kaisha Method for producing ceramic composite particle
EP1116704A1 (en) * 2000-01-11 2001-07-18 Metalloceramica Vanzetti S.p.A. Nanocomposite dense sintered silicon carbonitride ceramic cutting tool
US6844282B2 (en) * 2001-04-20 2005-01-18 Sumitomo Electric Industries, Ltd. Silicon nitride based composite sintered product and method for production thereof
US7008893B2 (en) 2001-04-20 2006-03-07 Sumitomo Electric Industries, Ltd. Silicon nitride-based composite sintered body and producing method thereof
CN110877980A (en) * 2019-11-13 2020-03-13 中国科学院上海硅酸盐研究所 High-strength silicon carbide/silicon nitride composite ceramic and preparation method thereof

Similar Documents

Publication Publication Date Title
JPH035374A (en) Silicon nitride-silicon carbide combined sintered body and its production
JPH02160669A (en) Silicon nitride-silicon carbide multiple sintered compact and production thereof
JP2842723B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same
JP2974473B2 (en) Composite ceramics and manufacturing method thereof
JP3124863B2 (en) Silicon nitride sintered body and method for producing the same
JPH03177361A (en) Production of beta-sialon-boron nitride-based conjugate sintered compact
JPH06263544A (en) Sialon-based composite sintered compact and its production
JPH09142935A (en) Silicon nitride sintered compact and its production
JP2892246B2 (en) Silicon nitride sintered body and method for producing the same
JP3124867B2 (en) Silicon nitride sintered body and method for producing the same
JPH06116045A (en) Silicon nitride sintered compact and its production
JP3148559B2 (en) Ceramic fiber reinforced turbine blade and method of manufacturing the same
JP3653533B2 (en) Silicon nitride composite material and method for producing the same
JP2826080B2 (en) Silicon nitride / silicon carbide composite sintered body and method for producing composite powder
JPS5855110B2 (en) Manufacturing method of carbide heat-resistant ceramics
JPH06128052A (en) Sintered compact of silicon nitride and its production
JP3124862B2 (en) Method for producing silicon nitride based sintered body
JP2783711B2 (en) Silicon nitride sintered body
JP2695070B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JP2746760B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same
JP3207045B2 (en) Method for producing silicon nitride based sintered body
JPH0840774A (en) Silicon nitride sintered product
JPH0535694B2 (en)
JPH06287007A (en) Partially crystallized multicomponent powder and its production
JPH03141163A (en) Production of sintered silicon nitride