JPH084741B2 - Gas adsorption decomposition agent - Google Patents

Gas adsorption decomposition agent

Info

Publication number
JPH084741B2
JPH084741B2 JP62095603A JP9560387A JPH084741B2 JP H084741 B2 JPH084741 B2 JP H084741B2 JP 62095603 A JP62095603 A JP 62095603A JP 9560387 A JP9560387 A JP 9560387A JP H084741 B2 JPH084741 B2 JP H084741B2
Authority
JP
Japan
Prior art keywords
gas
decomposition agent
gas adsorption
activated carbon
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62095603A
Other languages
Japanese (ja)
Other versions
JPS63264136A (en
Inventor
康治 山村
弘一 立花
繁雄 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62095603A priority Critical patent/JPH084741B2/en
Publication of JPS63264136A publication Critical patent/JPS63264136A/en
Publication of JPH084741B2 publication Critical patent/JPH084741B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、悪臭,有害ガス等を吸着除去することがで
き、しかも、加熱再生時に放出される悪臭,有害ガス等
を少なくでき、長期間使用することができる再生可能な
気体吸着分解剤に関するものである。
TECHNICAL FIELD The present invention can adsorb and remove offensive odors, harmful gases, and the like, and can reduce the offensive odors, harmful gases, etc. released during heating and regeneration, and thus can be used for a long period of time. The present invention relates to a regenerable gas adsorption decomposing agent that can be used.

従来の技術 従来、悪臭,有害ガス等の吸着除去には、活性炭,骨
炭,シリカゲル,活性アルミナ,ゼオライト,各種の白
土類,イオン交換樹脂類等数多くの吸着剤が用いられて
いる。特に、活性炭は代表的な吸着剤であり、きわめて
広い表面積を有し、無数ともいえる微細な毛細管群から
成り立っているため多くの臭気,有害ガス成分を吸着除
去することができる。
2. Description of the Related Art Conventionally, a large number of adsorbents such as activated carbon, bone charcoal, silica gel, activated alumina, zeolite, various types of clay and ion exchange resins have been used for the adsorption and removal of malodors and harmful gases. In particular, activated carbon is a typical adsorbent, has an extremely large surface area, and is composed of innumerable microcapillary groups, so that many odors and harmful gas components can be adsorbed and removed.

発明が解決しようとする問題点 活性炭等の吸着剤は、加熱再生した場合吸着していた
悪臭,有害ガス等をそのまま放出するため、小規模な脱
臭装置では吸着剤を交換する必要があった。
Problems to be Solved by the Invention Since an adsorbent such as activated carbon releases the bad odor, harmful gas and the like that have been adsorbed when heated and regenerated, it is necessary to replace the adsorbent in a small-scale deodorizing device.

問題点を解決するための手段 本発明は、上記の問題点を解決するためにLn1-xAxCo
1-yMyO3- δ(Lnは、La,Ce,Pr,Ndから選ぶ少なくとも一
種の元素、AはCa,Sr,Baから選ぶ少なくとも一種の元
素、MはCr,Mn,Fe,Ni,Vから選ぶ少なくとも一種の元
素、O≦x≦1,O≦y≦1,δは酸素欠損数)で表わされ
る酸化物触媒にMgOと無機吸着剤さらに耐熱性結着剤を
混合したものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides Ln 1-x A x Co
1-y M y O 3- δ (Ln is at least one element selected from La, Ce, Pr, Nd, A is at least one element selected from Ca, Sr, Ba, M is Cr, Mn, Fe, Ni , An oxide catalyst represented by at least one element selected from V, O ≦ x ≦ 1, O ≦ y ≦ 1, δ is an oxygen deficiency number), and MgO, an inorganic adsorbent, and a heat-resistant binder are mixed. is there.

作用 本発明になる気体吸着分解剤では、MgOはNOx等の酸性
ガスを化学吸着するために活性炭に比べ温度による吸着
量の変動が少なく、400℃程度で、吸着した酸性ガスを
放出することができる。また、MgOをLn1-xAxCo1-yMyO3-
δで表わされる酸化物に混合することによりLn1-xAxCo
1-yMyO3- δで表わされる酸化物のCO酸化及び、吸着除去
能力を高めることができる。
Action In the gas adsorption decomposition agent according to the present invention, since MgO chemically adsorbs acidic gas such as NOx, the adsorption amount varies little with temperature compared to activated carbon, and the adsorbed acidic gas can be released at about 400 ° C. it can. Also, MgO is replaced by Ln 1-x A x Co 1- y My O 3-
By mixing with the oxide represented by δ , Ln 1-x A x Co
1-y M y O 3- CO oxidation and the oxide represented by [delta], it is possible to improve the adsorption removal capability.

Ln1-xAxCo1-yMyO3- δで表わされる酸化物は、酸化還
元触媒として働き、気体吸着分解剤を加熱再生する際に
MgOから放出される酸性ガス,無機吸着剤から放出され
る悪臭,有害ガス等を酸化還元し無害なガスにする。
Ln 1-x A x Co 1 -y M y O 3- δ oxide represented by acts as a redox catalyst, when heated play gas adsorption decomposing agent
Acidic gas released from MgO, malodorous gas emitted from inorganic adsorbent, harmful gas, etc. are oxidized and reduced to harmless gas.

実施例 本実施例ではLa0.5Sr0.5CoO3- δからなる酸化物を用
いた場合について述べる。La0.5Sr0.5CoO3- δは、各成
分の金属塩を含む溶液としゅう酸,アミン類,水酸化ナ
トリウム等を用いて金属しゅう酸塩,金属水酸化物の混
合物として沈殿させ過洗浄し乾燥後、空気中800℃で1
0時間焼成して作成した。次いで、この酸化物粉末をマ
グネシウム塩溶液に分散し、水酸化ナトリウムを用いて
水酸化マグネシウムゲルを生成し過、洗浄後、400℃
で2時間処理してMgOを混合した酸化物触媒を作成し
た。
Example In this example, a case of using an oxide of La 0.5 Sr 0.5 CoO 3- δ will be described. La 0.5 Sr 0.5 CoO 3- δ is a solution containing metal salts of each component and is precipitated as a mixture of metal oxalates and metal hydroxides using oxalic acid, amines, sodium hydroxide, etc., and overwashed and dried. Then, in air at 800 ℃ 1
It was made by firing for 0 hours. Next, disperse this oxide powder in a magnesium salt solution, generate magnesium hydroxide gel using sodium hydroxide, wash, and wash at 400 ° C.
Was treated for 2 hours to prepare an oxide catalyst mixed with MgO.

上記MgOを混合した酸化物触媒体,アセチレンブラッ
クカーボン,ケイ酸ソーダを重量比でLa0.5Sr0.5CoO3:M
gO:C:SiO=1:2:3:10の割合で混練,成形し、充分に乾燥
させた後塩化マグネシウム水溶液に浸漬し、ケイ酸ナト
リウムをSiO2ゲルにして水洗をした後400℃で2時間加
熱処理した。シリカゲルは吸着剤および結着剤として働
く。
The oxide catalyst mixed with MgO, acetylene black carbon, and sodium silicate in a weight ratio of La 0.5 Sr 0.5 CoO 3 : M
Knead and mold at a ratio of gO: C: SiO = 1: 2: 3: 10, fully dry, and then soak in magnesium chloride aqueous solution to make sodium silicate into SiO 2 gel and wash with water at 400 ° C. Heat treatment was performed for 2 hours. Silica gel acts as an adsorbent and a binder.

気体吸着分解剤の評価として吸着特性と加熱再生時に
発生するガス濃度の測定を行った。吸着特性は、気体吸
着分解剤10gを石英ガラス管内に入れ、20〜30℃の温度
で各種ガスを接触させながらガス濃度を測定した。比較
のため同容量の活性炭についても同様の測定を行った。
As an evaluation of the gas adsorption decomposer, the adsorption characteristics and the gas concentration generated during heating and regeneration were measured. Regarding the adsorption characteristics, 10 g of a gas adsorption decomposition agent was put in a quartz glass tube, and the gas concentration was measured while contacting various gases at a temperature of 20 to 30 ° C. For comparison, the same measurement was performed for the same volume of activated carbon.

第1図にCO800ppm/Airガスを3/minで接触させた時
のCOの除去率を示した。活性炭では、COの吸着除去特性
はほとんどないのに対して本発明になる気体吸着分解剤
では3時間経過後でも70%以上のCOを除去した。
Figure 1 shows the CO removal rate when contacting 800ppm / Air gas at 3 / min. Activated carbon has almost no CO adsorption removal property, whereas the gas adsorption decomposition agent of the present invention removed 70% or more of CO even after 3 hours.

第2図にNO2150ppm/Airガスを3/minで接触させた
時のNO2の除去率を示した。NO2の除去率は、本発明にな
る気体吸着分解剤が通気後1時間で安定し3時間通気後
でも90%以上の除去率を示したのに対して、活性炭では
50%程度にまで低下した。
Showed the removal rate of NO 2 when contacting the NO 2 150 ppm / Air gas 3 / min in Figure 2. Regarding the removal rate of NO 2, the gas adsorption decomposition agent according to the present invention was stable 1 hour after aeration and showed a removal rate of 90% or more even after aeration for 3 hours, whereas activated carbon
It fell to about 50%.

第3図に灯油500ppm/Airガスを3/minで接触させた
時の灯油の除去率を示した。灯油の除去率は本発明にな
る気体吸着分解剤,活性炭共に3時間通気後でも95%以
上の除去率を示した。
Fig. 3 shows the kerosene removal rate when the kerosene was brought into contact with 500 ppm / Air gas at 3 / min. Regarding the removal rate of kerosene, both the gas adsorption decomposition agent of the present invention and the activated carbon showed a removal rate of 95% or more even after aeration for 3 hours.

次に、上記のCO,NO2,灯油を吸着させた本発明になる
気体吸着分解剤と活性炭の加熱再生を行い、発生するガ
スをCO,HC,NOxメータで測定した。
Next, the gas adsorbing and decomposing agent according to the present invention which adsorbed the above CO, NO 2 , and kerosene and the activated carbon were heated and regenerated, and the generated gas was measured by a CO, HC and NO x meter.

COを吸着した本発明になる気体吸着分解剤に3/min
で空気を送りながら、400℃まで加熱してCO濃度を測定
したがCOはほとんど検出されなかった。
3 / min for the gas adsorption decomposition agent according to the present invention that adsorbs CO
The CO concentration was measured by heating to 400 ° C while sending air at, but CO was hardly detected.

第4図に灯油を吸着した本発明になる気体吸着分解剤
と活性炭の加熱再生に伴い発生するCOとHCの濃度を示し
た。加熱再生は、灯油を吸着した本発明になる気体吸着
分解剤(または活性炭)に3/minで空気を接触させ、
電気炉で400℃まで30分間で昇温させて行った。本発明
になる気体吸着分解剤では150℃でHC濃度の極大値(約3
00ppm)を示し、以後温度の上昇に伴い減少した。COは
検出されなかった。これに対して活性炭では、吸着され
た灯油がほとんどそのまま放出されるためにHC濃度が高
くまた、200℃以上でCOが検出された。
FIG. 4 shows the concentrations of CO and HC generated by the heating regeneration of the gas adsorption decomposition agent according to the present invention which adsorbed kerosene and activated carbon. In the heating regeneration, air is brought into contact with the gas adsorption decomposition agent (or activated carbon) according to the present invention which adsorbs kerosene at 3 / min,
The temperature was raised to 400 ° C. in an electric furnace for 30 minutes. The gas adsorption decomposition agent according to the present invention has a maximum HC concentration (about 3
00ppm), and then decreased with increasing temperature. No CO was detected. On the other hand, with activated carbon, the adsorbed kerosene was released almost as it was, so the HC concentration was high, and CO was detected above 200 ° C.

第5図にNO2を吸着させた本発明になる気体吸着分解
剤と活性炭の加熱再生時に放出されるNOx濃度を測定し
た結果を示した。再生方法は、次のようにして行った。
NO2を吸着させた本発明になる気体吸着分解剤(または
活性炭)に灯油500ppm/Airガスを3/minで1時間接触
させ灯油を吸着させた後、それらを一端を閉じた石英ガ
ラス管に移した。石英管には送,排気用のの2本のガラ
ス管を設けた栓をし、排気側を空気3/minで流れる管
に合流させNOxメータに接続した。次に、送気側を閉じ
電気炉でガラス管を5分間で400℃にまで加熱し、400℃
で10分間保持後、送気側より100cc/minで空気を送りそ
の間発生するNOxの濃度を測定しながら再生を行った。
本発明になる気体吸着分解剤では、NOxが昇温時に放出
されるが、活性炭に比べ非常に少なく、また、400℃で1
0分間保持後送気側より空気を100cc/minで送ってもNOx
濃度は数ppmであったのに対して活性炭では2000ppmを越
える高濃度のNOxが検出された。
FIG. 5 shows the results of measuring the NO x concentration released during the heating regeneration of the activated carbon and the gas adsorption decomposition agent of the present invention which adsorbed NO 2 . The reproducing method was as follows.
Kerosene 500 ppm / Air gas was brought into contact with the gas adsorption decomposition agent (or activated carbon) of the present invention which adsorbed NO 2 at 3 / min for 1 hour to adsorb kerosene, and then they were placed in a quartz glass tube with one end closed. Moved. The quartz tube was capped with two glass tubes for feeding and exhausting, and the exhaust side was joined with a tube flowing at 3 / min of air and connected to a NO x meter. Next, close the air supply side and heat the glass tube to 400 ° C for 5 minutes in an electric furnace to 400 ° C.
After holding for 10 minutes, air was sent from the air feeding side at 100 cc / min to perform regeneration while measuring the concentration of NO x generated during that time.
In the gas adsorption decomposition agent according to the present invention, NO x is released at the time of temperature rise, but it is much less than activated carbon, and it is 1 at 400 ° C.
After holding for 0 minutes, NO x is generated even if air is sent from the air supply side at 100cc / min
Although the concentration was several ppm, high concentration of NO x exceeding 2000 ppm was detected in activated carbon.

第6,第7図に本発明になる気体吸着分解剤のサイクル
寿命試験の結果を示した。第6図は、灯油500ppm/Airガ
スを3/minで接触させ、3時間後の除去率を測定し、
400℃で20分間3/minの空気を流して再生し灯油吸着
から加熱再生までの操作を1サイクルとして100サイク
ル試験を行った。サイクル寿命試験の結果であり、第7
図は、CO800ppm/Airガスを3/minで接触させ3時間後
の除去率を測定し、400℃で20分間3/minの空気を流
し再生し、CO吸着から加熱再生までの操作を1サイクル
として100サイクル試験を行ったサイクル寿命試験の結
果である。第6,第7図の結果より100サイクルの試験後
でも灯油の除去率は95%以上であり、COの除去率も70%
以上と吸着除去能力がほとんど低下しないことが認めら
れた。
6 and 7 show the results of the cycle life test of the gas adsorption decomposition agent according to the present invention. Fig. 6 shows that kerosene 500ppm / Air gas was contacted at 3 / min and the removal rate after 3 hours was measured.
A 100-cycle test was carried out by regenerating by flowing 3 / min air at 400 ° C. for 20 minutes and setting the operation from kerosene adsorption to heating regeneration as one cycle. It is the result of the cycle life test.
The figure shows that CO800ppm / Air gas is contacted at 3 / min and the removal rate after 3 hours is measured, then air is regenerated by flowing 3 / min of air at 400 ° C for 20 minutes, and the operation from CO adsorption to heating regeneration is one cycle. Is the result of the cycle life test of 100 cycles. From the results of Fig. 6 and Fig. 7, the kerosene removal rate is 95% or more, and the CO removal rate is 70% even after 100 cycles of testing.
From the above, it was confirmed that the adsorptive removal capacity hardly decreased.

以上のように本発明になる気体吸着分解剤は、活性炭
ではほとんど吸着除去されないCOを除去できるととも
に、加熱再生時に放出される悪臭,有害ガス等が少な
く、加熱再生しても吸着除去能力がほとんど低下しない
ため長期間使用することができる。
As described above, the gas adsorptive decomposition agent according to the present invention can remove CO that is hardly adsorbed and removed by activated carbon, has a small amount of bad odor, harmful gas and the like released during heating regeneration, and has almost no adsorptive removal ability even after heating regeneration. Since it does not deteriorate, it can be used for a long time.

さらに、実施例ではLnがランタン,Aがストロンチウム
の場合についてのみ述べたが、LnがCe,Pr,NdまたはLa,C
e,Pr,Ndを二種以上含む場合、AがCa,BaまたはCa,Sr,Ba
を二種以上含む場合、MがCr,Mn,Fe,Ni,Vまたはそれら
を二種以上含む場合の酸化物触媒を用いた時にも同様の
効果が得られた。
Furthermore, in the examples, only the case where Ln is lanthanum and A is strontium is described, but Ln is Ce, Pr, Nd or La, C.
When two or more kinds of e, Pr, Nd are included, A is Ca, Ba or Ca, Sr, Ba
When two or more kinds of M are contained, the same effect was obtained when M, Cr, Mn, Fe, Ni, V or an oxide catalyst containing two or more kinds of M was used.

発明の効果 本発明は、Ln1-xAxCo1-yMyO3- δで表わされる酸化物
触媒にMgOと無機吸着剤、さらに耐熱性結着剤を混合し
たことによりCOを吸着除去できるとともに、加熱再生時
に放出される悪臭,有害ガス等が少なく、また、加熱再
生によって吸着除去能力がほとんど低下することなく、
長期間使用できる気体吸着分解剤である。
EFFECTS OF THE INVENTION The present invention can adsorb and remove CO by mixing MgO and an inorganic adsorbent in an oxide catalyst represented by Ln 1-x A x Co 1-y MyO 3 , and further a heat-resistant binder. At the same time, there is little offensive odor, harmful gas, etc. released during heating regeneration, and the adsorption removal capacity is hardly reduced by heating regeneration.
It is a gas adsorption decomposition agent that can be used for a long time.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明一実施例のCO除去率を示す特性図、第2
図はNO2除去率を示す特性図、第3図は灯油除去率を示
す特性図、第4図は加熱再生時に放出されるCOガス,HC
ガス濃度を示す特性図、第5図は加熱再生時に放出され
るNOxガス濃度を示した図、第6図は寿命試験における
灯油除去率を示す特性図、第7図は寿命試験におけるCO
除去率を示す特性図である。
FIG. 1 is a characteristic diagram showing the CO removal rate of one embodiment of the present invention,
Fig. 3 is a characteristic diagram showing NO 2 removal rate, Fig. 3 is a characteristic diagram showing kerosene removal rate, and Fig. 4 is CO gas and HC released during heating regeneration.
Fig. 5 is a characteristic diagram showing gas concentration, Fig. 5 is a diagram showing NO x gas concentration released during heating regeneration, Fig. 6 is a characteristic diagram showing kerosene removal rate in a life test, and Fig. 7 is CO in a life test.
It is a characteristic view which shows a removal rate.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 20/20 D 23/78 ZAB M 23/84 ZAB M 23/94 ZAB M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B01J 20/20 D 23/78 ZAB M 23/84 ZAB M 23/94 ZAB M

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】一般式Ln1-xAxCo1-yMyO3- δ(Lnは、La,C
e,Pr,Ndから選ぶ少なくとも一種の元素、AはCa,Sr,Ba
から選ぶ少なくとも一種の元素、MはCr,Mn,Fe,Ni,Vか
ら選ぶ少なくとも一種の元素、O≦x≦1,O≦y≦1,δ
は酸素欠損数)で表わされる酸化物触媒にMgOと無機吸
着剤さらに耐熱性結着剤を混合したことを特徴とする気
体吸着分解剤。
1. A general formula Ln 1-x A x Co 1- y My O 3- δ (Ln is La, C
At least one element selected from e, Pr, Nd, A is Ca, Sr, Ba
At least one element selected from, M is at least one element selected from Cr, Mn, Fe, Ni, V, O ≦ x ≦ 1, O ≦ y ≦ 1, δ
Is a gas adsorption decomposition agent characterized by mixing MgO, an inorganic adsorbent, and a heat-resistant binder with an oxide catalyst represented by the number of oxygen vacancies.
【請求項2】無機吸着剤が炭素、シリカゲル、ゼオライ
ト、活性アルミナ、ケイソウ土のうち少なくとも一種か
ら成ることを特徴とする特許請求の範囲第1項記載の気
体吸着分解剤。
2. The gas adsorbing and decomposing agent according to claim 1, wherein the inorganic adsorbent comprises at least one of carbon, silica gel, zeolite, activated alumina and diatomaceous earth.
JP62095603A 1987-04-17 1987-04-17 Gas adsorption decomposition agent Expired - Lifetime JPH084741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62095603A JPH084741B2 (en) 1987-04-17 1987-04-17 Gas adsorption decomposition agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62095603A JPH084741B2 (en) 1987-04-17 1987-04-17 Gas adsorption decomposition agent

Publications (2)

Publication Number Publication Date
JPS63264136A JPS63264136A (en) 1988-11-01
JPH084741B2 true JPH084741B2 (en) 1996-01-24

Family

ID=14142128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62095603A Expired - Lifetime JPH084741B2 (en) 1987-04-17 1987-04-17 Gas adsorption decomposition agent

Country Status (1)

Country Link
JP (1) JPH084741B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03154634A (en) * 1989-11-10 1991-07-02 Matsushita Electric Ind Co Ltd Color changeable deodorant
JPH0741142B2 (en) * 1991-06-11 1995-05-10 川崎重工業株式会社 Method for removing low-concentration nitrogen oxides in road tunnel ventilation gas
FR2862005B1 (en) * 2003-11-06 2006-01-06 Air Liquide ADDING BLOCKING AGENT (S) IN A CERAMIC MEMBRANE TO BLOCK CRYSTALLINE GROWTH OF GRAINS DURING SINTERING IN THE ATMOSPHERE
CN105195088A (en) * 2015-10-19 2015-12-30 桂林理工大学 Method for preparing adsorbent for adsorbing trivalent chromium by using diatom zeolite through manganese oxide compound modification

Also Published As

Publication number Publication date
JPS63264136A (en) 1988-11-01

Similar Documents

Publication Publication Date Title
JPH084741B2 (en) Gas adsorption decomposition agent
JPH0741142B2 (en) Method for removing low-concentration nitrogen oxides in road tunnel ventilation gas
US4151124A (en) Sorbent composition and process for preparing it
JP2003095644A (en) Recovering method for ammonia
JPS6322184B2 (en)
JPS63305937A (en) Adsorbing and decomposition agent of gas
JPH11104491A (en) Oxidation catalyst for co and nitrogen oxides
JPH08308917A (en) Deodorizing apparatus
JPH0365209B2 (en)
JPH119673A (en) Sulfur compound adsorbent and sulfur compound removing method
JPH06327967A (en) Honeycomb adsorbing body
JPH0631128A (en) Deodorizing method
JP3612868B2 (en) Nitrogen oxide removal method
JP3548481B2 (en) Adsorbent regeneration method
JP3576189B2 (en) Odor removal method and odor component adsorbent
JP3582141B2 (en) Nitrogen oxide removal method
JP3985291B2 (en) Method for removing mercury from flue gas
CN111229180B (en) Adsorbent for storing nitrogen oxides and preparation method and application thereof
JP3283593B2 (en) Method for producing catalyst body
JPH08215541A (en) Exhaust gas treating device
JP4138289B2 (en) Method for removing malodorous substances generated from composting equipment
JPH11309371A (en) Sulfur compound adsorber and removal of sulfur compound
JPH05293162A (en) Air cleaner and its production
JP2631067B2 (en) How to remove trace acetaldehyde from air
JPH0639276A (en) Adsorbent and adsorber