JPH08308917A - Deodorizing apparatus - Google Patents

Deodorizing apparatus

Info

Publication number
JPH08308917A
JPH08308917A JP7125207A JP12520795A JPH08308917A JP H08308917 A JPH08308917 A JP H08308917A JP 7125207 A JP7125207 A JP 7125207A JP 12520795 A JP12520795 A JP 12520795A JP H08308917 A JPH08308917 A JP H08308917A
Authority
JP
Japan
Prior art keywords
metal
zeolite
ion exchange
deodorizing device
deodorizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7125207A
Other languages
Japanese (ja)
Inventor
Yasuhiro Fujii
康浩 藤井
Kunio Kimura
邦夫 木村
Yukiyoshi Ono
之良 小野
Hidenobu Wakita
英延 脇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7125207A priority Critical patent/JPH08308917A/en
Publication of JPH08308917A publication Critical patent/JPH08308917A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

PURPOSE: To enable controlling of desorption speed during heating of an adsorbent by depositing a metal carbonate and hydroxide inside and outside a fine hole of a metal ion exchange zeolite. CONSTITUTION: A pentasil type zeolite SZM-5 undergoes an ion exchange by a metal salt solution so excessive as to bring the ion exchange rate to 100% as compared with a quantum value to deposite a metal carbonate, basic carbonate and hydroxide in a fine hole and on the external surface of the ZSM-5. The metal ion exchange ZSM-5 modified by the metal salt thus obtained is contained in a deodorizing body to allow the suppressing of desorption of odor during heating or oxidizing decomposition after the adsorption of the odor thereby enabling quick deodorizing. The ion exchange metal and the metal salt herein used are selected from among metals of 1A, 2A, 1B and 2B groups in the periodic table. A deodorizing body is also usable having a catalyst layer comprising at least five components of alumina, noble metal, copper oxide, zeolite and silica formed on a base material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃焼、給湯、乾燥、調
理、冷蔵、空調用機器等において利用される脱臭装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deodorizing device used in combustion, hot water supply, drying, cooking, refrigerating, air conditioning equipment and the like.

【0002】[0002]

【従来の技術】従来、活性炭やゼオライトなどの吸着剤
を脱臭器内に配置して、ガス状の悪臭物質を吸着して脱
臭する方法がおもに用いられてきた。また、オゾン発生
機能を持たせた機器を脱臭装置内に配置して悪臭成分を
オゾンガスによって酸化分解する方式や、貴金属などの
酸化分解触媒を火炎、発熱体などの熱源近傍に設けるこ
とにより触媒を加熱、活性化させ、臭気物質を酸化分解
することにより脱臭を行う方式も採用されている。
2. Description of the Related Art Heretofore, a method of arranging an adsorbent such as activated carbon or zeolite in a deodorizer to adsorb gaseous malodorous substances to deodorize has been mainly used. In addition, a device that has an ozone generation function is placed in the deodorizing device to oxidize and decompose the malodorous components with ozone gas, or an oxidative decomposition catalyst such as a noble metal is installed near the heat source such as a flame or a heating element to improve the catalyst. A method of deodorizing by heating and activating and oxidizing and decomposing odorous substances is also adopted.

【0003】さらに近年、無機系吸着剤と貴金属などの
酸化分解触媒を有する脱臭体を発熱体などの熱源近傍に
設置し、発熱体が通電されていないときには吸着剤によ
り臭気物質を吸着することにより脱臭を行い、発熱体通
電時には触媒を加熱、活性化し、脱臭体に接触した臭気
物質の酸化分解を行うと同時に、吸着剤に吸着した臭気
物質を酸化分解し吸着剤の再生を行う方式も行われてい
る。
Further, in recent years, by installing a deodorizer having an inorganic adsorbent and an oxidative decomposition catalyst such as a noble metal near a heat source such as a heating element, and adsorbing an odorous substance by the adsorbent when the heating element is not energized. Deodorization is performed.When the heating element is energized, the catalyst is heated and activated to oxidize and decompose the odorous substances that come into contact with the deodorant, and at the same time, oxidatively decompose the odorous substances adsorbed on the adsorbent to regenerate the adsorbent. It is being appreciated.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の無機系
吸着剤と酸化分解触媒からなる脱臭体による脱臭法には
以下に示すような課題があった。
However, the conventional deodorizing method using a deodorizing body composed of an inorganic adsorbent and an oxidative decomposition catalyst has the following problems.

【0005】従来の触媒脱臭では、常温での吸着と加熱
時の酸化分解を繰り返すことにより脱臭が行われてき
た。その脱臭過程での吸着後の加熱時(酸化分解過程)
において、臭気分子が熱により触媒から短時間で著しく
脱離し、脱臭空間の臭気濃度が加熱前よりも高くなると
いう問題があった。このような現象は、加熱時の臭気分
子の吸着剤からの脱離速度が、臭気分子の酸化分解速度
を上回ることにより生じるものと考えられ、加熱時の脱
離速度を制御可能な吸着剤の開発が急務であった。
In the conventional catalyst deodorization, deodorization has been performed by repeating adsorption at room temperature and oxidative decomposition during heating. During heating after adsorption in the deodorizing process (oxidative decomposition process)
In the above, there was a problem that odor molecules were significantly desorbed from the catalyst by heat in a short time, and the odor concentration in the deodorizing space became higher than that before heating. Such a phenomenon is considered to occur when the rate of desorption of odorous molecules from the adsorbent during heating exceeds the rate of oxidative decomposition of odorous molecules. Development was urgent.

【0006】本発明は、このような従来の脱臭装置の課
題を考慮し、加熱時の脱離速度を制御可能な吸着剤を利
用した脱臭装置を提供することを目的とするものであ
る。
The present invention has been made in view of the above problems of the conventional deodorizing apparatus, and an object of the present invention is to provide a deodorizing apparatus using an adsorbent capable of controlling the desorption rate during heating.

【0007】[0007]

【課題を解決するための手段】本発明は、金属イオン交
換ゼオライトの細孔内外に金属の炭酸塩、水酸化物塩の
うち、少なくとも1つ以上を析出させたものを含むこと
を特徴とする脱臭装置である。
The present invention is characterized in that it comprises a metal ion-exchanged zeolite having at least one metal carbonate or hydroxide salt deposited inside or outside the pores thereof. It is a deodorizing device.

【0008】また、本発明はペンタシル型ゼオライトZ
SM−5をイオン交換率が100%であるような量論値
より過剰の金属塩溶液でイオン交換することにより上記
金属の炭酸塩、塩基性炭酸塩、水酸化物を析出させるこ
とを特徴とする脱臭装置である。
The present invention also relates to a pentasil type zeolite Z.
It is characterized by precipitating carbonates, basic carbonates and hydroxides of the above-mentioned metals by ion-exchanging SM-5 with a metal salt solution in excess of a stoichiometric value such that the ion exchange rate is 100%. It is a deodorizing device.

【0009】また、本発明はイオン交換金属およびゼオ
ライト細孔内および外表面に析出させる金属として1
A,2A,1B,2B族の金属であり、その金属の中でも
特にCuであることを特徴とする脱臭装置である。
Further, the present invention relates to an ion exchange metal and a metal to be deposited on the inside and outside surfaces of zeolite pores.
The deodorizing device is a metal belonging to the A, 2A, 1B, and 2B groups, and is Cu among the metals.

【0010】また、本発明は、少なくともアルミナ、貴
金属、酸化銅、ゼオライト、シリカの5成分よりなる触
媒層を基材上に形成した脱臭体と、前記脱臭体を間欠的
に加熱する加熱手段を有することを特徴とする脱臭装置
である。
Further, the present invention comprises a deodorant body in which a catalyst layer comprising at least five components of alumina, a noble metal, copper oxide, zeolite and silica is formed on a substrate, and a heating means for intermittently heating the deodorant body. It is a deodorizing device characterized by having.

【0011】[0011]

【作用】ZSM−5をイオン交換率が100%となるよ
うな量論値より過剰の金属塩溶液でイオン交換すること
により、ZSM−5の細孔内および外表面に上記金属の
炭酸塩、塩基性炭酸塩、水酸化物を析出させる。このよ
うな金属塩で修飾した金属イオン交換ZSM−5を脱臭
体に含有させることにより、臭気を吸着させた後の加
熱、酸化分解時の臭気の脱離を抑制、迅速な脱臭が可能
となる。金属イオン交換ZSM−5のみではこのような
効果は小さく、金属塩で修飾したものが顕著な効果を有
する。
By performing ion exchange of ZSM-5 with a metal salt solution in excess of a stoichiometric value such that the ion exchange rate becomes 100%, carbonates of the above metal are formed in the pores and the outer surface of ZSM-5. Precipitate basic carbonate and hydroxide. By including the metal ion-exchange ZSM-5 modified with such a metal salt in the deodorant body, it is possible to suppress the desorption of the odor during heating after odor adsorption and oxidative decomposition, and to enable rapid deodorization. . Such an effect is small with only the metal ion exchange ZSM-5, and the one modified with a metal salt has a remarkable effect.

【0012】[0012]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】従来の吸着、酸化分解を繰り返す触媒脱臭
では、吸着後の加熱時(酸化分解過程)において、臭気
分子が熱により触媒から短時間で著しく脱離し、脱臭空
間の臭気濃度が加熱前よりも高くなるという問題を有し
ていた。そこで、本発明では金属塩で修飾した金属イオ
ン交換ZSM−5が、加熱時の臭気の触媒からの脱離抑
制に著しく有効であることを見いだした。また、ゼオラ
イトのイオン交換金属および修飾金属塩は1A,2A,1
B,2B族の金属が適当であり、その金属の中でも特に
Cuが最も優れた臭気の脱離抑制効果を有する。
In the conventional catalytic deodorization in which adsorption and oxidative decomposition are repeated, odor molecules are significantly desorbed from the catalyst by heat during heating after adsorption (oxidative decomposition process), and the odor concentration in the deodorizing space is higher than that before heating. It also had the problem of becoming higher. Therefore, in the present invention, it was found that the metal ion-exchanged ZSM-5 modified with a metal salt is remarkably effective in suppressing the desorption of odors from the catalyst during heating. Also, the ion exchange metal and modified metal salt of zeolite are 1A, 2A, 1
Metals of Group B and 2B are suitable, and Cu among them has the most excellent odor desorption suppressing effect.

【0014】本発明のペンタシル型ゼオライトは、ZS
M−5,各種メタロシリケートなどを用いることができ
る。
The pentasil-type zeolite of the present invention is ZS
M-5, various metallosilicates and the like can be used.

【0015】本発明のアルミナは、β-,γ-,δ-,θ-,η
-,ρ-,χ-アルミナなどの準安定アルミナである。ま
た、アルミナ表面に希土類酸化物などの助触媒を担持さ
せることにより、さらに活性を向上させることができ
る。さらに活性アルミナにバリウムを含有させることに
よりアルミナの熱安定性を向上することができ望まし
い。
The alumina of the present invention comprises β-, γ-, δ-, θ-, η
Metastable alumina such as-, ρ-, χ-alumina. Further, the activity can be further improved by supporting a promoter such as a rare earth oxide on the surface of alumina. Further, it is desirable to add barium to the activated alumina because the thermal stability of the alumina can be improved.

【0016】本発明の貴金属は、PtまたはPdを用い
ることが望ましく、PtとPdの両方を用いた場合さら
に望ましい。これは、PtやPdの酸化分解力がRhや
Irに比べて高く、PtとPdの両方を用いることによ
りさらに高活性となるためである。また、Ruを用いた
場合、高温での使用によりRuが揮散し有害物質となる
ので好ましくない。
The noble metal of the present invention is preferably Pt or Pd, and more preferably both Pt and Pd. This is because the oxidative decomposition power of Pt and Pd is higher than that of Rh and Ir, and the higher activity is obtained by using both Pt and Pd. Further, when Ru is used, Ru is volatilized and becomes a harmful substance when used at high temperature, which is not preferable.

【0017】本発明の金属イオン交換ZSM−5は、各
種イオン交換金属の原料として硝酸塩、硫酸塩、酢酸
塩、塩化物などを用いることができる。ゼオライトのイ
オン交換処理は、ゼオライトを金属イオン溶液の中で常
温から98℃までの温度で加熱撹拌することにより行っ
た。
In the metal ion-exchange ZSM-5 of the present invention, nitrates, sulfates, acetates, chlorides and the like can be used as raw materials for various ion-exchange metals. The ion exchange treatment of zeolite was performed by heating and stirring the zeolite in a metal ion solution at a temperature from room temperature to 98 ° C.

【0018】本発明の酸化銅とはその原料として、塩化
銅、硝酸銅、酢酸銅、硫酸銅などを熱分解して用いるこ
とができる。
The copper oxide of the present invention can be used by thermally decomposing copper chloride, copper nitrate, copper acetate, copper sulfate or the like as a raw material thereof.

【0019】本発明のシリカとは、二酸化珪素である
が、熱分解により二酸化珪素となる珪酸を代わりに用い
た方が触媒層のより強い密着性が得られる。
The silica of the present invention is silicon dioxide, but the use of silicic acid, which becomes silicon dioxide by thermal decomposition, instead provides stronger adhesion of the catalyst layer.

【0020】本発明の脱臭装置の代表的な一実施例を図
1に示す。図1において、1はニクロム線、2は石英
管、3は触媒被膜、4は碍子である。また5は空気流で
ある。
A typical embodiment of the deodorizing apparatus of the present invention is shown in FIG. In FIG. 1, 1 is a nichrome wire, 2 is a quartz tube, 3 is a catalyst coating, and 4 is an insulator. Further, 5 is an air flow.

【0021】以下にさらに具体的な実施例を示す。A more specific embodiment will be described below.

【0022】<実施例1>金属塩で修飾した金属イオン
交換ゼオライトの物性を調べるため、以下の検討を行っ
た。
<Example 1> In order to investigate the physical properties of the metal ion-exchanged zeolite modified with a metal salt, the following studies were carried out.

【0023】金属塩修飾金属イオン交換ゼオライトの調
製は、ゼオライトであるH−ZSM−5と各種金属塩
(硝酸塩、酢酸塩、硫酸塩、塩化物)水溶液を用いて調
製した。調製方法は、H−ZSM−5に量論(イオン交
換率100%)の5倍量の金属塩とH−ZSM−5の5
0倍量のイオン交換水を加え、常温〜98℃の温度で2
4時間以上加熱撹拌した。なお、イオン交換率の定義
は、イオン交換金属が1価の金属であれば、ZSM−5
に含まれるAlモル量と同量の金属がゼオライトに含ま
れる状態を100%と定義し、イオン交換金属が2価の
金属であれば、ZSM−5に含まれるAlモル量の1/
2量の金属がゼオライトに含まれる状態を100%と定
義する。
The metal salt-modified metal ion-exchanged zeolite was prepared by using H-ZSM-5, which is a zeolite, and various metal salt (nitrate, acetate, sulfate, chloride) aqueous solutions. The preparation method was as follows: H-ZSM-5 was added with 5 times the stoichiometric amount (ion exchange rate 100%) of metal salt and H-ZSM-5.
Add 0 times the amount of deionized water, and add 2 at room temperature to 98 ° C.
The mixture was heated and stirred for 4 hours or more. The ion exchange rate is defined as ZSM-5 if the ion exchange metal is a monovalent metal.
The state in which the same amount of metal as the amount of Al contained in the zeolite is contained in the zeolite is defined as 100%, and if the ion exchange metal is a divalent metal, it is 1/1 of the amount of Al contained in ZSM-5.
The state in which two metals are contained in zeolite is defined as 100%.

【0024】その後、イオン交換水で洗浄、乾燥を行っ
た。以上の処理をNa,Ca,Sr,Mn,Fe,Co,Ni,Pt,Cu,Ag,Zn,L
a,Ceの13種類の金属について行った。
Then, it was washed with ion-exchanged water and dried. The above treatment is performed for Na, Ca, Sr, Mn, Fe, Co, Ni, Pt, Cu, Ag, Zn, L
It carried out about 13 types of metal of a and Ce.

【0025】調製した試料に関してイオン交換率および
試料に含まれる金属量を調べるために、原子吸光分析を
行った。分析結果を(表1)に示した。
Atomic absorption spectrometry was carried out on the prepared sample to examine the ion exchange rate and the amount of metal contained in the sample. The analysis results are shown in (Table 1).

【0026】[0026]

【表1】 [Table 1]

【0027】(表1)に示すとおり、Na,Ca,S
r,Cu,Ag,Znの5種類について、量論(イオン
交換率100%)を超える金属量が検出された。これら
の試料をXRDなどで分析すると、ゼオライト上にイオ
ン交換金属種の炭酸塩、塩基性炭酸塩、水酸化物などが
析出していることがわかった。よって、ゼオライトを過
剰の1A,1B,2A,2B族の金属塩でイオン交換す
ると、金属イオン交換ゼオライトの細孔内外に炭酸塩、
塩基性炭酸塩、水酸化物などを析出させたものが得られ
る。
As shown in (Table 1), Na, Ca, S
For 5 kinds of r, Cu, Ag and Zn, the amount of metal exceeding the stoichiometry (ion exchange rate 100%) was detected. When these samples were analyzed by XRD or the like, it was found that carbonates, basic carbonates, hydroxides of ion-exchange metal species were precipitated on the zeolite. Therefore, when the zeolite is ion-exchanged with excess metal salt of the 1A, 1B, 2A, and 2B groups, carbonate is formed inside and outside the pores of the metal ion-exchanged zeolite.
It is possible to obtain a product in which basic carbonate, hydroxide, etc. are deposited.

【0028】<実施例2>実施例1で調製した金属イオ
ン交換ゼオライト、金属塩修飾金属イオン交換ゼオライ
トおよびプロトンイオン交換ゼオライトについて触媒酸
化分解時の臭気の脱離抑制効果を検討した。
Example 2 With respect to the metal ion-exchanged zeolite, the metal salt-modified metal ion-exchanged zeolite and the proton ion-exchanged zeolite prepared in Example 1, the effect of suppressing odor desorption during catalytic oxidative decomposition was examined.

【0029】塩化白金酸水溶液と硝酸銅水溶液とアルミ
ナをボールミルを用いて十分に混合した後、500℃に
て焼成、粉砕し、Pt,CuOを担持したアルミナを調
製した。このPt,CuOを担持したアルミナ160g
と、シリカを20wt%含むコロイダルシリカ水溶液4
00gと、水200g及びゼオライト160gとをボー
ルミルを用いて充分に混合して、スラリーを調製した。
一方、外径10mm、内径9mm、長さ344mmの石
英管2の外周面を脱脂洗浄し、この石英管2の両側33
mmを除く中心部の外周面にスラリーをスプレ−法で塗
装した後、100℃で2時間乾燥し、500℃で1時間
焼成して、触媒被膜3を有する石英管2を作製した。被
膜重量は1.0gであり、Pt含有量は25mgで、C
uO含有量は30mgである。
An aqueous solution of chloroplatinic acid, an aqueous solution of copper nitrate and alumina were thoroughly mixed using a ball mill, and then calcined and pulverized at 500 ° C. to prepare alumina carrying Pt and CuO. 160 g of alumina that carries Pt and CuO
And a colloidal silica aqueous solution containing 20 wt% of silica 4
A slurry was prepared by thoroughly mixing 00 g, 200 g of water and 160 g of zeolite with a ball mill.
On the other hand, the outer peripheral surface of the quartz tube 2 having an outer diameter of 10 mm, an inner diameter of 9 mm and a length of 344 mm is degreased and washed, and both sides 33 of the quartz tube 2 are cleaned.
After coating the slurry on the outer peripheral surface of the central portion excluding mm by a spray method, the slurry was dried at 100 ° C. for 2 hours and baked at 500 ° C. for 1 hour to prepare a quartz tube 2 having a catalyst coating 3. The coating weight is 1.0 g, the Pt content is 25 mg, and C
The uO content is 30 mg.

【0030】この石英管2に、40Ωのコイル状ニクロ
ム線1を内蔵させ、碍子4により石英管2の両側を絶
縁,保持し発熱体を作製した。上記のスラリーにおいて
ゼオライトとして実施例1で調製した金属イオン交換ゼ
オライト、金属塩修飾金属イオン交換ゼオライトおよび
プロトンイオン交換ゼオライトを用い、発熱体を作製し
た。
A 40 Ω coil-shaped nichrome wire 1 was built in this quartz tube 2, and both sides of the quartz tube 2 were insulated and held by an insulator 4 to produce a heating element. A heating element was prepared by using the metal ion-exchanged zeolite, the metal salt-modified metal ion-exchanged zeolite and the proton ion-exchanged zeolite prepared in Example 1 as zeolite in the above slurry.

【0031】これらの発熱体についてアセトアルデヒド
浄化試験を行った。浄化試験は、250lの立方体のフ
ッソ樹脂製の容器の中に発熱体を置き、濃度が15pp
mになるようにアセトアルデヒドを容器に注入し90分
後のアセトアルデヒド濃度を調べた。さらに、90分後
から発熱体を加熱し100分、120分後のアセトアル
デヒド濃度を調べた。測定はガスクロマトグラフにより
行った。試験結果を(表2)に示した。
An acetaldehyde purification test was conducted on these heating elements. In the purification test, the heating element was placed in a 250 l cubic container made of fluorine resin and the concentration was 15 pp.
The acetaldehyde was injected into the container so that the concentration became m, and 90 minutes later, the acetaldehyde concentration was examined. Furthermore, after 90 minutes, the heating element was heated to examine the acetaldehyde concentration after 100 minutes and 120 minutes. The measurement was performed by a gas chromatograph. The test results are shown in (Table 2).

【0032】[0032]

【表2】 [Table 2]

【0033】(表2)から明らかなように、周期律表の
1A,1B,2A,2B族の炭酸塩、塩基性炭酸塩、水
酸化物などで修飾した金属イオン交換ゼオライトは、無
修飾のゼオライトと比べて加熱時の臭気の脱離が抑制さ
れる傾向にある。中でも、Cuの塩で修飾したCu−ゼ
オライトが最も臭気の脱離の抑制に優れる。
As is clear from (Table 2), the metal ion-exchanged zeolite modified with carbonates, basic carbonates, hydroxides and the like of the 1A, 1B, 2A and 2B groups of the periodic table is unmodified. Compared with zeolite, desorption of odor during heating tends to be suppressed. Among them, Cu-zeolite modified with a Cu salt is most excellent in suppressing odor desorption.

【0034】<実施例3>金属塩修飾金属イオン交換ゼ
オライトにおけるゼオライトの種類と臭気の吸着特性お
よび触媒酸化分解時の臭気の脱離抑制効果の関係を調べ
るため、以下の検討を行った。
Example 3 In order to investigate the relationship between the type of zeolite in the metal salt-modified metal ion-exchanged zeolite, the adsorption characteristics of odor, and the effect of suppressing the desorption of odor during catalytic oxidative decomposition, the following studies were conducted.

【0035】実施例1の金属塩修飾金属イオン交換ゼオ
ライトの調製の際に、ゼオライト種として、ペンタシル
型,A型,X型,Y型,モルデナイトにつき、それぞれ
調製した。この際の金属種はNa,Cuを用いた。同時
に発熱体を作製した。
In preparing the metal salt-modified metal ion-exchanged zeolite of Example 1, pentasil type, A type, X type, Y type and mordenite were respectively prepared as zeolite species. Na and Cu were used as metal species at this time. At the same time, a heating element was produced.

【0036】これらの発熱体についてアセトアルデヒド
浄化試験を行った。アセトアルデヒド浄化試験は、実施
例2と同様に行った。浄化試験の結果を(表3)に示し
た。
An acetaldehyde purification test was conducted on these heating elements. The acetaldehyde purification test was performed in the same manner as in Example 2. The results of the purification test are shown in (Table 3).

【0037】[0037]

【表3】 [Table 3]

【0038】(表3)に示すとおり、ペンタシル型ゼオ
ライトが吸着特性、酸化分解時の臭気の脱離抑制効果の
どちらにおいても他のゼオライト(A,X,Y,モルデ
ナイト)に優位性があることがわかる。
As shown in (Table 3), the pentasil-type zeolite is superior to other zeolites (A, X, Y, mordenite) in both of the adsorption characteristics and the effect of suppressing odor desorption during oxidative decomposition. I understand.

【0039】<実施例4>アセトアルデヒドの吸着特性
と各種ペンタシル型ゼオライトとの効果を調べるため、
以下の検討を行った。
Example 4 To investigate the adsorption characteristics of acetaldehyde and the effect of various pentasil-type zeolites,
The following studies were conducted.

【0040】実施例2のスラリーにおいて金属塩修飾金
属イオン交換ゼオライトとして以下のペンタシル型ゼオ
ライトを用い、実施例1と同様に発熱体を作製した。使
用したゼオライトはAl−シリケートであるZSM−
5,Ga−シリケート,Ti−シリケート,Fe−シリ
ケート,Mn−シリケートである。イオン交換金属並び
に金属塩はCuを用いた。次に、実施例2と同様に、こ
れらの発熱体についてアセトアルデヒド浄化試験を行
い、アセトアルデヒドの吸着特性、酸化分解時の臭気の
脱離抑制効果を検討した。結果を(表4)に示した。
A heating element was prepared in the same manner as in Example 1, except that the following pentasil-type zeolite was used as the metal salt-modified metal ion exchange zeolite in the slurry of Example 2. The zeolite used is Al-silicate ZSM-
5, Ga-silicate, Ti-silicate, Fe-silicate, Mn-silicate. Cu was used as the ion exchange metal and the metal salt. Next, in the same manner as in Example 2, an acetaldehyde purification test was performed on these heating elements, and the adsorbing property of acetaldehyde and the effect of suppressing odor desorption during oxidative decomposition were examined. The results are shown in (Table 4).

【0041】[0041]

【表4】 [Table 4]

【0042】(表4)に示すとおり、Al−シリケート
であるZSM−5が最も吸着特性に優れ、酸化分解時の
臭気の脱離抑制効果も優れている。臭気の吸着特性にお
いてZSM−5が高活性であるのはAl−シリケートが
有する強い酸性質に起因するものと考えられる。
As shown in (Table 4), ZSM-5, which is an Al-silicate, has the best adsorption property and the effect of suppressing odor desorption during oxidative decomposition is also excellent. It is considered that the high activity of ZSM-5 in the odor adsorption property is due to the strong acid property of Al-silicate.

【0043】<実施例5>触媒の最適組成を検討するた
めに以下の実験を行った。
Example 5 The following experiment was conducted to examine the optimum composition of the catalyst.

【0044】実施例2のスラリーの所定量において、貴
金属,酸化銅,アルミナ,ゼオライト(Cu塩修飾Cu
−ZSM−5),コロイダルシリカの5成分を下記の
(表5)の組み合わせで6種類のスラリーを調製し、同
時に発熱体も作製した。
In a predetermined amount of the slurry of Example 2, noble metal, copper oxide, alumina, zeolite (Cu salt modified Cu
-ZSM-5) and 5 components of colloidal silica were combined to prepare 6 kinds of slurries by the combination of (Table 5) below, and at the same time, a heating element was also prepared.

【0045】また、触媒の熱劣化の影響も見るため、上
記の発熱体を700℃で24時間発熱させた後、メチル
メルカプタン浄化試験を行った。浄化試験は、250l
の立方体のフッソ樹脂製の容器の中に発熱体を置き、濃
度が15ppmになるようにメチルメルカプタンを容器
に注入し90分後のメチルメルカプタン濃度を調べるこ
とにより行った。なお、発熱体は加熱せず、測定はガス
クロマトグラフにより行った。さらに、これらの発熱体
についてメチルメルカプタン浄化試験と同様のアセトア
ルデヒド浄化試験を行った。試験方法は、メチルメルカ
プタン浄化試験と同様に行った。
Further, in order to see the effect of heat deterioration of the catalyst, the above heating element was heated at 700 ° C. for 24 hours, and then a methyl mercaptan purification test was conducted. Purification test is 250l
The heating element was placed in a cubic resin container made of fluorine resin, the methyl mercaptan was injected into the container so that the concentration became 15 ppm, and 90 minutes later, the methyl mercaptan concentration was examined. The heating element was not heated, and the measurement was performed by gas chromatography. Further, these heating elements were subjected to the same acetaldehyde purification test as the methyl mercaptan purification test. The test method was the same as the methyl mercaptan purification test.

【0046】[0046]

【表5】 [Table 5]

【0047】(表5)に示すとおり、触媒の耐熱性も考
慮にいれた上記の浄化試験において、触媒の活性化に
は、少なくとも貴金属、酸化銅、アルミナ、ゼオライ
ト、コロイダルシリカの5成分が必要である。
As shown in (Table 5), at least five components of noble metal, copper oxide, alumina, zeolite and colloidal silica are required for activation of the catalyst in the above-mentioned purification test in consideration of heat resistance of the catalyst. Is.

【0048】<実施例6>実施例2で調製したスラリー
において、スラリー中のコロイダルシリカを、最終固形
分中に含まれる無機バインダーの量が同じになるよう
に、種々の無機バインダーに置き換えたスラリーを調製
し、実施例2と同様の発熱体を調製した。これらの触媒
被覆層の膜硬度について調べるために、JISG−33
20の鉛筆硬度試験を行った。また、それぞれの発熱体
についてアセトアルデヒド浄化試験を実施例5の要領で
行った。結果を(表6)に示した。
<Example 6> In the slurry prepared in Example 2, the colloidal silica in the slurry was replaced with various inorganic binders so that the final binder contained the same amount of the inorganic binder. Was prepared, and a heating element similar to that in Example 2 was prepared. In order to investigate the film hardness of these catalyst coating layers, JISG-33
20 pencil hardness tests were performed. Further, an acetaldehyde purification test was performed on each heating element in the same manner as in Example 5. The results are shown in (Table 6).

【0049】[0049]

【表6】 [Table 6]

【0050】(表6)に示すように、アルミナゾルやベ
ントナイトを用いると結合力が弱く被覆層硬度は向上す
るものの多孔質な被覆層ができず、触媒活性が低下し
た。これらに対し、無機バインダーとしてコロイダルシ
リカを用いると、触媒活性を低下させること無く強固な
被覆層を形成することができ、最も望ましい。
As shown in (Table 6), when alumina sol or bentonite was used, the binding strength was weak and the coating layer hardness was improved, but a porous coating layer could not be formed and the catalytic activity was lowered. On the other hand, when colloidal silica is used as the inorganic binder, a strong coating layer can be formed without lowering the catalytic activity, which is most desirable.

【0051】さらに、基材と触媒被膜の密着性を調べる
ために以下の検討を行った。
Further, the following examination was conducted in order to examine the adhesion between the base material and the catalyst coating.

【0052】幅100mm×90mm,厚さ1mmの石
英板、鉄板、アルミニウム板、ステンレス板をそれぞれ
脱脂洗浄した。これらの基材の片面に実施例2のスラリ
ーを塗布し、400℃にて焼成し重量1.0gの被膜を
調製した。
A quartz plate, an iron plate, an aluminum plate, and a stainless plate having a width of 100 mm × 90 mm and a thickness of 1 mm were degreased and washed. The slurry of Example 2 was applied to one surface of each of these base materials and baked at 400 ° C. to prepare a coating film having a weight of 1.0 g.

【0053】これらについて400℃で加熱しすぐに室
温の水中に落下させる水中急冷試験を5回繰り返し、被
膜の剥離の有無を調べた。結果を(表7)に示した。
For these, an underwater quenching test in which the material was heated at 400 ° C. and immediately dropped in water at room temperature was repeated 5 times, and the presence or absence of peeling of the coating film was examined. The results are shown in (Table 7).

【0054】[0054]

【表7】 [Table 7]

【0055】以上のように、密着性の面で、石英が最も
優れており、アルミニウムのように熱膨張の著しいもの
に関しては密着性は低いものとなった。このように、石
英や比較的熱膨張の少ない金属を基材に選ぶことにより
触媒被膜と基材の密着性を向上させることができる。
As described above, quartz is the most excellent in terms of adhesiveness, and the adhesiveness is low with respect to materials such as aluminum that have a remarkable thermal expansion. Thus, the adhesion between the catalyst coating and the substrate can be improved by selecting quartz or a metal having a relatively small thermal expansion as the substrate.

【0056】[0056]

【発明の効果】以上のように本発明の脱臭体を用いるこ
とにより、酸化分解時における臭気分子の触媒からの脱
離を抑制することができる。また、電気抵抗体もしくは
電気抵抗体を内蔵した基材の外表面に無機バインダーを
用いて被膜として脱臭体を形成することにより、耐熱衝
撃性に優れた脱臭体を得ることができる。
As described above, by using the deodorant product of the present invention, desorption of odorous molecules from the catalyst during oxidative decomposition can be suppressed. Further, by forming the deodorant body as a film on the outer surface of the electric resistor or the base material incorporating the electric resistor by using an inorganic binder, the deodorant body excellent in thermal shock resistance can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を用いた発熱体の構成を示す
断面図である。
FIG. 1 is a cross-sectional view showing a configuration of a heating element using an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ニクロム線 2 石英管 3 触媒被膜 4 碍子 5 空気流 1 Nichrome wire 2 Quartz tube 3 Catalyst coating 4 Insulator 5 Air flow

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 29/42 ZAB B01J 29/76 ZABA 29/76 ZAB B01D 53/36 ZABH (72)発明者 脇田 英延 大阪府門真市大字門真1006番地 松下電器 産業株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication location B01J 29/42 ZAB B01J 29/76 ZABA 29/76 ZAB B01D 53/36 ZABH (72) Inventor Wakita Hidenobu 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 金属イオン交換ゼオライトの細孔内外に
金属の炭酸塩、水酸化物塩のうち、少なくとも1つ以上
を析出させたものを含むことを特徴とする脱臭装置。
1. A deodorizing device comprising a metal ion-exchanged zeolite containing at least one metal carbonate or hydroxide salt deposited inside or outside the pores thereof.
【請求項2】 イオン交換金属および金属塩が、周期律
表の1A,2A,1B,2B族の金属から選択されること
を特徴とする請求項1記載の脱臭装置。
2. The deodorizing device according to claim 1, wherein the ion exchange metal and the metal salt are selected from metals of the 1A, 2A, 1B and 2B groups of the periodic table.
【請求項3】 イオン交換金属および金属塩がCuであ
ることを特徴とする請求項1記載の脱臭装置。
3. The deodorizing device according to claim 1, wherein the ion exchange metal and the metal salt are Cu.
【請求項4】 ゼオライトがペンタシル型ゼオライトで
あることを特徴とする請求項1記載の脱臭装置。
4. The deodorizing device according to claim 1, wherein the zeolite is a pentasil type zeolite.
【請求項5】 ペンタシル型ゼオライトがZSM−5で
あることを特徴とする請求項4記載の脱臭装置。
5. The deodorizing device according to claim 4, wherein the pentasil-type zeolite is ZSM-5.
【請求項6】 少なくともアルミナ、貴金属、酸化銅、
ゼオライト、シリカの5成分よりなる触媒層を基材上に
形成した脱臭体であることを特徴とする脱臭装置。
6. At least alumina, noble metal, copper oxide,
A deodorizing device, which is a deodorizing body in which a catalyst layer composed of five components of zeolite and silica is formed on a substrate.
【請求項7】 脱臭体を間欠的に加熱する加熱手段を有
し、非加熱時にはゼオライトにより吸着を、加熱時には
貴金属、酸化銅により酸化分解を行う脱臭装置であっ
て、前記加熱手段が基材中に内蔵されるか、あるいは加
熱手段として基材自体が電気抵抗体として通電により発
熱することを特徴とする脱臭装置。
7. A deodorizing device comprising a heating means for intermittently heating a deodorized body, wherein adsorption is carried out by zeolite when not heated, and oxidative decomposition is carried out by a noble metal or copper oxide when heated, wherein the heating means is a base material. A deodorizing device, characterized in that it is built in the inside, or as a heating means, the base material itself serves as an electric resistor to generate heat when energized.
JP7125207A 1995-05-24 1995-05-24 Deodorizing apparatus Pending JPH08308917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7125207A JPH08308917A (en) 1995-05-24 1995-05-24 Deodorizing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7125207A JPH08308917A (en) 1995-05-24 1995-05-24 Deodorizing apparatus

Publications (1)

Publication Number Publication Date
JPH08308917A true JPH08308917A (en) 1996-11-26

Family

ID=14904548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7125207A Pending JPH08308917A (en) 1995-05-24 1995-05-24 Deodorizing apparatus

Country Status (1)

Country Link
JP (1) JPH08308917A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980080587A (en) * 1997-03-28 1998-11-25 오토우마타카시 Deodorization catalyst and deodorization element
JP2006028496A (en) * 2004-06-18 2006-02-02 Toyo Seikan Kaisha Ltd Odor scavenger resin composition
JP2011235285A (en) * 2005-11-01 2011-11-24 Johnson Matthey Plc Adsorption of volatile organic compound derived from organic substance
US8216651B2 (en) 2004-02-19 2012-07-10 Toyo Seikan Kaisha, Ltd. Plastic multi-layer structure
US8900348B2 (en) 2009-07-02 2014-12-02 Johnson Matthey Public Limited Company Adsorption of volatile organic compounds derived from organic matter
CN112138198A (en) * 2020-10-14 2020-12-29 白杨 Bacteriostatic deodorant composition

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980080587A (en) * 1997-03-28 1998-11-25 오토우마타카시 Deodorization catalyst and deodorization element
US8216651B2 (en) 2004-02-19 2012-07-10 Toyo Seikan Kaisha, Ltd. Plastic multi-layer structure
JP5130713B2 (en) * 2004-02-19 2013-01-30 東洋製罐株式会社 Plastic multilayer structure
JP2006028496A (en) * 2004-06-18 2006-02-02 Toyo Seikan Kaisha Ltd Odor scavenger resin composition
JP2011235285A (en) * 2005-11-01 2011-11-24 Johnson Matthey Plc Adsorption of volatile organic compound derived from organic substance
US9186649B2 (en) 2005-11-01 2015-11-17 Anglo Platinum Marketing Limited Adsorption of volatile organic compounds derived from organic matter
US8900348B2 (en) 2009-07-02 2014-12-02 Johnson Matthey Public Limited Company Adsorption of volatile organic compounds derived from organic matter
CN112138198A (en) * 2020-10-14 2020-12-29 白杨 Bacteriostatic deodorant composition

Similar Documents

Publication Publication Date Title
KR960007587B1 (en) Catalytic bodies and the process for producing the same
US5447701A (en) Gas purification method
JPH08308917A (en) Deodorizing apparatus
JPH0956799A (en) Self-regenerative adsorbent
JP2932456B2 (en) Heating element
JPH10165490A (en) Deodorant body and its manufacture
JPH0598185A (en) Coating material
JPH10180108A (en) Catalyst composition for deodorization and production thereof
JP3521091B2 (en) Deodorant
JP3618186B2 (en) Manufacturing method of improved deodorant
JPH09154927A (en) Deodorizing material
JPH08168649A (en) Deodorizer
JP3576189B2 (en) Odor removal method and odor component adsorbent
JPH05146683A (en) Catalyst and production thereof
JPH06327967A (en) Honeycomb adsorbing body
JPH09299461A (en) Deodorant
JP4095699B2 (en) Adsorption decomposition deodorization element
JPH0924272A (en) Self-regeneration type adsorbent
JP2722891B2 (en) Catalyst for deodorization
JP3283593B2 (en) Method for producing catalyst body
JPH0838584A (en) Deodorizing apparatus
JPH0631128A (en) Deodorizing method
JPH0598184A (en) Coating material
JPH10155882A (en) Deodorant
JPH119672A (en) Deodorant and its production